Adam

Struct Adam 

Source
pub struct Adam { /* private fields */ }
Expand description

Adam optimizer

Implementations§

Source§

impl Adam

Source

pub fn new(learning_rate: f64) -> Self

Examples found in repository?
examples/few_shot_learning.rs (line 107)
86fn test_prototypical_networks(
87    data: &Array2<f64>,
88    labels: &Array1<usize>,
89    qnn: QuantumNeuralNetwork,
90) -> Result<()> {
91    let mut learner = FewShotLearner::new(FewShotMethod::PrototypicalNetworks, qnn);
92
93    // Generate episodes for training
94    let num_episodes = 10;
95    let mut episodes = Vec::new();
96
97    for _ in 0..num_episodes {
98        let episode = FewShotLearner::generate_episode(
99            data, labels, 5, // 5-way
100            3, // 3-shot
101            5, // 5 query examples per class
102        )?;
103        episodes.push(episode);
104    }
105
106    // Train
107    let mut optimizer = Adam::new(0.01);
108    let accuracies = learner.train(&episodes, &mut optimizer, 20)?;
109
110    // Print results
111    println!("   Training completed:");
112    println!("   - Initial accuracy: {:.2}%", accuracies[0] * 100.0);
113    println!(
114        "   - Final accuracy: {:.2}%",
115        accuracies.last().unwrap() * 100.0
116    );
117    println!(
118        "   - Improvement: {:.2}%",
119        (accuracies.last().unwrap() - accuracies[0]) * 100.0
120    );
121
122    Ok(())
123}
124
125/// Test MAML
126fn test_maml(data: &Array2<f64>, labels: &Array1<usize>, qnn: QuantumNeuralNetwork) -> Result<()> {
127    let mut learner = FewShotLearner::new(
128        FewShotMethod::MAML {
129            inner_steps: 5,
130            inner_lr: 0.01,
131        },
132        qnn,
133    );
134
135    // Generate meta-training tasks
136    let num_tasks = 20;
137    let mut tasks = Vec::new();
138
139    for _ in 0..num_tasks {
140        let task = FewShotLearner::generate_episode(
141            data, labels, 3, // 3-way (fewer classes for MAML)
142            5, // 5-shot
143            5, // 5 query examples
144        )?;
145        tasks.push(task);
146    }
147
148    // Meta-train
149    let mut meta_optimizer = Adam::new(0.001);
150    let losses = learner.train(&tasks, &mut meta_optimizer, 10)?;
151
152    println!("   Meta-training completed:");
153    println!("   - Initial loss: {:.4}", losses[0]);
154    println!("   - Final loss: {:.4}", losses.last().unwrap());
155    println!(
156        "   - Convergence rate: {:.2}%",
157        (1.0 - losses.last().unwrap() / losses[0]) * 100.0
158    );
159
160    Ok(())
161}
162
163/// Compare performance across different K-shot values
164fn compare_shot_performance(
165    data: &Array2<f64>,
166    labels: &Array1<usize>,
167    qnn: QuantumNeuralNetwork,
168) -> Result<()> {
169    let k_values = vec![1, 3, 5, 10];
170
171    for k in k_values {
172        println!("\n   Testing {k}-shot learning:");
173
174        let mut learner = FewShotLearner::new(FewShotMethod::PrototypicalNetworks, qnn.clone());
175
176        // Generate episodes
177        let mut episodes = Vec::new();
178        for _ in 0..5 {
179            let episode = FewShotLearner::generate_episode(
180                data, labels, 3, // 3-way
181                k, // k-shot
182                5, // 5 query
183            )?;
184            episodes.push(episode);
185        }
186
187        // Quick training
188        let mut optimizer = Adam::new(0.01);
189        let accuracies = learner.train(&episodes, &mut optimizer, 10)?;
190
191        println!(
192            "     Final accuracy: {:.2}%",
193            accuracies.last().unwrap() * 100.0
194        );
195    }
196
197    Ok(())
198}
More examples
Hide additional examples
examples/quantum_diffusion.rs (line 109)
87fn train_diffusion_model() -> Result<()> {
88    // Generate synthetic 2D data (two moons)
89    let num_samples = 200;
90    let data = generate_two_moons(num_samples);
91
92    println!("   Generated {num_samples} samples of 2D two-moons data");
93
94    // Create diffusion model
95    let mut model = QuantumDiffusionModel::new(
96        2,  // data dimension
97        4,  // num qubits
98        50, // timesteps
99        NoiseSchedule::Cosine { s: 0.008 },
100    )?;
101
102    println!("   Created quantum diffusion model:");
103    println!("   - Data dimension: 2");
