Expand description
Core types, enums, and structures for sparse Gaussian Process implementation
This module provides the foundational data structures and type definitions for sparse Gaussian Process approximations with SIMD acceleration.
Modules§
- utils
- Helper functions for sparse GP operations
Structs§
- FittedSKI
- Fitted structured kernel interpolation
- Fitted
SparseGP - Fitted sparse Gaussian Process with learned parameters
- Optimization
Config - Configuration for sparse GP optimization
- Sparse
Gaussian Process - Core sparse Gaussian Process structure with configuration parameters
- Structured
Kernel Interpolation - Structured Kernel Interpolation (KISS-GP) for fast structured GP inference
- Variational
Params - Variational parameters for Variational Free Energy approximation
Enums§
- Inducing
Point Strategy - Strategies for selecting inducing points in sparse GP approximations
- Interpolation
Method - Interpolation methods for structured kernel approximations
- Preconditioner
Type - Preconditioner types for iterative solvers
- Scalable
Inference Method - Scalable inference methods for large-scale sparse GP prediction
- Sparse
Approximation - Available sparse approximation methods for Gaussian Processes
- SparseGP
Error - Error types specific to sparse GP operations