pub struct OperationMonitor<'a> { /* private fields */ }Expand description
Operation monitor for tracking individual operations
Implementations§
Source§impl<'a> OperationMonitor<'a>
impl<'a> OperationMonitor<'a>
Sourcepub fn complete(self, itemsprocessed: usize) -> Result<()>
pub fn complete(self, itemsprocessed: usize) -> Result<()>
Complete the operation and record performance
Examples found in repository?
examples/complete_integration.rs (line 149)
119 fn demo_integrated_pipeline(&self) -> Result<()> {
120 println!("📊 Demo 1: Integrated Text Processing Pipeline");
121 println!("==============================================");
122
123 let sample_documents = vec![
124 "Artificial intelligence is revolutionizing the field of natural language processing.".to_string(),
125 "Machine learning algorithms can now understand context and semantic meaning in text.".to_string(),
126 "Deep neural networks have enabled breakthrough performance in text classification tasks.".to_string(),
127 "SIMD optimizations allow for optimized string processing in modern computing systems.".to_string(),
128 "Real-time adaptation ensures optimal performance across diverse text processing workloads.".to_string(),
129 ];
130
131 println!(
132 "Processing {} documents through integrated pipeline...",
133 sample_documents.len()
134 );
135
136 // Start performance monitoring
137 let operation_monitor = self
138 .performance_monitor
139 .start_operation("integrated_pipeline")?;
140
141 let start_time = Instant::now();
142
143 // Process through Advanced coordinator
144 let result = self.coordinator.advanced_processtext(&sample_documents)?;
145
146 let processing_time = start_time.elapsed();
147
148 // Complete monitoring
149 operation_monitor.complete(sample_documents.len())?;
150
151 println!("\n📈 Pipeline Results:");
152 println!(" • Processing Time: {processing_time:?}");
153 println!(
154 " • Throughput: {:.2} docs/sec",
155 result.performance_metrics.throughput
156 );
157 println!(
158 " • Memory Efficiency: {:.1}%",
159 result.performance_metrics.memory_efficiency * 100.0
160 );
161 println!(
162 " • Accuracy Estimate: {:.1}%",
163 result.performance_metrics.accuracy_estimate * 100.0
164 );
165
166 println!("\n🔧 Applied Optimizations:");
167 for optimization in &result.optimizations_applied {
168 println!(" • {optimization}");
169 }
170
171 println!("\n🎯 Confidence Scores:");
172 for (metric, score) in &result.confidence_scores {
173 println!(" • {}: {:.1}%", metric, score * 100.0);
174 }
175
176 println!();
177 Ok(())
178 }
179
180 /// Demonstrate performance-monitored SIMD operations
181 fn demo_performance_monitored_simd(&self) -> Result<()> {
182 println!("⚡ Demo 2: Performance-Monitored SIMD Operations");
183 println!("===============================================");
184
185 let testtexts = [
186 "The quick brown fox jumps over the lazy dog".to_string(),
187 "Pack my box with five dozen liquor jugs".to_string(),
188 "How vexingly quick daft zebras jump!".to_string(),
189 "Bright vixens jump; dozy fowl quack".to_string(),
190 ];
191
192 println!("Running SIMD-accelerated operations with performance monitoring...");
193
194 // Start monitoring
195 let operation_monitor = self
196 .performance_monitor
197 .start_operation("simd_operations")?;
198
199 let start_time = Instant::now();
200
201 // Optimized text processing
202 let testtext_refs: Vec<&str> = testtexts.iter().map(|s| s.as_str()).collect();
203 let processed_results = AdvancedSIMDTextProcessor::advanced_batch_process(&testtext_refs);
204
205 // SIMD string operations
206 let char_counts: Vec<usize> = testtexts
207 .iter()
208 .map(|text| SimdStringOps::count_chars(text, 'o'))
209 .collect();
210
211 // Optimized similarity matrix
212 let similarity_matrix =
213 AdvancedSIMDTextProcessor::advanced_similarity_matrix(&testtext_refs);
214
215 let processing_time = start_time.elapsed();
216
217 // Complete monitoring
218 operation_monitor.complete(testtexts.len())?;
219
220 println!("\n📊 SIMD Operation Results:");
221 println!(" • Processing Time: {processing_time:?}");
222 println!(" • Documents Processed: {}", processed_results.len());
223 println!(" • Character Counts (letter 'o'): {char_counts:?}");
224 println!(
225 " • Similarity Matrix Size: {}x{}",
226 similarity_matrix.len(),
227 similarity_matrix[0].len()
228 );
229
230 // Display similarity matrix
231 println!("\n🔗 Text Similarity Matrix:");
232 for (i, row) in similarity_matrix.iter().enumerate() {
233 print!(" Row {i}: [");
234 for (j, &similarity) in row.iter().enumerate() {
235 if j > 0 {
236 print!(", ");
237 }
238 print!("{similarity:.3}");
239 }
240 println!("]");
241 }
242
243 // Show SIMD capabilities
244 println!("\n⚙️ SIMD Capabilities:");
245 println!(" • SIMD Available: {}", SimdStringOps::is_available());
246 println!(" • String Processing: Optimized");
