scirs2_text/
performance.rs

1//! Advanced Performance Monitoring and Optimization
2//!
3//! This module provides comprehensive performance monitoring, analysis, and optimization
4//! capabilities for Advanced mode text processing operations.
5
6use crate::error::{Result, TextError};
7use std::collections::HashMap;
8use std::sync::{Arc, Mutex, RwLock};
9use std::time::{Duration, Instant};
10
11/// Comprehensive performance monitor for Advanced operations
12#[derive(Debug)]
13pub struct AdvancedPerformanceMonitor {
14    /// Historical performance data
15    metricshistory: Arc<RwLock<Vec<PerformanceDataPoint>>>,
16    /// Real-time performance aggregator
17    realtime_aggregator: Arc<Mutex<RealtimeAggregator>>,
18    /// Performance alert thresholds
19    alert_thresholds: PerformanceThresholds,
20    /// System resource monitor
21    resource_monitor: Arc<Mutex<SystemResourceMonitor>>,
22    /// Optimization recommendations engine
23    optimization_engine: Arc<Mutex<OptimizationEngine>>,
24}
25
26/// Single performance data point
27#[derive(Debug, Clone)]
28pub struct PerformanceDataPoint {
29    /// Timestamp of the measurement
30    pub timestamp: Instant,
31    /// Operation type that was measured
32    pub operationtype: String,
33    /// Processing time for the operation
34    pub processing_time: Duration,
35    /// Number of items processed
36    pub itemsprocessed: usize,
37    /// Memory usage during operation (bytes)
38    pub memory_usage: usize,
39    /// CPU utilization percentage (0-100)
40    pub cpu_utilization: f64,
41    /// GPU utilization percentage (0-100)
42    pub gpu_utilization: f64,
43    /// Cache hit rate (0.0-1.0)
44    pub cache_hit_rate: f64,
45    /// Custom metrics
46    pub custom_metrics: HashMap<String, f64>,
47}
48
49/// Real-time performance aggregator
50#[derive(Debug)]
51struct RealtimeAggregator {
52    /// Current operation start time
53    current_operation: Option<Instant>,
54    /// Running statistics
55    running_stats: HashMap<String, RunningStatistics>,
56    /// Alert counters
57    alert_counts: HashMap<String, usize>,
58}
59
60/// Running statistics for performance metrics
61#[derive(Debug, Clone)]
62struct RunningStatistics {
63    /// Number of samples
64    count: usize,
65    /// Sum of values
66    sum: f64,
67    /// Sum of squared values (for variance calculation)
68    sum_squared: f64,
69    /// Minimum value seen
70    min: f64,
71    /// Maximum value seen
72    max: f64,
73    /// Moving average (exponential)
74    moving_average: f64,
75}
76
77/// Performance alert thresholds
78#[derive(Debug, Clone)]
79pub struct PerformanceThresholds {
80    /// Maximum acceptable processing time (milliseconds)
81    pub max_processing_time_ms: u64,
82    /// Minimum acceptable throughput (items/second)
83    pub min_throughput: f64,
84    /// Maximum acceptable memory usage (MB)
85    pub max_memory_usage_mb: usize,
86    /// Maximum acceptable CPU utilization (percentage)
87    pub max_cpu_utilization: f64,
88    /// Minimum acceptable cache hit rate
89    pub min_cache_hit_rate: f64,
90}
91
92/// System resource monitor
93#[derive(Debug)]
94struct SystemResourceMonitor {
95    /// Memory usage tracker
96    memory_tracker: MemoryTracker,
97    /// CPU usage tracker
98    cpu_tracker: CpuUsageTracker,
99    /// GPU usage tracker (if available)
100    #[allow(dead_code)]
101    gpu_tracker: Option<GpuUsageTracker>,
102    /// Network I/O tracker
103    network_tracker: NetworkTracker,
104}
105
106/// Memory usage tracking
107#[derive(Debug)]
108struct MemoryTracker {
109    /// Peak memory usage (bytes)
110    peak_usage: usize,
111    /// Current memory usage (bytes)
112    #[allow(dead_code)]
113    current_usage: usize,
114    /// Memory allocation events
115    #[allow(dead_code)]
116    allocations: Vec<AllocationEvent>,
117}
118
119/// Memory allocation event
120#[derive(Debug, Clone)]
121struct AllocationEvent {
122    /// Timestamp of allocation
123    #[allow(dead_code)]
124    timestamp: Instant,
125    /// Size allocated (bytes)
126    #[allow(dead_code)]
