pub trait QuantRSParameterLearning {
// Required methods
fn learn_parameters_ml(&mut self, data: &[QuantRSAssignment]) -> Result<()>;
fn learn_parameters_bayesian(
&mut self,
data: &[QuantRSAssignment],
priors: &HashMap<String, ArrayD<f64>>,
) -> Result<()>;
fn get_parameters(&self) -> Result<Vec<DistributionExport>>;
fn set_parameters(&mut self, params: &[DistributionExport]) -> Result<()>;
}Expand description
Parameter learning interface for QuantRS integration.
This trait enables parameter estimation using QuantRS2 optimization algorithms.
Required Methods§
Sourcefn learn_parameters_ml(&mut self, data: &[QuantRSAssignment]) -> Result<()>
fn learn_parameters_ml(&mut self, data: &[QuantRSAssignment]) -> Result<()>
Learn parameters from data using maximum likelihood estimation.
Sourcefn learn_parameters_bayesian(
&mut self,
data: &[QuantRSAssignment],
priors: &HashMap<String, ArrayD<f64>>,
) -> Result<()>
fn learn_parameters_bayesian( &mut self, data: &[QuantRSAssignment], priors: &HashMap<String, ArrayD<f64>>, ) -> Result<()>
Learn parameters using Bayesian estimation with priors.
Sourcefn get_parameters(&self) -> Result<Vec<DistributionExport>>
fn get_parameters(&self) -> Result<Vec<DistributionExport>>
Get current parameters as QuantRS distributions.
Sourcefn set_parameters(&mut self, params: &[DistributionExport]) -> Result<()>
fn set_parameters(&mut self, params: &[DistributionExport]) -> Result<()>
Set parameters from QuantRS distributions.