Skip to main content

Module parameter_learning

Module parameter_learning 

Source
Expand description

Parameter learning algorithms for probabilistic graphical models.

This module provides algorithms for learning model parameters from data:

  • Maximum Likelihood Estimation (MLE): For fully observed data
  • Expectation-Maximization (EM): For partially observed data
  • Bayesian Estimation: With Dirichlet priors
  • Baum-Welch Algorithm: Specialized EM for Hidden Markov Models

§Overview

Parameter learning is the process of estimating the parameters (probabilities) of a probabilistic model from observed data. This module supports both:

  • Complete data: All variables are observed (use MLE)
  • Incomplete data: Some variables are hidden (use EM)

§Examples

// Learn HMM parameters from observed sequences
let mut hmm = HiddenMarkovModel::new(2, 2);
let learner = BaumWelchLearner::new(100, 1e-4);
learner.learn(&mut hmm, &observation_sequences)?;

Modules§

utils
Utilities for parameter learning.

Structs§

BaumWelchLearner
Baum-Welch algorithm for learning HMM parameters.
BayesianEstimator
Bayesian parameter estimator with Dirichlet priors.
MaximumLikelihoodEstimator
Maximum Likelihood Estimator for discrete distributions.
SimpleHMM
Simple HMM representation for parameter learning.