127    size: usize,
128    /// Allocation type
129    #[allow(dead_code)]
130    allocation_type: String,
131}
132
133/// CPU usage tracking
134#[derive(Debug)]
135struct CpuUsageTracker {
136    /// CPU usage samples
137    #[allow(dead_code)]
138    usage_samples: Vec<CpuUsageSample>,
139    /// Current load average
140    load_average: f64,
141}
142
143/// CPU usage sample
144#[derive(Debug, Clone)]
145struct CpuUsageSample {
146    /// Timestamp of sample
147    #[allow(dead_code)]
148    timestamp: Instant,
149    /// CPU utilization percentage
150    #[allow(dead_code)]
151    utilization: f64,
152}
153
154/// GPU usage tracking
155#[derive(Debug)]
156struct GpuUsageTracker {
157    /// GPU utilization samples
158    #[allow(dead_code)]
159    utilization_samples: Vec<GpuUsageSample>,
160    /// GPU memory usage (bytes)
161    #[allow(dead_code)]
162    memory_usage: usize,
163}
164
165/// GPU usage sample
166#[derive(Debug, Clone)]
167struct GpuUsageSample {
168    /// Timestamp of sample
169    #[allow(dead_code)]
170    timestamp: Instant,
171    /// GPU utilization percentage
172    #[allow(dead_code)]
173    utilization: f64,
174    /// Memory utilization percentage
175    #[allow(dead_code)]
176    memory_utilization: f64,
177}
178
179/// Network I/O tracking
180#[derive(Debug)]
181struct NetworkTracker {
182    /// Bytes sent
183    bytes_sent: usize,
184    /// Bytes received
185    bytes_received: usize,
186    /// Network latency samples
187    #[allow(dead_code)]
188    latency_samples: Vec<NetworkLatencySample>,
189}
190
191/// Network latency sample
192#[derive(Debug, Clone)]
193struct NetworkLatencySample {
194    /// Timestamp of sample
195    #[allow(dead_code)]
196    timestamp: Instant,
197    /// Latency in milliseconds
198    #[allow(dead_code)]
199    latency_ms: f64,
200}
201
202/// Optimization recommendations engine
203#[derive(Debug)]
204struct OptimizationEngine {
205    /// Performance patterns database
206    patterndatabase: Vec<PerformancePattern>,
207    /// Current optimization recommendations
208    current_recommendations: Vec<OptimizationRecommendation>,
209    /// Optimization history
210    optimizationhistory: Vec<OptimizationApplication>,
211}
212
213/// Performance pattern for optimization
214#[derive(Debug, Clone)]
215struct PerformancePattern {
216    /// Pattern identifier
217    #[allow(dead_code)]
218    id: String,
219    /// Pattern description
220    #[allow(dead_code)]
221    description: String,
222    /// Conditions that trigger this pattern
223    conditions: Vec<PerformanceCondition>,
224    /// Recommended optimizations
225    recommendations: Vec<OptimizationRecommendation>,
226}
227
228/// Performance condition
229#[derive(Debug, Clone)]
230struct PerformanceCondition {
231    /// Metric name
232    metric: String,
233    /// Comparison operator
234    operator: ComparisonOperator,
235    /// Threshold value
236    threshold: f64,
237}
238
239/// Comparison operators for conditions
240#[derive(Debug, Clone)]
241#[allow(dead_code)]
242enum ComparisonOperator {
243    /// Greater than
244    GreaterThan,
245    /// Less than
246    LessThan,
247    /// Equal to
248    EqualTo,
249    /// Greater than or equal to
250    GreaterOrEqual,
251    /// Less than or equal to
252    LessOrEqual,
253}
254
255/// Optimization recommendation
256#[derive(Debug, Clone)]
257pub struct OptimizationRecommendation {
258    /// Recommendation identifier
259    pub id: String,
260    /// Category of optimization
261    pub category: String,
262    /// Detailed recommendation
263    pub recommendation: String,
264    /// Estimated performance impact (0.0-1.0)
265    pub impact_estimate: f64,
266    /// Implementation complexity (1-5)
267    pub complexity: u8,
268    /// Prerequisites for implementation
269    pub prerequisites: Vec<String>,
270}
271
272/// Applied optimization record
273#[derive(Debug, Clone)]
274pub struct OptimizationApplication {
275    /// Timestamp of application
276    #[allow(dead_code)]
277    timestamp: Instant,
278    /// Optimization that was applied
279    #[allow(dead_code)]
