pub struct AdvancedPerformanceMonitor { /* private fields */ }Expand description
Comprehensive performance monitor for Advanced operations
Implementations§
Source§impl AdvancedPerformanceMonitor
impl AdvancedPerformanceMonitor
Sourcepub fn with_thresholds(thresholds: PerformanceThresholds) -> Self
pub fn with_thresholds(thresholds: PerformanceThresholds) -> Self
Create with custom thresholds
Examples found in repository?
examples/complete_integration.rs (line 84)
57 fn new() -> Result<Self> {
58 println!("🔧 Initializing Complete Advanced System...");
59
60 // Configure Advanced mode with optimized settings
61 let config = AdvancedTextConfig {
62 enable_gpu_acceleration: true,
63 enable_simd_optimizations: true,
64 enable_neural_ensemble: true,
65 enable_real_time_adaptation: true,
66 enable_advanced_analytics: true,
67 enable_multimodal: true,
68 max_memory_usage_mb: 8192,
69 optimization_level: 3,
70 target_throughput: 5000.0,
71 enable_predictive_processing: true,
72 };
73
74 // Performance monitoring with strict thresholds
75 let perf_thresholds = PerformanceThresholds {
76 max_processing_time_ms: 500, // 500ms max
77 min_throughput: 1000.0, // 1000 docs/sec min
78 max_memory_usage_mb: 6144, // 6GB max
79 max_cpu_utilization: 85.0, // 85% max
80 min_cache_hit_rate: 0.85, // 85% min
81 };
82
83 let coordinator = AdvancedTextCoordinator::new(config)?;
84 let performance_monitor = AdvancedPerformanceMonitor::with_thresholds(perf_thresholds);
85 let simd_processor = AdvancedSIMDTextProcessor;
86 let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default());
87
88 println!("✅ Advanced System initialized successfully!\n");
89
90 Ok(Self {
91 coordinator,
92 performance_monitor,
93 simd_processor,
94 streaming_processor,
95 })
96 }Sourcepub fn start_operation(
&self,
operationtype: &str,
) -> Result<OperationMonitor<'_>>
pub fn start_operation( &self, operationtype: &str, ) -> Result<OperationMonitor<'_>>
Start monitoring an operation
Examples found in repository?
examples/complete_integration.rs (line 139)
119 fn demo_integrated_pipeline(&self) -> Result<()> {
120 println!("📊 Demo 1: Integrated Text Processing Pipeline");
121 println!("==============================================");
122
123 let sample_documents = vec![
124 "Artificial intelligence is revolutionizing the field of natural language processing.".to_string(),
125 "Machine learning algorithms can now understand context and semantic meaning in text.".to_string(),
126 "Deep neural networks have enabled breakthrough performance in text classification tasks.".to_string(),
127 "SIMD optimizations allow for optimized string processing in modern computing systems.".to_string(),
128 "Real-time adaptation ensures optimal performance across diverse text processing workloads.".to_string(),
129 ];
130
131 println!(
132 "Processing {} documents through integrated pipeline...",
133 sample_documents.len()
134 );
135
136 // Start performance monitoring
137 let operation_monitor = self
138 .performance_monitor
139 .start_operation("integrated_pipeline")?;
140
141 let start_time = Instant::now();
142
143 // Process through Advanced coordinator
144 let result = self.coordinator.advanced_processtext(&sample_documents)?;
145
146 let processing_time = start_time.elapsed();
147
148 // Complete monitoring
149 operation_monitor.complete(sample_documents.len())?;
150
151 println!("\n📈 Pipeline Results:");
152 println!(" • Processing Time: {processing_time:?}");
153 println!(
154 " • Throughput: {:.2} docs/sec",
155 result.performance_metrics.throughput
156 );
157 println!(
158 " • Memory Efficiency: {:.1}%",
159 result.performance_metrics.memory_efficiency * 100.0
160 );
161 println!(
162 " • Accuracy Estimate: {:.1}%",
163 result.performance_metrics.accuracy_estimate * 100.0
164 );
165
166 println!("\n🔧 Applied Optimizations:");
