sklears_kernel_approximation/sparse_gp/
mod.rs

1//! Sparse Gaussian Process implementations with comprehensive approximation methods
2//!
3//! This module provides a complete sparse GP framework with multiple approximation methods,
4//! SIMD acceleration, scalable inference, and structured kernel interpolation.
5
6pub mod approximations;
7pub mod core;
8pub mod inference;
9pub mod kernels;
10pub mod simd_operations;
11pub mod ski;
12pub mod variational;
13
14// Re-export main types and traits
15pub use approximations::{InducingPointSelector, SparseApproximationMethods};
16pub use core::*;
17pub use inference::{LanczosMethod, PreconditionedCG, ScalableInference};
18pub use kernels::{KernelOps, MaternKernel, RBFKernel, SparseKernel};
19pub use simd_operations::simd_sparse_gp;
20pub use ski::{FittedTensorSKI, TensorSKI};
21pub use variational::{StochasticVariationalInference, VariationalFreeEnergy};
22
23use scirs2_core::ndarray::{Array1, Array2};
24use scirs2_core::random::essentials::Normal as RandNormal;
25use scirs2_core::random::thread_rng;
26use sklears_core::error::{Result, SklearsError};
27use sklears_core::traits::{Fit, Predict};
28
29/// Main sparse Gaussian Process implementation
30impl<K: SparseKernel> SparseGaussianProcess<K> {
31    /// Create new sparse Gaussian Process with specified inducing points and kernel
32    pub fn new(num_inducing: usize, kernel: K) -> Self {
33        Self {
34            num_inducing,
35            kernel,
36            approximation: SparseApproximation::FullyIndependentConditional,
37            inducing_strategy: InducingPointStrategy::KMeans,
38            noise_variance: 1e-6,
39            max_iter: 100,
40            tol: 1e-6,
41        }
42    }
43
44    /// Select inducing points based on the configured strategy
45    pub fn select_inducing_points(&self, x: &Array2<f64>) -> Result<Array2<f64>> {
46        InducingPointSelector::select_points(
47            &self.inducing_strategy,
48            x,
49            self.num_inducing,
50            &self.kernel,
51        )
52    }
53
54    /// Fit the sparse GP model using the configured approximation method
55    fn fit_approximation(
56        &self,
57        x: &Array2<f64>,
58        y: &Array1<f64>,
59        inducing_points: &Array2<f64>,
60    ) -> Result<(Array1<f64>, Array2<f64>, Option<VariationalParams>)> {
61        match &self.approximation {
62            SparseApproximation::SubsetOfRegressors => {
63                let (alpha, k_mm_inv) = SparseApproximationMethods::fit_sor(
64                    x,
65                    y,
66                    inducing_points,
67                    &self.kernel,
68                    self.noise_variance,
69                )?;
70                Ok((alpha, k_mm_inv, None))
71            }
72
73            SparseApproximation::FullyIndependentConditional => {
74                let (alpha, k_mm_inv) = SparseApproximationMethods::fit_fic(
75                    x,
76                    y,
77                    inducing_points,
78                    &self.kernel,
79                    self.noise_variance,
80                )?;
81                Ok((alpha, k_mm_inv, None))
82            }
83
84            SparseApproximation::PartiallyIndependentConditional { block_size } => {
85                let (alpha, k_mm_inv) = SparseApproximationMethods::fit_pic(
86                    x,
87                    y,
88                    inducing_points,
89                    &self.kernel,
90                    self.noise_variance,
91                    *block_size,
92                )?;
93                Ok((alpha, k_mm_inv, None))
94            }
95
96            SparseApproximation::VariationalFreeEnergy {
97                whitened,
98                natural_gradients,
99            } => {
100                let (alpha, k_mm_inv, vfe_params) = VariationalFreeEnergy::fit(
101                    x,
102                    y,
103                    inducing_points,
104                    &self.kernel,
105                    self.noise_variance,
106                    *whitened,
107                    *natural_gradients,
108                    self.max_iter,
109                    self.tol,
110                )?;
111                Ok((alpha, k_mm_inv, Some(vfe_params)))
112            }
113        }
114    }
115}
116