280    optimization: OptimizationRecommendation,
281    /// Performance before optimization
282    #[allow(dead_code)]
283    performance_before: PerformanceSnapshot,
284    /// Performance after optimization
285    #[allow(dead_code)]
286    performance_after: Option<PerformanceSnapshot>,
287}
288
289/// Performance snapshot
290#[derive(Debug, Clone)]
291struct PerformanceSnapshot {
292    /// Average processing time
293    #[allow(dead_code)]
294    avg_processing_time: Duration,
295    /// Average throughput
296    #[allow(dead_code)]
297    avg_throughput: f64,
298    /// Average memory usage
299    #[allow(dead_code)]
300    avg_memory_usage: usize,
301    /// Average CPU utilization
302    #[allow(dead_code)]
303    avg_cpu_utilization: f64,
304}
305
306impl Default for PerformanceThresholds {
307    fn default() -> Self {
308        Self {
309            max_processing_time_ms: 1000, // 1 second
310            min_throughput: 100.0,        // 100 items/sec
311            max_memory_usage_mb: 8192,    // 8GB
312            max_cpu_utilization: 90.0,    // 90%
313            min_cache_hit_rate: 0.8,      // 80%
314        }
315    }
316}
317
318impl AdvancedPerformanceMonitor {
319    /// Create a new performance monitor
320    pub fn new() -> Self {
321        Self {
322            metricshistory: Arc::new(RwLock::new(Vec::new())),
323            realtime_aggregator: Arc::new(Mutex::new(RealtimeAggregator::new())),
324            alert_thresholds: PerformanceThresholds::default(),
325            resource_monitor: Arc::new(Mutex::new(SystemResourceMonitor::new())),
326            optimization_engine: Arc::new(Mutex::new(OptimizationEngine::new())),
327        }
328    }
329
330    /// Create with custom thresholds
331    pub fn with_thresholds(thresholds: PerformanceThresholds) -> Self {
332        Self {
333            metricshistory: Arc::new(RwLock::new(Vec::new())),
334            realtime_aggregator: Arc::new(Mutex::new(RealtimeAggregator::new())),
335            alert_thresholds: thresholds,
336            resource_monitor: Arc::new(Mutex::new(SystemResourceMonitor::new())),
337            optimization_engine: Arc::new(Mutex::new(OptimizationEngine::new())),
338        }
339    }
340
341    /// Start monitoring an operation
342    pub fn start_operation(&self, operationtype: &str) -> Result<OperationMonitor> {
343        let mut aggregator = self.realtime_aggregator.lock().unwrap();
344        aggregator.start_operation(operationtype)?;
345
346        Ok(OperationMonitor {
347            operationtype: operationtype.to_string(),
348            start_time: Instant::now(),
349            monitor: self,
350        })
351    }
352
353    /// Record a performance data point
354    pub fn record_performance(&self, datapoint: PerformanceDataPoint) -> Result<()> {
355        // Add to history
356        let mut history = self.metricshistory.write().unwrap();
357        history.push(datapoint.clone());
358
359        // Limit history size
360        if history.len() > 10000 {
361            history.drain(0..1000); // Remove oldest 1000 entries
362        }
363        drop(history);
364
365        // Update real-time aggregator
366        let mut aggregator = self.realtime_aggregator.lock().unwrap();
367        aggregator.update_statistics(&datapoint)?;
368        drop(aggregator);
369
370        // Check for alerts
371        self.check_alerts(&datapoint)?;
372
373        // Update optimization recommendations
374        let mut optimizer = self.optimization_engine.lock().unwrap();
375        optimizer.update_recommendations(&datapoint)?;
376        drop(optimizer);
377
378        Ok(())
379    }
380
381    /// Get current performance summary
382    pub fn get_performance_summary(&self) -> Result<PerformanceSummary> {
383        let history = self.metricshistory.read().unwrap();
384        let aggregator = self.realtime_aggregator.lock().unwrap();
385
386        let recent_window = std::cmp::min(100, history.len());
387        let recentdata = if recent_window > 0 {
388            &history[history.len() - recent_window..]