167 for optimization in &result.optimizations_applied {
168 println!(" • {optimization}");
169 }
170
171 println!("\n🎯 Confidence Scores:");
172 for (metric, score) in &result.confidence_scores {
173 println!(" • {}: {:.1}%", metric, score * 100.0);
174 }
175
176 println!();
177 Ok(())
178 }
179
180 /// Demonstrate performance-monitored SIMD operations
181 fn demo_performance_monitored_simd(&self) -> Result<()> {
182 println!("⚡ Demo 2: Performance-Monitored SIMD Operations");
183 println!("===============================================");
184
185 let testtexts = [
186 "The quick brown fox jumps over the lazy dog".to_string(),
187 "Pack my box with five dozen liquor jugs".to_string(),
188 "How vexingly quick daft zebras jump!".to_string(),
189 "Bright vixens jump; dozy fowl quack".to_string(),
190 ];
191
192 println!("Running SIMD-accelerated operations with performance monitoring...");
193
194 // Start monitoring
195 let operation_monitor = self
196 .performance_monitor
197 .start_operation("simd_operations")?;
198
199 let start_time = Instant::now();
200
201 // Optimized text processing
202 let testtext_refs: Vec<&str> = testtexts.iter().map(|s| s.as_str()).collect();
203 let processed_results = AdvancedSIMDTextProcessor::advanced_batch_process(&testtext_refs);
204
205 // SIMD string operations
206 let char_counts: Vec<usize> = testtexts
207 .iter()
208 .map(|text| SimdStringOps::count_chars(text, 'o'))
209 .collect();
210
211 // Optimized similarity matrix
212 let similarity_matrix =
213 AdvancedSIMDTextProcessor::advanced_similarity_matrix(&testtext_refs);
214
215 let processing_time = start_time.elapsed();
216
217 // Complete monitoring
218 operation_monitor.complete(testtexts.len())?;
219
220 println!("\n📊 SIMD Operation Results:");
221 println!(" • Processing Time: {processing_time:?}");
222 println!(" • Documents Processed: {}", processed_results.len());
223 println!(" • Character Counts (letter 'o'): {char_counts:?}");
224 println!(
225 " • Similarity Matrix Size: {}x{}",
226 similarity_matrix.len(),
227 similarity_matrix[0].len()
228 );
229
230 // Display similarity matrix
231 println!("\n🔗 Text Similarity Matrix:");
232 for (i, row) in similarity_matrix.iter().enumerate() {
233 print!(" Row {i}: [");
234 for (j, &similarity) in row.iter().enumerate() {
235 if j > 0 {
236 print!(", ");
237 }
238 print!("{similarity:.3}");
239 }
240 println!("]");
241 }
242
243 // Show SIMD capabilities
244 println!("\n⚙️ SIMD Capabilities:");
245 println!(" • SIMD Available: {}", SimdStringOps::is_available());
246 println!(" • String Processing: Optimized");
247 println!(" • Pattern Matching: Optimized");
248 println!(" • Similarity Computation: Vectorized");
249
250 println!();
251 Ok(())
252 }
253
254 /// Demonstrate adaptive streaming processing
255 fn demo_adaptive_streaming(&self) -> Result<()> {
256 println!("🌊 Demo 3: Adaptive Streaming Processing");
257 println!("========================================");
258
259 // Create large dataset simulation
260 let largetexts: Vec<String> = (0..1000)
261 .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262 .collect();
263
264 println!(
265 "Processing {} documents through adaptive streaming...",
266 largetexts.len()
267 );
268
269 // Start monitoring
270 let operation_monitor = self
271 .performance_monitor
272 .start_operation("adaptive_streaming")?;
273
274 let start_time = Instant::now();
275
276 // Streaming processing with parallel optimization
277 let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278 .with_parallelism(4, 1024 * 1024);
279
280 // Simple token counting for demonstration
281 let mut total_tokens = 0;
282 let tokenizer = WordTokenizer::default();
283 for text in &largetexts {
284 if let Ok(tokens) = tokenizer.tokenize(text) {
285 total_tokens += tokens.len();
286 }
287 }
288
289 let processing_time = start_time.elapsed();