104    println!("   - Qubits: 4");
105    println!("   - Timesteps: 50");
106    println!("   - Schedule: Cosine");
107
108    // Train model
109    let mut optimizer = Adam::new(0.001);
110    let epochs = 100;
111    let batch_size = 32;
112
113    println!("\n   Training for {epochs} epochs...");
114    let losses = model.train(&data, &mut optimizer, epochs, batch_size)?;
115
116    // Print training statistics
117    println!("\n   Training Statistics:");
118    println!("   - Initial loss: {:.4}", losses[0]);
119    println!("   - Final loss: {:.4}", losses.last().unwrap());
120    println!(
121        "   - Improvement: {:.2}%",
122        (1.0 - losses.last().unwrap() / losses[0]) * 100.0
123    );
124
125    Ok(())
126}
examples/continuous_rl.rs (line 90)
70fn train_qddpg_pendulum() -> Result<()> {
71    let state_dim = 3;
72    let action_dim = 1;
73    let action_bounds = vec![(-2.0, 2.0)];
74    let num_qubits = 4;
75    let buffer_capacity = 10000;
76
77    // Create QDDPG agent
78    let mut agent = QuantumDDPG::new(
79        state_dim,
80        action_dim,
81        action_bounds,
82        num_qubits,
83        buffer_capacity,
84    )?;
85
86    // Create environment
87    let mut env = PendulumEnvironment::new();
88
89    // Create optimizers
90    let mut actor_optimizer = Adam::new(0.001);
91    let mut critic_optimizer = Adam::new(0.001);
92
93    // Train for a few episodes (reduced for demo)
94    let episodes = 50;
95    println!("   Training QDDPG for {episodes} episodes...");
96
97    let rewards = agent.train(
98        &mut env,
99        episodes,
100        &mut actor_optimizer,
101        &mut critic_optimizer,
102    )?;
103
104    // Print training statistics
105    let avg_initial = rewards[..10].iter().sum::<f64>() / 10.0;
106    let avg_final = rewards[rewards.len() - 10..].iter().sum::<f64>() / 10.0;
107
108    println!("\n   Training Statistics:");
109    println!("   - Average initial reward: {avg_initial:.2}");
110    println!("   - Average final reward: {avg_final:.2}");
111    println!("   - Improvement: {:.2}", avg_final - avg_initial);
112
113    // Test trained agent
114    println!("\n   Testing trained agent...");
115    test_trained_agent(&agent, &mut env)?;
116
117    Ok(())
118}
examples/quantum_meta_learning.rs (line 87)
49fn maml_demo() -> Result<()> {
50    // Create quantum model
51    let layers = vec![
52        QNNLayerType::EncodingLayer { num_features: 4 },
53        QNNLayerType::VariationalLayer { num_params: 12 },
54        QNNLayerType::EntanglementLayer {
55            connectivity: "circular".to_string(),
56        },
57        QNNLayerType::VariationalLayer { num_params: 12 },
58        QNNLayerType::MeasurementLayer {
59            measurement_basis: "computational".to_string(),
60        },
61    ];
62
63    let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
64
65    // Create MAML learner
66    let algorithm = MetaLearningAlgorithm::MAML {
67        inner_steps: 5,
68        inner_lr: 0.01,
69        first_order: true, // Use first-order approximation for efficiency
70    };
71
72    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
73
74    println!("   Created MAML meta-learner:");
75    println!("   - Inner steps: 5");
76    println!("   - Inner learning rate: 0.01");
77    println!("   - Using first-order approximation");
78
79    // Generate tasks
80    let generator = TaskGenerator::new(4, 3);
81    let tasks: Vec<MetaTask> = (0..20)
82        .map(|_| generator.generate_rotation_task(30))
83        .collect();
84
85    // Meta-train
86    println!("\n   Meta-training on 20 rotation tasks...");
87    let mut optimizer = Adam::new(0.001);
88    meta_learner.meta_train(&tasks, &mut optimizer, 50, 5)?;
89
90    // Test adaptation
91    let test_task = generator.generate_rotation_task(20);
92    println!("\n   Testing adaptation to new task...");
93
94    let adapted_params = meta_learner.adapt_to_task(&test_task)?;
95    println!("   Successfully adapted to new task");
96    println!(
97        "   Parameter adaptation magnitude: {:.4}",
98        (&adapted_params - meta_learner.meta_params())
99            .mapv(f64::abs)
100            .mean()
101            .unwrap()
102    );
103
104    Ok(())
105}
106
107/// Reptile algorithm demonstration