389        } else {
390            &[]
391        };
392
393        let summary = PerformanceSummary {
394            total_operations: history.len(),
395            recent_avg_processing_time: Self::calculate_avg_processing_time(recentdata),
396            recent_avg_throughput: Self::calculate_avg_throughput(recentdata),
397            recent_avg_memory_usage: Self::calculate_avg_memory_usage(recentdata),
398            cache_hit_rate: Self::calculate_avg_cache_hit_rate(recentdata),
399            active_alerts: aggregator.get_active_alerts(),
400            optimization_opportunities: self.get_optimization_opportunities()?,
401        };
402
403        Ok(summary)
404    }
405
406    /// Get optimization recommendations
407    pub fn get_optimization_opportunities(&self) -> Result<Vec<OptimizationRecommendation>> {
408        let optimizer = self.optimization_engine.lock().unwrap();
409        Ok(optimizer.current_recommendations.clone())
410    }
411
412    /// Apply an optimization
413    pub fn apply_optimization(&self, optimizationid: &str) -> Result<()> {
414        let mut optimizer = self.optimization_engine.lock().unwrap();
415        optimizer.apply_optimization(optimizationid)?;
416        Ok(())
417    }
418
419    /// Get detailed performance report
420    pub fn generate_performance_report(&self) -> Result<DetailedPerformanceReport> {
421        // Get the summary first to avoid nested locking
422        let summary = self.get_performance_summary()?;
423
424        // Then acquire other locks
425        let history = self.metricshistory.read().unwrap();
426        let resource_monitor = self.resource_monitor.lock().unwrap();
427        let optimization_engine = self.optimization_engine.lock().unwrap();
428
429        let report = DetailedPerformanceReport {
430            summary,
431            historical_trends: Self::analyze_trends(&history),
432            resource_utilization: resource_monitor.get_utilization_summary(),
433            bottleneck_analysis: Self::identify_bottlenecks(&history),
434            optimizationhistory: optimization_engine.optimizationhistory.clone(),
435            recommendations: optimization_engine.current_recommendations.clone(),
436        };
437
438        Ok(report)
439    }
440
441    // Helper methods
442    fn check_alerts(&self, datapoint: &PerformanceDataPoint) -> Result<()> {
443        let mut aggregator = self.realtime_aggregator.lock().unwrap();
444
445        if datapoint.processing_time.as_millis()
446            > self.alert_thresholds.max_processing_time_ms as u128
447        {
448            aggregator.increment_alert("high_processing_time");
449        }
450
451        let throughput = datapoint.itemsprocessed as f64 / datapoint.processing_time.as_secs_f64();
452        if throughput < self.alert_thresholds.min_throughput {
453            aggregator.increment_alert("low_throughput");
454        }
455
456        if datapoint.memory_usage > self.alert_thresholds.max_memory_usage_mb * 1024 * 1024 {
457            aggregator.increment_alert("high_memory_usage");
458        }
459
460        if datapoint.cpu_utilization > self.alert_thresholds.max_cpu_utilization {
461            aggregator.increment_alert("high_cpu_utilization");
462        }
463
464        if datapoint.cache_hit_rate < self.alert_thresholds.min_cache_hit_rate {
465            aggregator.increment_alert("low_cache_hit_rate");
466        }
467
468        Ok(())
469    }
470
471    fn calculate_avg_processing_time(data: &[PerformanceDataPoint]) -> Duration {
472        if data.is_empty() {
473            return Duration::from_millis(0);
474        }
475
476        let total_ms: u128 = data.iter().map(|d| d.processing_time.as_millis()).sum();
477        Duration::from_millis((total_ms / data.len() as u128) as u64)
478    }
479
480    fn calculate_avg_throughput(data: &[PerformanceDataPoint]) -> f64 {
481        if data.is_empty() {
482            return 0.0;
483        }
484
485        let total_throughput: f64 = data
486            .iter()
487            .map(|d| d.itemsprocessed as f64 / d.processing_time.as_secs_f64())
488            .sum();
489        total_throughput / data.len() as f64
490    }
491
492    fn calculate_avg_memory_usage(data: &[PerformanceDataPoint]) -> usize {
493        if data.is_empty() {
494            return 0;
495        }
496
497        data.iter().map(|d| d.memory_usage).sum::<usize>() / data.len()
498    }
499
500    fn calculate_avg_cache_hit_rate(data: &[PerformanceDataPoint]) -> f64 {
501        if data.is_empty() {
502            return 0.0;
503        }
504
505        data.iter().map(|d| d.cache_hit_rate).sum::<f64>() / data.len() as f64
506    }
507
508    fn analyze_trends(history: &[PerformanceDataPoint]) -> TrendAnalysis {
509        TrendAnalysis {
510            processing_time_trend: Self::calculate_trend(
511                &history
512                    .iter()
513                    .map(|d| d.processing_time.as_millis() as f64)