290
291 // Complete monitoring
292 operation_monitor.complete(largetexts.len())?;
293
294 // Get memory stats instead of performance metrics
295 let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297 println!("\n📈 Streaming Processing Results:");
298 println!(" • Processing Time: {processing_time:?}");
299 println!(" • Documents Processed: {}", largetexts.len());
300 println!(" • Total Tokens Extracted: {total_tokens}");
301 println!(" • Current Memory Usage: {current_mem} bytes");
302 println!(" • Peak Memory Usage: {peak_mem} bytes");
303 println!(
304 " • Throughput: {:.2} docs/sec",
305 largetexts.len() as f64 / processing_time.as_secs_f64()
306 );
307
308 println!("\n🔄 Advanced Features:");
309 println!(" • Parallel Processing: Enabled");
310 println!(" • Memory Monitoring: Active");
311 println!(" • Advanced Tokenization: Optimized");
312
313 println!();
314 Ok(())
315 }
316
317 /// Demonstrate real-time optimization and adaptation
318 fn demo_realtime_optimization(&self) -> Result<()> {
319 println!("🎯 Demo 4: Real-time Optimization and Adaptation");
320 println!("===============================================");
321
322 // Simulate various workload patterns
323 let workload_patterns = vec![
324 ("Short Documents", generate_short_documents(50)),
325 ("Medium Documents", generate_medium_documents(30)),
326 ("Long Documents", generate_long_documents(20)),
327 ("Mixed Workload", generate_mixed_workload(40)),
328 ];
329
330 for (pattern_name, documents) in workload_patterns {
331 println!("\n🔄 Processing Pattern: {pattern_name}");
332 println!(" • Document Count: {}", documents.len());
333
334 // Start monitoring for this pattern
335 let operation_monitor = self
336 .performance_monitor
337 .start_operation(&format!("pattern_{}", pattern_name.replace(' ', "_")))?;
338
339 let start_time = Instant::now();
340
341 // Process with adaptive optimization
342 let result = self.coordinator.advanced_processtext(&documents)?;
343
344 let processing_time = start_time.elapsed();
345
346 // Complete monitoring
347 operation_monitor.complete(documents.len())?;
348
349 println!(" • Processing Time: {processing_time:?}");
350 println!(
351 " • Throughput: {:.2} docs/sec",
352 result.performance_metrics.throughput
353 );
354 println!(
355 " • Optimizations Applied: {}",
356 result.optimizations_applied.len()
357 );
358
359 // Show adaptive responses
360 if !result.optimizations_applied.is_empty() {
361 println!(" • Adaptive Responses:");
362 for opt in &result.optimizations_applied {
363 println!(" - {opt}");
364 }
365 }
366 }
367
368 // Get optimization recommendations
369 let recommendations = self.performance_monitor.get_optimization_opportunities()?;
370
371 println!("\n💡 Current Optimization Opportunities:");
372 if recommendations.is_empty() {
373 println!(" • No optimization opportunities identified");
374 println!(" • System is operating at optimal performance");
375 } else {
376 for (i, rec) in recommendations.iter().enumerate() {
377 println!(" {}. [{}] {}", i + 1, rec.category, rec.recommendation);
378 println!(
379 " Impact: {:.0}% | Complexity: {}/5",
380 rec.impact_estimate * 100.0,
381 rec.complexity
382 );
383 }
384 }
385
386 println!();
387 Ok(())
388 }Sourcepub fn record_performance(&self, datapoint: PerformanceDataPoint) -> Result<()>
pub fn record_performance(&self, datapoint: PerformanceDataPoint) -> Result<()>
Record a performance data point
Sourcepub fn get_performance_summary(&self) -> Result<PerformanceSummary>
pub fn get_performance_summary(&self) -> Result<PerformanceSummary>
Get current performance summary
Sourcepub fn get_optimization_opportunities(
&self,
) -> Result<Vec<OptimizationRecommendation>>
pub fn get_optimization_opportunities( &self, ) -> Result<Vec<OptimizationRecommendation>>
Get optimization recommendations
Examples found in repository?