108fn reptile_demo() -> Result<()> {
109    let layers = vec![
110        QNNLayerType::EncodingLayer { num_features: 2 },
111        QNNLayerType::VariationalLayer { num_params: 8 },
112        QNNLayerType::MeasurementLayer {
113            measurement_basis: "Pauli-Z".to_string(),
114        },
115    ];
116
117    let qnn = QuantumNeuralNetwork::new(layers, 4, 2, 2)?;
118
119    let algorithm = MetaLearningAlgorithm::Reptile {
120        inner_steps: 10,
121        inner_lr: 0.1,
122    };
123
124    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
125
126    println!("   Created Reptile meta-learner:");
127    println!("   - Inner steps: 10");
128    println!("   - Inner learning rate: 0.1");
129
130    // Generate sinusoid tasks
131    let generator = TaskGenerator::new(2, 2);
132    let tasks: Vec<MetaTask> = (0..15)
133        .map(|_| generator.generate_sinusoid_task(40))
134        .collect();
135
136    println!("\n   Meta-training on 15 sinusoid tasks...");
137    let mut optimizer = Adam::new(0.001);
138    meta_learner.meta_train(&tasks, &mut optimizer, 30, 3)?;
139
140    println!("   Reptile training complete");
141
142    // Analyze task similarities
143    println!("\n   Task parameter statistics:");
144    for (i, task) in tasks.iter().take(3).enumerate() {
145        if let Some(amplitude) = task.metadata.get("amplitude") {
146            if let Some(phase) = task.metadata.get("phase") {
147                println!("   Task {i}: amplitude={amplitude:.2}, phase={phase:.2}");
148            }
149        }
150    }
151
152    Ok(())
153}
154
155/// `ProtoMAML` demonstration
156fn protomaml_demo() -> Result<()> {
157    let layers = vec![
158        QNNLayerType::EncodingLayer { num_features: 8 },
159        QNNLayerType::VariationalLayer { num_params: 16 },
160        QNNLayerType::EntanglementLayer {
161            connectivity: "full".to_string(),
162        },
163        QNNLayerType::MeasurementLayer {
164            measurement_basis: "computational".to_string(),
165        },
166    ];
167
168    let qnn = QuantumNeuralNetwork::new(layers, 4, 8, 16)?;
169
170    let algorithm = MetaLearningAlgorithm::ProtoMAML {
171        inner_steps: 5,
172        inner_lr: 0.01,
173        proto_weight: 0.5, // Weight for prototype regularization
174    };
175
176    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
177
178    println!("   Created ProtoMAML meta-learner:");
179    println!("   - Combines MAML with prototypical networks");
180    println!("   - Prototype weight: 0.5");
181
182    // Generate classification tasks
183    let generator = TaskGenerator::new(8, 4);
184    let tasks: Vec<MetaTask> = (0..10)
185        .map(|_| generator.generate_rotation_task(50))
186        .collect();
187
188    println!("\n   Meta-training on 4-way classification tasks...");
189    let mut optimizer = Adam::new(0.001);
190    meta_learner.meta_train(&tasks, &mut optimizer, 40, 2)?;
191
192    println!("   ProtoMAML leverages both gradient-based and metric-based learning");
193
194    Ok(())
195}
196
197/// Meta-SGD demonstration
198fn metasgd_demo() -> Result<()> {
199    let layers = vec![
200        QNNLayerType::EncodingLayer { num_features: 4 },
201        QNNLayerType::VariationalLayer { num_params: 12 },
202        QNNLayerType::MeasurementLayer {
203            measurement_basis: "Pauli-XYZ".to_string(),
204        },
205    ];
206
207    let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
208
209    let algorithm = MetaLearningAlgorithm::MetaSGD { inner_steps: 3 };
210
211    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
212
213    println!("   Created Meta-SGD learner:");
214    println!("   - Learns per-parameter learning rates");
215    println!("   - Inner steps: 3");
216
217    // Generate diverse tasks
218    let generator = TaskGenerator::new(4, 3);
219    let mut tasks = Vec::new();
220
221    // Mix different task types
222    for i in 0..12 {
223        if i % 2 == 0 {
224            tasks.push(generator.generate_rotation_task(30));
225        } else {
226            tasks.push(generator.generate_sinusoid_task(30));
227        }
228    }
229
230    println!("\n   Meta-training on mixed task distribution...");
231    let mut optimizer = Adam::new(0.0005);
232    meta_learner.meta_train(&tasks, &mut optimizer, 50, 4)?;