514                    .collect::<Vec<_>>(),
515            ),
516            throughput_trend: Self::calculate_trend(
517                &history
518                    .iter()
519                    .map(|d| d.itemsprocessed as f64 / d.processing_time.as_secs_f64())
520                    .collect::<Vec<_>>(),
521            ),
522            memory_usage_trend: Self::calculate_trend(
523                &history
524                    .iter()
525                    .map(|d| d.memory_usage as f64)
526                    .collect::<Vec<_>>(),
527            ),
528        }
529    }
530
531    fn calculate_trend(values: &[f64]) -> TrendDirection {
532        if values.len() < 2 {
533            return TrendDirection::Stable;
534        }
535
536        let mid_point = values.len() / 2;
537        let first_half_avg = values[..mid_point].iter().sum::<f64>() / mid_point as f64;
538        let second_half_avg =
539            values[mid_point..].iter().sum::<f64>() / (values.len() - mid_point) as f64;
540
541        let change_rate = (second_half_avg - first_half_avg) / first_half_avg;
542
543        if change_rate > 0.1 {
544            TrendDirection::Increasing
545        } else if change_rate < -0.1 {
546            TrendDirection::Decreasing
547        } else {
548            TrendDirection::Stable
549        }
550    }
551
552    fn identify_bottlenecks(history: &[PerformanceDataPoint]) -> Vec<BottleneckAnalysis> {
553        let mut bottlenecks = Vec::new();
554
555        // Analyze processing time bottlenecks
556        let avg_processing_time = Self::calculate_avg_processing_time(history);
557        if avg_processing_time.as_millis() > 500 {
558            bottlenecks.push(BottleneckAnalysis {
559                component: "Processing Time".to_string(),
560                severity: if avg_processing_time.as_millis() > 1000 {
561                    "High"
562                } else {
563                    "Medium"
564                }
565                .to_string(),
566                description: format!(
567                    "Average processing time is {}ms",
568                    avg_processing_time.as_millis()
569                ),
570                recommendations: vec![
571                    "Enable SIMD optimizations".to_string(),
572                    "Increase parallel processing".to_string(),
573                    "Optimize memory allocation".to_string(),
574                ],
575            });
576        }
577
578        // Analyze memory usage bottlenecks
579        let avg_memory = Self::calculate_avg_memory_usage(history);
580        if avg_memory > 4 * 1024 * 1024 * 1024 {
581            // 4GB
582            bottlenecks.push(BottleneckAnalysis {
583                component: "Memory Usage".to_string(),
584                severity: "High".to_string(),
585                description: {
586                    let avg_memory_mb = avg_memory / (1024 * 1024);
587                    format!("Average memory usage is {avg_memory_mb} MB")
588                },
589                recommendations: vec![
590                    "Implement memory pooling".to_string(),
591                    "Use streaming processing".to_string(),
592                    "Optimize data structures".to_string(),
593                ],
594            });
595        }
596
597        bottlenecks
598    }
599}
600
601/// Operation monitor for tracking individual operations
602pub struct OperationMonitor<'a> {
603    operationtype: String,
604    start_time: Instant,
605    monitor: &'a AdvancedPerformanceMonitor,
606}
607
608impl<'a> OperationMonitor<'a> {
609    /// Complete the operation and record performance
610    pub fn complete(self, itemsprocessed: usize) -> Result<()> {
611        let processing_time = self.start_time.elapsed();
612
613        // Get current resource usage (simplified)
614        let data_point = PerformanceDataPoint {
615            timestamp: self.start_time,
616            operationtype: self.operationtype,
617            processing_time,
618            itemsprocessed,
619            memory_usage: 0,      // Would be measured in real implementation
620            cpu_utilization: 0.0, // Would be measured in real implementation
621            gpu_utilization: 0.0, // Would be measured in real implementation
622            cache_hit_rate: 0.9,  // Would be measured in real implementation
623            custom_metrics: HashMap::new(),
624        };
625
626        self.monitor.record_performance(data_point)
627    }
628}
629
630/// Performance summary
631#[derive(Debug)]
632pub struct PerformanceSummary {
633    /// Total number of operations recorded
634    pub total_operations: usize,
635    /// Recent average processing time
636    pub recent_avg_processing_time: Duration,
637    /// Recent average throughput
638    pub recent_avg_throughput: f64,
639    /// Recent average memory usage
640    pub recent_avg_memory_usage: usize,
641    /// Cache hit rate
642    pub cache_hit_rate: f64,
643    /// Active performance alerts
