pub struct FittedSparseGP<K> {
pub inducing_points: Array2<f64>,
pub kernel: K,
pub approximation: SparseApproximation,
pub alpha: Array1<f64>,
pub k_mm_inv: Array2<f64>,
pub noise_variance: f64,
pub variational_params: Option<VariationalParams>,
}Expand description
Fitted sparse Gaussian Process with learned parameters
Fields§
§inducing_points: Array2<f64>Inducing point locations
kernel: KKernel function with learned parameters
approximation: SparseApproximationSparse approximation method used
alpha: Array1<f64>Precomputed alpha coefficients
k_mm_inv: Array2<f64>Inverse of K_mm (inducing point kernel matrix)
noise_variance: f64Noise variance
variational_params: Option<VariationalParams>Variational parameters (if using VFE)
Implementations§
Source§impl<K: SparseKernel> FittedSparseGP<K>
impl<K: SparseKernel> FittedSparseGP<K>
Sourcepub fn predict_with_variance(
&self,
x: &Array2<f64>,
) -> Result<(Array1<f64>, Array1<f64>)>
pub fn predict_with_variance( &self, x: &Array2<f64>, ) -> Result<(Array1<f64>, Array1<f64>)>
Predict with uncertainty quantification
Sourcepub fn predict_scalable(
&self,
x: &Array2<f64>,
method: ScalableInferenceMethod,
) -> Result<Array1<f64>>
pub fn predict_scalable( &self, x: &Array2<f64>, method: ScalableInferenceMethod, ) -> Result<Array1<f64>>
Scalable prediction using different inference methods
Sourcepub fn log_marginal_likelihood(&self) -> Result<f64>
pub fn log_marginal_likelihood(&self) -> Result<f64>
Compute log marginal likelihood for model selection
Trait Implementations§
Source§impl<K: Clone> Clone for FittedSparseGP<K>
impl<K: Clone> Clone for FittedSparseGP<K>
Source§fn clone(&self) -> FittedSparseGP<K>
fn clone(&self) -> FittedSparseGP<K>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<K: Debug> Debug for FittedSparseGP<K>
impl<K: Debug> Debug for FittedSparseGP<K>
Source§impl<K: SparseKernel> Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for FittedSparseGP<K>
Prediction implementation for fitted sparse GP
impl<K: SparseKernel> Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for FittedSparseGP<K>
Prediction implementation for fitted sparse GP
Source§fn predict(&self, x: &Array2<f64>) -> Result<Array1<f64>>
fn predict(&self, x: &Array2<f64>) -> Result<Array1<f64>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<K> Freeze for FittedSparseGP<K>where
K: Freeze,
impl<K> RefUnwindSafe for FittedSparseGP<K>where
K: RefUnwindSafe,
impl<K> Send for FittedSparseGP<K>where
K: Send,
impl<K> Sync for FittedSparseGP<K>where
K: Sync,
impl<K> Unpin for FittedSparseGP<K>where
K: Unpin,
impl<K> UnwindSafe for FittedSparseGP<K>where
K: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more