233
234    if let Some(lr) = meta_learner.per_param_lr() {
235        println!("\n   Learned per-parameter learning rates:");
236        println!(
237            "   - Min LR: {:.4}",
238            lr.iter().copied().fold(f64::INFINITY, f64::min)
239        );
240        println!(
241            "   - Max LR: {:.4}",
242            lr.iter().copied().fold(f64::NEG_INFINITY, f64::max)
243        );
244        println!("   - Mean LR: {:.4}", lr.mean().unwrap());
245    }
246
247    Ok(())
248}
249
250/// ANIL demonstration
251fn anil_demo() -> Result<()> {
252    let layers = vec![
253        QNNLayerType::EncodingLayer { num_features: 6 },
254        QNNLayerType::VariationalLayer { num_params: 12 },
255        QNNLayerType::EntanglementLayer {
256            connectivity: "circular".to_string(),
257        },
258        QNNLayerType::VariationalLayer { num_params: 12 },
259        QNNLayerType::VariationalLayer { num_params: 6 }, // Final layer (adapted)
260        QNNLayerType::MeasurementLayer {
261            measurement_basis: "computational".to_string(),
262        },
263    ];
264
265    let qnn = QuantumNeuralNetwork::new(layers, 4, 6, 2)?;
266
267    let algorithm = MetaLearningAlgorithm::ANIL {
268        inner_steps: 10,
269        inner_lr: 0.1,
270    };
271
272    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
273
274    println!("   Created ANIL (Almost No Inner Loop) learner:");
275    println!("   - Only adapts final layer during inner loop");
276    println!("   - More parameter efficient than MAML");
277    println!("   - Inner steps: 10");
278
279    // Generate binary classification tasks
280    let generator = TaskGenerator::new(6, 2);
281    let tasks: Vec<MetaTask> = (0..15)
282        .map(|_| generator.generate_rotation_task(40))
283        .collect();
284
285    println!("\n   Meta-training on binary classification tasks...");
286    let mut optimizer = Adam::new(0.001);
287    meta_learner.meta_train(&tasks, &mut optimizer, 40, 5)?;
288
289    println!("   ANIL reduces computational cost while maintaining performance");
290
291    Ok(())
292}
examples/quantum_adversarial.rs (line 273)
226fn adversarial_training_demo() -> Result<()> {
227    // Create model and trainer
228    let layers = vec![
229        QNNLayerType::EncodingLayer { num_features: 4 },
230        QNNLayerType::VariationalLayer { num_params: 12 },
231        QNNLayerType::EntanglementLayer {
232            connectivity: "circular".to_string(),
233        },
234        QNNLayerType::MeasurementLayer {
235            measurement_basis: "computational".to_string(),
236        },
237    ];
238
239    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
240
241    let defense = QuantumDefenseStrategy::AdversarialTraining {
242        attack_types: vec![
243            QuantumAttackType::FGSM { epsilon: 0.08 },
244            QuantumAttackType::PGD {
245                epsilon: 0.08,
246                alpha: 0.01,
247                num_steps: 7,
248            },
249        ],
250        adversarial_ratio: 0.4,
251    };
252
253    let mut config = create_default_adversarial_config();
254    config.epochs = 20; // Reduced for demo
255    config.eval_interval = 5;
256
257    let mut trainer = QuantumAdversarialTrainer::new(model, defense, config);
258
259    println!("   Adversarial training configuration:");
260    println!("   - Attack types: FGSM + PGD");
261    println!("   - Adversarial ratio: 40%");
262    println!("   - Training epochs: 20");
263
264    // Generate synthetic training data
265    let train_data = generate_quantum_dataset(200, 4);
266    let train_labels = Array1::from_shape_fn(200, |i| i % 2);
267
268    let val_data = generate_quantum_dataset(50, 4);
269    let val_labels = Array1::from_shape_fn(50, |i| i % 2);
270
271    // Train with adversarial examples
272    println!("\n   Starting adversarial training...");
273    let mut optimizer = Adam::new(0.001);
274    let losses = trainer.train(
275        &train_data,
276        &train_labels,
277        &val_data,
278        &val_labels,
279        &mut optimizer,
280    )?;
281
282    println!("   Training completed!");
283    println!("   Final loss: {:.4}", losses.last().unwrap_or(&0.0));
284
285    // Show final robustness metrics
286    let metrics = trainer.get_robustness_metrics();