644    pub active_alerts: Vec<String>,
645    /// Available optimization opportunities
646    pub optimization_opportunities: Vec<OptimizationRecommendation>,
647}
648
649/// Detailed performance report
650#[derive(Debug)]
651pub struct DetailedPerformanceReport {
652    /// Performance summary
653    pub summary: PerformanceSummary,
654    /// Historical trend analysis
655    pub historical_trends: TrendAnalysis,
656    /// Resource utilization summary
657    pub resource_utilization: ResourceUtilizationSummary,
658    /// Bottleneck analysis
659    pub bottleneck_analysis: Vec<BottleneckAnalysis>,
660    /// History of applied optimizations
661    pub optimizationhistory: Vec<OptimizationApplication>,
662    /// Current recommendations
663    pub recommendations: Vec<OptimizationRecommendation>,
664}
665
666/// Trend analysis results
667#[derive(Debug)]
668pub struct TrendAnalysis {
669    /// Processing time trend
670    pub processing_time_trend: TrendDirection,
671    /// Throughput trend
672    pub throughput_trend: TrendDirection,
673    /// Memory usage trend
674    pub memory_usage_trend: TrendDirection,
675}
676
677/// Trend direction
678#[derive(Debug)]
679pub enum TrendDirection {
680    /// Metric is increasing
681    Increasing,
682    /// Metric is decreasing
683    Decreasing,
684    /// Metric is stable
685    Stable,
686}
687
688/// Resource utilization summary
689#[derive(Debug)]
690pub struct ResourceUtilizationSummary {
691    /// Average CPU utilization
692    pub avg_cpu_utilization: f64,
693    /// Peak memory usage
694    pub peak_memory_usage: usize,
695    /// Network I/O summary
696    pub network_io: NetworkIOSummary,
697}
698
699/// Network I/O summary
700#[derive(Debug)]
701pub struct NetworkIOSummary {
702    /// Total bytes sent
703    pub bytes_sent: usize,
704    /// Total bytes received
705    pub bytes_received: usize,
706    /// Average latency
707    pub avg_latency_ms: f64,
708}
709
710/// Bottleneck analysis
711#[derive(Debug)]
712pub struct BottleneckAnalysis {
713    /// Component with bottleneck
714    pub component: String,
715    /// Severity level
716    pub severity: String,
717    /// Description of the bottleneck
718    pub description: String,
719    /// Recommendations to address it
720    pub recommendations: Vec<String>,
721}
722
723// Implementation stubs for supporting structures
724impl RealtimeAggregator {
725    fn new() -> Self {
726        Self {
727            current_operation: None,
728            running_stats: HashMap::new(),
729            alert_counts: HashMap::new(),
730        }
731    }
732
733    fn start_operation(&mut self, _operationtype: &str) -> Result<()> {
734        self.current_operation = Some(Instant::now());
735        Ok(())
736    }
737
738    fn update_statistics(&mut self, datapoint: &PerformanceDataPoint) -> Result<()> {
739        let key = &datapoint.operationtype;
740        let stats = self
741            .running_stats
742            .entry(key.clone())
743            .or_insert_with(RunningStatistics::new);
744        stats.update(datapoint.processing_time.as_millis() as f64);
745        Ok(())
746    }
747
748    fn increment_alert(&mut self, alerttype: &str) {
749        *self.alert_counts.entry(alerttype.to_string()).or_insert(0) += 1;
750    }
751
752    fn get_active_alerts(&self) -> Vec<String> {
753        self.alert_counts.keys().cloned().collect()
754    }
755}
756
757impl RunningStatistics {
758    fn new() -> Self {
759        Self {
760            count: 0,
761            sum: 0.0,
762            sum_squared: 0.0,
763            min: f64::MAX,
764            max: f64::MIN,
765            moving_average: 0.0,
766        }
767    }
768
769    fn update(&mut self, value: f64) {
770        self.count += 1;
771        self.sum += value;
772        self.sum_squared += value * value;
773        self.min = self.min.min(value);
774        self.max = self.max.max(value);
775
776        // Update moving average with exponential decay
777        let alpha = 0.1;
778        self.moving_average = alpha * value + (1.0 - alpha) * self.moving_average;
779    }
780}
781
782impl SystemResourceMonitor {
783    fn new() -> Self {
784        Self {
785            memory_tracker: MemoryTracker::new(),
786            cpu_tracker: CpuUsageTracker::new(),
787            gpu_tracker: None,
788            network_tracker: NetworkTracker::new(),
789        }
790    }
791
792    fn get_utilization_summary(&self) -> ResourceUtilizationSummary {
793        ResourceUtilizationSummary {
794            avg_cpu_utilization: self.cpu_tracker.load_average,
795            peak_memory_usage: self.memory_tracker.peak_usage,
796            network_io: NetworkIOSummary {
797                bytes_sent: self.network_tracker.bytes_sent,
798                bytes_received: self.network_tracker.bytes_received,
799                avg_latency_ms: 5.0, // Placeholder
800            },
801        }
802    }
803}
804
805impl MemoryTracker {
806    fn new() -> Self {