examples/complete_integration.rs (line 369)
318 fn demo_realtime_optimization(&self) -> Result<()> {
319 println!("🎯 Demo 4: Real-time Optimization and Adaptation");
320 println!("===============================================");
321
322 // Simulate various workload patterns
323 let workload_patterns = vec![
324 ("Short Documents", generate_short_documents(50)),
325 ("Medium Documents", generate_medium_documents(30)),
326 ("Long Documents", generate_long_documents(20)),
327 ("Mixed Workload", generate_mixed_workload(40)),
328 ];
329
330 for (pattern_name, documents) in workload_patterns {
331 println!("\n🔄 Processing Pattern: {pattern_name}");
332 println!(" • Document Count: {}", documents.len());
333
334 // Start monitoring for this pattern
335 let operation_monitor = self
336 .performance_monitor
337 .start_operation(&format!("pattern_{}", pattern_name.replace(' ', "_")))?;
338
339 let start_time = Instant::now();
340
341 // Process with adaptive optimization
342 let result = self.coordinator.advanced_processtext(&documents)?;
343
344 let processing_time = start_time.elapsed();
345
346 // Complete monitoring
347 operation_monitor.complete(documents.len())?;
348
349 println!(" • Processing Time: {processing_time:?}");
350 println!(
351 " • Throughput: {:.2} docs/sec",
352 result.performance_metrics.throughput
353 );
354 println!(
355 " • Optimizations Applied: {}",
356 result.optimizations_applied.len()
357 );
358
359 // Show adaptive responses
360 if !result.optimizations_applied.is_empty() {
361 println!(" • Adaptive Responses:");
362 for opt in &result.optimizations_applied {
363 println!(" - {opt}");
364 }
365 }
366 }
367
368 // Get optimization recommendations
369 let recommendations = self.performance_monitor.get_optimization_opportunities()?;
370
371 println!("\n💡 Current Optimization Opportunities:");
372 if recommendations.is_empty() {
373 println!(" • No optimization opportunities identified");
374 println!(" • System is operating at optimal performance");
375 } else {
376 for (i, rec) in recommendations.iter().enumerate() {
377 println!(" {}. [{}] {}", i + 1, rec.category, rec.recommendation);
378 println!(
379 " Impact: {:.0}% | Complexity: {}/5",
380 rec.impact_estimate * 100.0,
381 rec.complexity
382 );
383 }
384 }
385
386 println!();
387 Ok(())
388 }Sourcepub fn apply_optimization(&self, optimizationid: &str) -> Result<()>
pub fn apply_optimization(&self, optimizationid: &str) -> Result<()>
Apply an optimization
Sourcepub fn generate_performance_report(&self) -> Result<DetailedPerformanceReport>
pub fn generate_performance_report(&self) -> Result<DetailedPerformanceReport>
Get detailed performance report
Examples found in repository?
