Struct stm32g0::stm32g0b0::tim1::bdtr::W[][src]

pub struct W(_);
Expand description

Register BDTR writer

Implementations

Bits 0:7 - Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. DTG[7:5]=0xx => DT=DTG[7:0]x tDTG with tDTG=tDTS. DTG[7:5]=10x => DT=(64+DTG[5:0])xtDTG with tDTG=2xtDTS. DTG[7:5]=110 => DT=(32+DTG[4:0])xtDTG with tDTG=8xtDTS. DTG[7:5]=111 => DT=(32+DTG[4:0])xtDTG with tDTG=16xtDTS. Example if tDTS=125 ns (8 MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 μs to 31750 ns by 250 ns steps, 32 μs to 63 μs by 1 μs steps, 64 μs to 126 μs by 2 μs steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register).

Bits 8:9 - Lock configuration These bits offer a write protection against software errors. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset.

Bit 10 - Off-state selection for Idle mode This bit is used when MOE=0 due to a break event or by a software write, on channels configured as outputs. See OC/OCN enable description for more details (enable register (TIM1_CCERTIMx_CCER)N/A). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register).

Bit 11 - Off-state selection for Run mode This bit is used when MOE=1 on channels having a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (enable register (TIM1_CCERTIMx_CCER)N/A). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register).

Bit 12 - Break enable This bit enables the complete break protection (including all sources connected to bk_acth and BKIN sources, as per ). Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 13 - Break polarity Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 14 - Automatic output enable Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register).

Bit 15 - Main output enable This bit is cleared asynchronously by hardware as soon as one of the break inputs is active (BRK or BRK2). It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. In response to a break event or if MOE is written to 0: OC and OCN outputs are disabled or forced to idle state depending on the OSSI bit. See OC/OCN enable description for more details (enable register (TIM1_CCERTIMx_CCER)N/A).

Bits 16:19 - Break filter This bit-field defines the frequency used to sample BRK input and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register).

Bits 20:23 - Break 2 filter This bit-field defines the frequency used to sample BRK2 input and the length of the digital filter applied to BRK2. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register).

Bit 24 - Break 2 enable Note: The BRK2 must only be used with OSSR = OSSI = 1. Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 25 - Break 2 polarity Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 26 - Break Disarm This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (open-drain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 27 - Break2 Disarm Refer to BKDSRM description

Bit 28 - Break Bidirectional In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 29 - Break2 bidirectional Refer to BKBID description

Writes raw bits to the register.

Methods from Deref<Target = W<BDTR_SPEC>>

Writes raw bits to the register.

Trait Implementations

The resulting type after dereferencing.

Dereferences the value.

Mutably dereferences the value.

Performs the conversion.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Performs the conversion.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.