117/// Fit implementation for sparse GP
118impl<K: SparseKernel> Fit<Array2<f64>, Array1<f64>> for SparseGaussianProcess<K> {
119    type Fitted = FittedSparseGP<K>;
120
121    fn fit(self, x: &Array2<f64>, y: &Array1<f64>) -> Result<Self::Fitted> {
122        // Validate input dimensions
123        if x.nrows() != y.len() {
124            return Err(SklearsError::InvalidInput(
125                "Number of samples must match between X and y".to_string(),
126            ));
127        }
128
129        if self.num_inducing > x.nrows() {
130            return Err(SklearsError::InvalidInput(
131                "Number of inducing points cannot exceed number of data points".to_string(),
132            ));
133        }
134
135        // Select inducing points
136        let inducing_points = self.select_inducing_points(x)?;
137
138        // Validate inducing points configuration
139        utils::validate_inducing_points(self.num_inducing, x.ncols(), &self.inducing_strategy)?;
140
141        // Fit using the specified approximation method
142        let (alpha, k_mm_inv, variational_params) =
143            self.fit_approximation(x, y, &inducing_points)?;
144
145        Ok(FittedSparseGP {
146            inducing_points,
147            kernel: self.kernel,
148            approximation: self.approximation,
149            alpha,
150            k_mm_inv,
151            noise_variance: self.noise_variance,
152            variational_params,
153        })
154    }
155}
156
157/// Prediction implementation for fitted sparse GP
158impl<K: SparseKernel> Predict<Array2<f64>, Array1<f64>> for FittedSparseGP<K> {
159    fn predict(&self, x: &Array2<f64>) -> Result<Array1<f64>> {
160        let k_star_m = self.kernel.kernel_matrix(x, &self.inducing_points);
161
162        // Use SIMD-accelerated prediction when available
163        let predictions = simd_sparse_gp::simd_posterior_mean(&k_star_m, &self.alpha);
164
165        Ok(predictions)
166    }
167}
168
169impl<K: SparseKernel> FittedSparseGP<K> {
170    /// Predict with uncertainty quantification
171    pub fn predict_with_variance(&self, x: &Array2<f64>) -> Result<(Array1<f64>, Array1<f64>)> {
172        let k_star_m = self.kernel.kernel_matrix(x, &self.inducing_points);
173
174        // Use SIMD-accelerated posterior mean computation
175        let mean = simd_sparse_gp::simd_posterior_mean(&k_star_m, &self.alpha);
176
177        // SIMD-accelerated predictive variance computation
178        let v = self.k_mm_inv.dot(&k_star_m.t());
179        let k_star_star = self.kernel.kernel_diagonal(x);
180        let variance = simd_sparse_gp::simd_posterior_variance(&k_star_star, &v);
181
182        Ok((mean, variance))
183    }
184
185    /// Scalable prediction using different inference methods
186    pub fn predict_scalable(
187        &self,
188        x: &Array2<f64>,
189        method: ScalableInferenceMethod,
190    ) -> Result<Array1<f64>> {
191        let k_star_m = self.kernel.kernel_matrix(x, &self.inducing_points);
192
193        ScalableInference::predict(
194            &method,
195            &k_star_m,
196            &self.inducing_points,
197            &self.alpha,
198            &self.kernel,
199            self.noise_variance,
200        )
201    }
202
203    /// Compute log marginal likelihood for model selection
204    pub fn log_marginal_likelihood(&self) -> Result<f64> {
205        if let Some(vfe_params) = &self.variational_params {
206            // Use ELBO as approximation to log marginal likelihood
207            Ok(vfe_params.elbo)
208        } else {
209            // Compute approximate log marginal likelihood for other methods
210            let m = self.inducing_points.nrows();
211
212            // Log determinant from inverse (simplified)
213            let log_det = self
214                .k_mm_inv
215                .diag()
216                .mapv(|x| if x > 1e-10 { -x.ln() } else { 23.0 })
217                .sum();
218
219            // Data fit term
220            let data_fit = self.alpha.dot(&self.alpha);
221
222            // Marginal likelihood approximation
223            let log_ml = -0.5 * (data_fit + log_det + m as f64 * (2.0 * std::f64::consts::PI).ln());
224
225            Ok(log_ml)
226        }
227    }
228
229    /// Sample from the posterior predictive distribution