287    println!("\n   Final robustness metrics:");
288    println!("   - Clean accuracy: {:.3}", metrics.clean_accuracy);
289    println!("   - Robust accuracy: {:.3}", metrics.robust_accuracy);
290    println!(
291        "   - Attack success rate: {:.3}",
292        metrics.attack_success_rate
293    );
294
295    Ok(())
296}
examples/quantum_continual_learning.rs (line 83)
50fn ewc_demo() -> Result<()> {
51    // Create quantum model
52    let layers = vec![
53        QNNLayerType::EncodingLayer { num_features: 4 },
54        QNNLayerType::VariationalLayer { num_params: 12 },
55        QNNLayerType::EntanglementLayer {
56            connectivity: "circular".to_string(),
57        },
58        QNNLayerType::VariationalLayer { num_params: 8 },
59        QNNLayerType::MeasurementLayer {
60            measurement_basis: "computational".to_string(),
61        },
62    ];
63
64    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
65
66    // Create EWC strategy
67    let strategy = ContinualLearningStrategy::ElasticWeightConsolidation {
68        importance_weight: 1000.0,
69        fisher_samples: 200,
70    };
71
72    let mut learner = QuantumContinualLearner::new(model, strategy);
73
74    println!("   Created EWC continual learner:");
75    println!("   - Importance weight: 1000.0");
76    println!("   - Fisher samples: 200");
77
78    // Generate task sequence
79    let tasks = generate_task_sequence(3, 100, 4);
80
81    println!("\n   Learning sequence of {} tasks...", tasks.len());
82
83    let mut optimizer = Adam::new(0.001);
84    let mut task_accuracies = Vec::new();
85
86    for (i, task) in tasks.iter().enumerate() {
87        println!("   \n   Training on {}...", task.task_id);
88
89        let metrics = learner.learn_task(task.clone(), &mut optimizer, 30)?;
90        task_accuracies.push(metrics.current_accuracy);
91
92        println!("   - Current accuracy: {:.3}", metrics.current_accuracy);
93
94        // Evaluate forgetting on previous tasks
95        if i > 0 {
96            let all_accuracies = learner.evaluate_all_tasks()?;
97            let avg_prev_accuracy = all_accuracies
98                .iter()
99                .take(i)
100                .map(|(_, &acc)| acc)
101                .sum::<f64>()
102                / i as f64;
103
104            println!("   - Average accuracy on previous tasks: {avg_prev_accuracy:.3}");
105        }
106    }
107
108    // Final evaluation
109    let forgetting_metrics = learner.get_forgetting_metrics();
110    println!("\n   EWC Results:");
111    println!(
112        "   - Average accuracy: {:.3}",
113        forgetting_metrics.average_accuracy
114    );
115    println!(
116        "   - Forgetting measure: {:.3}",
117        forgetting_metrics.forgetting_measure
118    );
119    println!(
120        "   - Continual learning score: {:.3}",
121        forgetting_metrics.continual_learning_score
122    );
123
124    Ok(())
125}
126
127/// Demonstrate Experience Replay
128fn experience_replay_demo() -> Result<()> {
129    let layers = vec![
130        QNNLayerType::EncodingLayer { num_features: 4 },
131        QNNLayerType::VariationalLayer { num_params: 8 },
132        QNNLayerType::MeasurementLayer {
133            measurement_basis: "computational".to_string(),
134        },
135    ];
136
137    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
138
139    let strategy = ContinualLearningStrategy::ExperienceReplay {
140        buffer_size: 500,
141        replay_ratio: 0.3,
142        memory_selection: MemorySelectionStrategy::Random,
143    };
144
145    let mut learner = QuantumContinualLearner::new(model, strategy);
146
147    println!("   Created Experience Replay learner:");
148    println!("   - Buffer size: 500");
149    println!("   - Replay ratio: 30%");
150    println!("   - Selection: Random");
151
152    // Generate diverse tasks
153    let tasks = generate_diverse_tasks(4, 80, 4);
154
155    println!("\n   Learning {} diverse tasks...", tasks.len());
156
157    let mut optimizer = Adam::new(0.002);
158
159    for (i, task) in tasks.iter().enumerate() {
160        println!("   \n   Learning {}...", task.task_id);
161
162        let metrics = learner.learn_task(task.clone(), &mut optimizer, 25)?;
163
164        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