807        Self {
808            peak_usage: 0,
809            current_usage: 0,
810            allocations: Vec::new(),
811        }
812    }
813}
814
815impl CpuUsageTracker {
816    fn new() -> Self {
817        Self {
818            usage_samples: Vec::new(),
819            load_average: 0.0,
820        }
821    }
822}
823
824impl NetworkTracker {
825    fn new() -> Self {
826        Self {
827            bytes_sent: 0,
828            bytes_received: 0,
829            latency_samples: Vec::new(),
830        }
831    }
832}
833
834impl OptimizationEngine {
835    fn new() -> Self {
836        Self {
837            patterndatabase: Self::initialize_patterns(),
838            current_recommendations: Vec::new(),
839            optimizationhistory: Vec::new(),
840        }
841    }
842
843    fn initialize_patterns() -> Vec<PerformancePattern> {
844        vec![PerformancePattern {
845            id: "high_processing_time".to_string(),
846            description: "Processing time is consistently high".to_string(),
847            conditions: vec![PerformanceCondition {
848                metric: "processing_time_ms".to_string(),
849                operator: ComparisonOperator::GreaterThan,
850                threshold: 1000.0,
851            }],
852            recommendations: vec![
853                OptimizationRecommendation {
854                    id: "enable_simd".to_string(),
855                    category: "Performance".to_string(),
856                    recommendation: "Enable SIMD optimizations for string operations".to_string(),
857                    impact_estimate: 0.3,
858                    complexity: 2,
859                    prerequisites: vec!["SIMD-capable hardware".to_string()],
860                },
861                OptimizationRecommendation {
862                    id: "increase_parallelism".to_string(),
863                    category: "Performance".to_string(),
864                    recommendation: "Increase parallel processing threads".to_string(),
865                    impact_estimate: 0.25,
866                    complexity: 1,
867                    prerequisites: vec!["Multi-core CPU".to_string()],
868                },
869            ],
870        }]
871    }
872
873    fn update_recommendations(&mut self, datapoint: &PerformanceDataPoint) -> Result<()> {
874        // Analyze current performance against patterns
875        for pattern in &self.patterndatabase {
876            if self.matches_pattern(datapoint, pattern) {
877                // Add recommendations if not already present
878                for recommendation in &pattern.recommendations {
879                    if !self
880                        .current_recommendations
881                        .iter()
882                        .any(|r| r.id == recommendation.id)
883                    {
884                        self.current_recommendations.push(recommendation.clone());
885                    }
886                }
887            }
888        }
889        Ok(())
890    }
891
892    fn matches_pattern(
893        &self,
894        data_point: &PerformanceDataPoint,
895        pattern: &PerformancePattern,
896    ) -> bool {
897        pattern.conditions.iter().all(|condition| {
898            let value = match condition.metric.as_str() {
899                "processing_time_ms" => data_point.processing_time.as_millis() as f64,
900                "cpu_utilization" => data_point.cpu_utilization,
901                "memory_usage_mb" => data_point.memory_usage as f64 / (1024.0 * 1024.0),
902                "cache_hit_rate" => data_point.cache_hit_rate,
903                _ => return false,
904            };
905
906            match condition.operator {
907                ComparisonOperator::GreaterThan => value > condition.threshold,
908                ComparisonOperator::LessThan => value < condition.threshold,
909                ComparisonOperator::EqualTo => (value - condition.threshold).abs() < 0.001,
910                ComparisonOperator::GreaterOrEqual => value >= condition.threshold,
911                ComparisonOperator::LessOrEqual => value <= condition.threshold,
912            }
913        })
914    }
915
916    fn apply_optimization(&mut self, optimizationid: &str) -> Result<()> {
917        if let Some(optimization) = self
918            .current_recommendations
919            .iter()
920            .find(|r| r.id == optimizationid)
921        {
922            let application = OptimizationApplication {
923                timestamp: Instant::now(),
924                optimization: optimization.clone(),
925                performance_before: PerformanceSnapshot {
926                    avg_processing_time: Duration::from_millis(100),
927                    avg_throughput: 1000.0,
928                    avg_memory_usage: 1024 * 1024 * 1024,
929                    avg_cpu_utilization: 75.0,
930                },
931                performance_after: None, // Would be filled in later
932            };