230    pub fn sample_posterior(&self, x: &Array2<f64>, num_samples: usize) -> Result<Array2<f64>> {
231        let (mean, var) = self.predict_with_variance(x)?;
232        let n_test = x.nrows();
233
234        let mut samples = Array2::zeros((num_samples, n_test));
235        let mut rng = thread_rng();
236
237        for i in 0..num_samples {
238            for j in 0..n_test {
239                let std_dev = var[j].sqrt();
240                let normal = RandNormal::new(mean[j], std_dev).unwrap();
241                samples[(i, j)] = rng.sample(normal);
242            }
243        }
244
245        Ok(samples)
246    }
247
248    /// Compute acquisition function for active learning
249    pub fn acquisition_function(
250        &self,
251        x: &Array2<f64>,
252        acquisition_type: &str,
253    ) -> Result<Array1<f64>> {
254        let (mean, var) = self.predict_with_variance(x)?;
255
256        match acquisition_type {
257            "variance" => Ok(var),
258            "entropy" => {
259                // Predictive entropy: 0.5 * log(2πe * σ²)
260                let entropy =
261                    var.mapv(|v| 0.5 * (2.0 * std::f64::consts::PI * std::f64::consts::E * v).ln());
262                Ok(entropy)
263            }
264            "upper_confidence_bound" => {
265                // Upper confidence bound with β = 2
266                let ucb = &mean + 2.0 * &var.mapv(|v| v.sqrt());
267                Ok(ucb)
268            }
269            _ => Err(SklearsError::InvalidInput(format!(
270                "Unknown acquisition function: {}",
271                acquisition_type
272            ))),
273        }
274    }
275}
276
277/// Utility functions and helpers
278pub mod utils {
279    pub use super::core::utils::*;
280    use super::*;
281
282    /// Compute effective degrees of freedom for sparse GP
283    pub fn effective_degrees_of_freedom<K: SparseKernel>(
284        fitted_gp: &FittedSparseGP<K>,
285        x: &Array2<f64>,
286    ) -> Result<f64> {
287        let k_nm = fitted_gp
288            .kernel
289            .kernel_matrix(x, &fitted_gp.inducing_points);
290        let k_mm_inv_k_mn = fitted_gp.k_mm_inv.dot(&k_nm.t());
291
292        // Trace of the hat matrix approximation
293        let mut trace = 0.0;
294        for i in 0..k_nm.nrows() {
295            trace += k_nm.row(i).dot(&k_mm_inv_k_mn.column(i));
296        }
297
298        Ok(trace)
299    }
300
301    /// Compute model complexity penalty
302    pub fn model_complexity_penalty<K: SparseKernel>(fitted_gp: &FittedSparseGP<K>) -> f64 {
303        // Simplified complexity penalty based on number of inducing points
304        fitted_gp.inducing_points.nrows() as f64 * (fitted_gp.inducing_points.nrows() as f64).ln()
305    }
306
307    /// Optimize hyperparameters using gradient-based methods
308    pub fn optimize_hyperparameters<K: SparseKernel>(
309        sparse_gp: &mut SparseGaussianProcess<K>,
310        x: &Array2<f64>,
311        y: &Array1<f64>,
312        max_iter: usize,
313        learning_rate: f64,
314    ) -> Result<f64> {
315        let mut best_likelihood = f64::NEG_INFINITY;
316
317        for _iter in 0..max_iter {
318            // Fit current model
319            let fitted = sparse_gp.clone().fit(x, y)?;
320
321            // Compute log marginal likelihood
322            let log_ml = fitted.log_marginal_likelihood()?;
323
324            if log_ml > best_likelihood {
325                best_likelihood = log_ml;
326            }
327
328            // Compute gradients (simplified - would use automatic differentiation)
329            let gradients = sparse_gp
330                .kernel
331                .parameter_gradients(&fitted.inducing_points, &fitted.inducing_points);
332
333            // Update kernel parameters (simplified gradient step)
334            let mut params = sparse_gp.kernel.parameters();
335            for (i, grad_matrix) in gradients.iter().enumerate() {
336                let grad_scalar =
337                    grad_matrix.sum() / (grad_matrix.nrows() * grad_matrix.ncols()) as f64;
338                params[i] += learning_rate * grad_scalar;
339                params[i] = params[i].max(1e-6); // Ensure positivity
340            }
341            sparse_gp.kernel.set_parameters(&params);
342        }
343
344        Ok(best_likelihood)
345    }
346}