165
166        // Show memory buffer status
167        println!("   - Memory buffer usage: replay experiences stored");
168
169        if i > 0 {
170            let all_accuracies = learner.evaluate_all_tasks()?;
171            let retention_rate = all_accuracies.values().sum::<f64>() / all_accuracies.len() as f64;
172            println!("   - Average retention: {retention_rate:.3}");
173        }
174    }
175
176    let final_metrics = learner.get_forgetting_metrics();
177    println!("\n   Experience Replay Results:");
178    println!(
179        "   - Final average accuracy: {:.3}",
180        final_metrics.average_accuracy
181    );
182    println!(
183        "   - Forgetting reduction: {:.3}",
184        1.0 - final_metrics.forgetting_measure
185    );
186
187    Ok(())
188}
189
190/// Demonstrate Progressive Networks
191fn progressive_networks_demo() -> Result<()> {
192    let layers = vec![
193        QNNLayerType::EncodingLayer { num_features: 4 },
194        QNNLayerType::VariationalLayer { num_params: 6 },
195        QNNLayerType::MeasurementLayer {
196            measurement_basis: "computational".to_string(),
197        },
198    ];
199
200    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
201
202    let strategy = ContinualLearningStrategy::ProgressiveNetworks {
203        lateral_connections: true,
204        adaptation_layers: 2,
205    };
206
207    let mut learner = QuantumContinualLearner::new(model, strategy);
208
209    println!("   Created Progressive Networks learner:");
210    println!("   - Lateral connections: enabled");
211    println!("   - Adaptation layers: 2");
212
213    // Generate related tasks for transfer learning
214    let tasks = generate_related_tasks(3, 60, 4);
215
216    println!("\n   Learning {} related tasks...", tasks.len());
217
218    let mut optimizer = Adam::new(0.001);
219    let mut learning_speeds = Vec::new();
220
221    for (i, task) in tasks.iter().enumerate() {
222        println!("   \n   Adding column for {}...", task.task_id);
223
224        let start_time = std::time::Instant::now();
225        let metrics = learner.learn_task(task.clone(), &mut optimizer, 20)?;
226        let learning_time = start_time.elapsed();
227
228        learning_speeds.push(learning_time);
229
230        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
231        println!("   - Learning time: {learning_time:.2?}");
232
233        if i > 0 {
234            let speedup = learning_speeds[0].as_secs_f64() / learning_time.as_secs_f64();
235            println!("   - Learning speedup: {speedup:.2}x");
236        }
237    }
238
239    println!("\n   Progressive Networks Results:");
240    println!("   - No catastrophic forgetting (by design)");
241    println!("   - Lateral connections enable knowledge transfer");
242    println!("   - Model capacity grows with new tasks");
243
244    Ok(())
245}
246
247/// Demonstrate Learning without Forgetting
248fn lwf_demo() -> Result<()> {
249    let layers = vec![
250        QNNLayerType::EncodingLayer { num_features: 4 },
251        QNNLayerType::VariationalLayer { num_params: 10 },
252        QNNLayerType::EntanglementLayer {
253            connectivity: "circular".to_string(),
254        },
255        QNNLayerType::MeasurementLayer {
256            measurement_basis: "computational".to_string(),
257        },
258    ];
259
260    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
261
262    let strategy = ContinualLearningStrategy::LearningWithoutForgetting {
263        distillation_weight: 0.5,
264        temperature: 3.0,
265    };
266
267    let mut learner = QuantumContinualLearner::new(model, strategy);
268
269    println!("   Created Learning without Forgetting learner:");
270    println!("   - Distillation weight: 0.5");
271    println!("   - Temperature: 3.0");
272
273    // Generate task sequence
274    let tasks = generate_task_sequence(4, 70, 4);
275
276    println!("\n   Learning with knowledge distillation...");
277
278    let mut optimizer = Adam::new(0.001);
279    let mut distillation_losses = Vec::new();
280
281    for (i, task) in tasks.iter().enumerate() {
282        println!("   \n   Learning {}...", task.task_id);
283
284        let metrics = learner.learn_task(task.clone(), &mut optimizer, 25)?;
285
286        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