933
934            self.optimizationhistory.push(application);
935
936            // Remove from current recommendations
937            self.current_recommendations
938                .retain(|r| r.id != optimizationid);
939
940            Ok(())
941        } else {
942            Err(TextError::InvalidInput(format!(
943                "Optimization not found: {optimizationid}"
944            )))
945        }
946    }
947}
948
949impl Default for AdvancedPerformanceMonitor {
950    fn default() -> Self {
951        Self::new()
952    }
953}
954
955#[cfg(test)]
956mod tests {
957    use super::*;
958
959    #[test]
960    fn test_performance_monitor_creation() {
961        let monitor = AdvancedPerformanceMonitor::new();
962        let summary = monitor.get_performance_summary().unwrap();
963        assert_eq!(summary.total_operations, 0);
964    }
965
966    #[test]
967    fn test_operation_monitoring() {
968        let monitor = AdvancedPerformanceMonitor::new();
969        let op_monitor = monitor.start_operation("test_operation").unwrap();
970
971        // Simulate some work
972        std::thread::sleep(Duration::from_millis(10));
973
974        op_monitor.complete(100).unwrap();
975
976        let summary = monitor.get_performance_summary().unwrap();
977        assert_eq!(summary.total_operations, 1);
978    }
979
980    #[test]
981    fn test_performance_thresholds() {
982        let thresholds = PerformanceThresholds {
983            max_processing_time_ms: 500,
984            min_throughput: 200.0,
985            max_memory_usage_mb: 4096,
986            max_cpu_utilization: 80.0,
987            min_cache_hit_rate: 0.9,
988        };
989
990        let monitor = AdvancedPerformanceMonitor::with_thresholds(thresholds);
991
992        // Test with data point that should trigger alerts
993        let data_point = PerformanceDataPoint {
994            timestamp: Instant::now(),
995            operationtype: "test".to_string(),
996            processing_time: Duration::from_millis(1000), // Above threshold
997            itemsprocessed: 10,
998            memory_usage: 6 * 1024 * 1024 * 1024, // 6GB - above threshold
999            cpu_utilization: 95.0,                // Above threshold
1000            gpu_utilization: 50.0,
1001            cache_hit_rate: 0.7, // Below threshold
1002            custom_metrics: HashMap::new(),
1003        };
1004
1005        monitor.record_performance(data_point).unwrap();
1006
1007        let summary = monitor.get_performance_summary().unwrap();
1008        assert!(!summary.active_alerts.is_empty());
1009    }
1010
1011    #[test]
1012    fn test_optimization_recommendations() {
1013        let monitor = AdvancedPerformanceMonitor::new();
1014
1015        // Add a data point that should trigger optimization recommendations
1016        let data_point = PerformanceDataPoint {
1017            timestamp: Instant::now(),
1018            operationtype: "slow_operation".to_string(),
1019            processing_time: Duration::from_millis(2000), // High processing time
1020            itemsprocessed: 50,
1021            memory_usage: 1024 * 1024 * 1024, // 1GB
1022            cpu_utilization: 80.0,
1023            gpu_utilization: 0.0,
1024            cache_hit_rate: 0.9,
1025            custom_metrics: HashMap::new(),
1026        };
1027
1028        monitor.record_performance(data_point).unwrap();
1029
1030        let recommendations = monitor.get_optimization_opportunities().unwrap();
1031        assert!(!recommendations.is_empty());
1032
1033        // Apply an optimization
1034        if let Some(first_rec) = recommendations.first() {
1035            monitor.apply_optimization(&first_rec.id).unwrap();
1036        }
1037    }
1038
1039    #[test]
1040    fn test_trend_analysis() {
1041        let monitor = AdvancedPerformanceMonitor::new();
1042
1043        // Add multiple data points to create a trend
1044        for i in 1..=10 {
1045            let data_point = PerformanceDataPoint {
1046                timestamp: Instant::now(),
1047                operationtype: "trend_test".to_string(),
1048                processing_time: Duration::from_millis(100 + i * 10), // Increasing trend
1049                itemsprocessed: 100,
1050                memory_usage: 1024 * 1024 * i as usize, // Increasing memory
1051                cpu_utilization: 50.0 + i as f64,
1052                gpu_utilization: 0.0,
1053                cache_hit_rate: 0.9,
1054                custom_metrics: HashMap::new(),
1055            };
1056
1057            monitor.record_performance(data_point).unwrap();
1058        }
1059
1060        let report = monitor.generate_performance_report().unwrap();
1061        assert!(matches!(
1062            report.historical_trends.processing_time_trend,
1063            TrendDirection::Increasing
1064        ));
1065        assert!(matches!(
1066            report.historical_trends.memory_usage_trend,
1067            TrendDirection::Increasing
1068        ));
1069    }
1070}