247 println!(" • Pattern Matching: Optimized");
248 println!(" • Similarity Computation: Vectorized");
249
250 println!();
251 Ok(())
252 }
253
254 /// Demonstrate adaptive streaming processing
255 fn demo_adaptive_streaming(&self) -> Result<()> {
256 println!("🌊 Demo 3: Adaptive Streaming Processing");
257 println!("========================================");
258
259 // Create large dataset simulation
260 let largetexts: Vec<String> = (0..1000)
261 .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262 .collect();
263
264 println!(
265 "Processing {} documents through adaptive streaming...",
266 largetexts.len()
267 );
268
269 // Start monitoring
270 let operation_monitor = self
271 .performance_monitor
272 .start_operation("adaptive_streaming")?;
273
274 let start_time = Instant::now();
275
276 // Streaming processing with parallel optimization
277 let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278 .with_parallelism(4, 1024 * 1024);
279
280 // Simple token counting for demonstration
281 let mut total_tokens = 0;
282 let tokenizer = WordTokenizer::default();
283 for text in &largetexts {
284 if let Ok(tokens) = tokenizer.tokenize(text) {
285 total_tokens += tokens.len();
286 }
287 }
288
289 let processing_time = start_time.elapsed();
290
291 // Complete monitoring
292 operation_monitor.complete(largetexts.len())?;
293
294 // Get memory stats instead of performance metrics
295 let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297 println!("\n📈 Streaming Processing Results:");
298 println!(" • Processing Time: {processing_time:?}");
299 println!(" • Documents Processed: {}", largetexts.len());
300 println!(" • Total Tokens Extracted: {total_tokens}");
301 println!(" • Current Memory Usage: {current_mem} bytes");
302 println!(" • Peak Memory Usage: {peak_mem} bytes");
303 println!(
304 " • Throughput: {:.2} docs/sec",
305 largetexts.len() as f64 / processing_time.as_secs_f64()
306 );
307
308 println!("\n🔄 Advanced Features:");
309 println!(" • Parallel Processing: Enabled");
310 println!(" • Memory Monitoring: Active");
311 println!(" • Advanced Tokenization: Optimized");
312
313 println!();
314 Ok(())
315 }
316
317 /// Demonstrate real-time optimization and adaptation
318 fn demo_realtime_optimization(&self) -> Result<()> {
319 println!("🎯 Demo 4: Real-time Optimization and Adaptation");
320 println!("===============================================");
321
322 // Simulate various workload patterns
323 let workload_patterns = vec![
324 ("Short Documents", generate_short_documents(50)),
325 ("Medium Documents", generate_medium_documents(30)),
326 ("Long Documents", generate_long_documents(20)),
327 ("Mixed Workload", generate_mixed_workload(40)),
328 ];
329
330 for (pattern_name, documents) in workload_patterns {
331 println!("\n🔄 Processing Pattern: {pattern_name}");
332 println!(" • Document Count: {}", documents.len());
333
334 // Start monitoring for this pattern
335 let operation_monitor = self
336 .performance_monitor
337 .start_operation(&format!("pattern_{}", pattern_name.replace(' ', "_")))?;
338
339 let start_time = Instant::now();
340
341 // Process with adaptive optimization
342 let result = self.coordinator.advanced_processtext(&documents)?;
343
344 let processing_time = start_time.elapsed();
345
346 // Complete monitoring
347 operation_monitor.complete(documents.len())?;
348
349 println!(" • Processing Time: {processing_time:?}");
350 println!(
351 " • Throughput: {:.2} docs/sec",
352 result.performance_metrics.throughput
353 );
354 println!(
355 " • Optimizations Applied: {}",
356 result.optimizations_applied.len()
357 );
358
359 // Show adaptive responses
360 if !result.optimizations_applied.is_empty() {
361 println!(" • Adaptive Responses:");
362 for opt in &result.optimizations_applied {
363 println!(" - {opt}");
364 }
365 }
366 }
367
368 // Get optimization recommendations
369 let recommendations = self.performance_monitor.get_optimization_opportunities()?;
370
371 println!("\n💡 Current Optimization Opportunities:");
372 if recommendations.is_empty() {
373 println!(" • No optimization opportunities identified");
374 println!(" • System is operating at optimal performance");
375 } else {
376 for (i, rec) in recommendations.iter().enumerate() {
377 println!(" {}. [{}] {}", i + 1, rec.category, rec.recommendation);
378 println!(
379 " Impact: {:.0}% | Complexity: {}/5",
380 rec.impact_estimate * 100.0,
381 rec.complexity
382 );
383 }
384 }
385
386 println!();
387 Ok(())
388 }Auto Trait Implementations§
impl<'a> Freeze for OperationMonitor<'a>
impl<'a> RefUnwindSafe for OperationMonitor<'a>
impl<'a> Send for OperationMonitor<'a>
impl<'a> Sync for OperationMonitor<'a>
impl<'a> Unpin for OperationMonitor<'a>
impl<'a> UnwindSafe for OperationMonitor<'a>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.