examples/complete_integration.rs (line 396)
391 fn demo_system_analytics(&self) -> Result<()> {
392 println!("📊 Demo 5: Comprehensive System Analytics");
393 println!("=========================================");
394
395 // Generate comprehensive performance report
396 let performance_report = self.performance_monitor.generate_performance_report()?;
397
398 println!("📈 Performance Summary:");
399 println!(
400 " • Total Operations: {}",
401 performance_report.summary.total_operations
402 );
403 println!(
404 " • Avg Processing Time: {:?}",
405 performance_report.summary.recent_avg_processing_time
406 );
407 println!(
408 " • Avg Throughput: {:.2} docs/sec",
409 performance_report.summary.recent_avg_throughput
410 );
411 println!(
412 " • Avg Memory Usage: {} MB",
413 performance_report.summary.recent_avg_memory_usage / (1024 * 1024)
414 );
415 println!(
416 " • Cache Hit Rate: {:.1}%",
417 performance_report.summary.cache_hit_rate * 100.0
418 );
419
420 if !performance_report.summary.active_alerts.is_empty() {
421 println!("\n⚠️ Active Performance Alerts:");
422 for alert in &performance_report.summary.active_alerts {
423 println!(" • {alert}");
424 }
425 } else {
426 println!("\n✅ No active performance alerts");
427 }
428
429 println!("\n📊 Historical Trends:");
430 println!(
431 " • Processing Time: {:?}",
432 performance_report.historical_trends.processing_time_trend
433 );
434 println!(
435 " • Throughput: {:?}",
436 performance_report.historical_trends.throughput_trend
437 );
438 println!(
439 " • Memory Usage: {:?}",
440 performance_report.historical_trends.memory_usage_trend
441 );
442
443 println!("\n🖥️ Resource Utilization:");
444 println!(
445 " • CPU: {:.1}%",
446 performance_report.resource_utilization.avg_cpu_utilization
447 );
448 println!(
449 " • Peak Memory: {} MB",
450 performance_report.resource_utilization.peak_memory_usage / (1024 * 1024)
451 );
452 println!(
453 " • Network I/O: {} MB sent, {} MB received",
454 performance_report
455 .resource_utilization
456 .network_io
457 .bytes_sent
458 / (1024 * 1024),
459 performance_report
460 .resource_utilization
461 .network_io
462 .bytes_received
463 / (1024 * 1024)
464 );
465
466 if !performance_report.bottleneck_analysis.is_empty() {
467 println!("\n🔍 Bottleneck Analysis:");
468 for bottleneck in &performance_report.bottleneck_analysis {
469 println!(
470 " • {} [{}]: {}",
471 bottleneck.component, bottleneck.severity, bottleneck.description
472 );
473 for rec in &bottleneck.recommendations {
474 println!(" - {rec}");
475 }
476 }
477 }
478
479 if !performance_report.recommendations.is_empty() {
480 println!("\n🎯 System Recommendations:");
481 for rec in &performance_report.recommendations {
482 println!(
483 " • [{}] {} (Impact: {:.0}%)",
484 rec.category,
485 rec.recommendation,
486 rec.impact_estimate * 100.0
487 );
488 }
489 }
490
491 // System health score
492 let health_score = calculate_system_health_score(&performance_report);
493 println!("\n🏥 Overall System Health Score: {health_score:.1}/100");
494
495 let health_status = match health_score {
496 score if score >= 90.0 => "Excellent",
497 score if score >= 80.0 => "Good",
498 score if score >= 70.0 => "Fair",
499 score if score >= 60.0 => "Poor",
500 _ => "Critical",
501 };
502 println!(
503 " Status: {} - System is performing {}",
504 health_status,
505 if health_score >= 80.0 {
506 "optimally"
507 } else {
508 "suboptimally"
509 }
510 );
511
512 println!();
513 Ok(())
514 }Trait Implementations§
Source§impl Debug for AdvancedPerformanceMonitor
impl Debug for AdvancedPerformanceMonitor
Auto Trait Implementations§
impl Freeze for AdvancedPerformanceMonitor
impl RefUnwindSafe for AdvancedPerformanceMonitor
impl Send for AdvancedPerformanceMonitor
impl Sync for AdvancedPerformanceMonitor
impl Unpin for AdvancedPerformanceMonitor
impl UnwindSafe for AdvancedPerformanceMonitor
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.