287
288        if i > 0 {
289            // Simulate distillation loss tracking
290            let distillation_loss = 0.3f64.mul_add(fastrand::f64(), 0.1);
291            distillation_losses.push(distillation_loss);
292            println!("   - Distillation loss: {distillation_loss:.3}");
293
294            let all_accuracies = learner.evaluate_all_tasks()?;
295            let stability = all_accuracies
296                .values()
297                .map(|&acc| if acc > 0.6 { 1.0 } else { 0.0 })
298                .sum::<f64>()
299                / all_accuracies.len() as f64;
300
301            println!("   - Knowledge retention: {:.1}%", stability * 100.0);
302        }
303    }
304
305    println!("\n   LwF Results:");
306    println!("   - Knowledge distillation preserves previous task performance");
307    println!("   - Temperature scaling provides soft targets");
308    println!("   - Balances plasticity and stability");
309
310    Ok(())
311}
312
313/// Demonstrate Parameter Isolation
314fn parameter_isolation_demo() -> Result<()> {
315    let layers = vec![
316        QNNLayerType::EncodingLayer { num_features: 4 },
317        QNNLayerType::VariationalLayer { num_params: 16 },
318        QNNLayerType::EntanglementLayer {
319            connectivity: "full".to_string(),
320        },
321        QNNLayerType::MeasurementLayer {
322            measurement_basis: "computational".to_string(),
323        },
324    ];
325
326    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
327
328    let strategy = ContinualLearningStrategy::ParameterIsolation {
329        allocation_strategy: ParameterAllocationStrategy::Masking,
330        growth_threshold: 0.8,
331    };
332
333    let mut learner = QuantumContinualLearner::new(model, strategy);
334
335    println!("   Created Parameter Isolation learner:");
336    println!("   - Allocation strategy: Masking");
337    println!("   - Growth threshold: 0.8");
338
339    // Generate tasks with different requirements
340    let tasks = generate_varying_complexity_tasks(3, 90, 4);
341
342    println!("\n   Learning with parameter isolation...");
343
344    let mut optimizer = Adam::new(0.001);
345    let mut parameter_usage = Vec::new();
346
347    for (i, task) in tasks.iter().enumerate() {
348        println!("   \n   Allocating parameters for {}...", task.task_id);
349
350        let metrics = learner.learn_task(task.clone(), &mut optimizer, 30)?;
351
352        // Simulate parameter usage tracking
353        let used_params = 16 * (i + 1) / tasks.len(); // Gradually use more parameters
354        parameter_usage.push(used_params);
355
356        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
357        println!("   - Parameters allocated: {}/{}", used_params, 16);
358        println!(
359            "   - Parameter efficiency: {:.1}%",
360            used_params as f64 / 16.0 * 100.0
361        );
362
363        if i > 0 {
364            let all_accuracies = learner.evaluate_all_tasks()?;
365            let interference = 1.0
366                - all_accuracies
367                    .values()
368                    .take(i)
369                    .map(|&acc| if acc > 0.7 { 1.0 } else { 0.0 })
370                    .sum::<f64>()
371                    / i as f64;
372
373            println!("   - Task interference: {:.1}%", interference * 100.0);
374        }
375    }
376
377    println!("\n   Parameter Isolation Results:");
378    println!("   - Dedicated parameters prevent interference");
379    println!("   - Scalable to many tasks");
380    println!("   - Maintains task-specific knowledge");
381
382    Ok(())
383}
384
385/// Demonstrate comprehensive task sequence evaluation
386fn task_sequence_demo() -> Result<()> {
387    println!("   Comprehensive continual learning evaluation...");
388
389    // Compare different strategies
390    let strategies = vec![
391        (
392            "EWC",
393            ContinualLearningStrategy::ElasticWeightConsolidation {
394                importance_weight: 500.0,
395                fisher_samples: 100,
396            },
397        ),
398        (
399            "Experience Replay",
400            ContinualLearningStrategy::ExperienceReplay {
401                buffer_size: 300,
402                replay_ratio: 0.2,
403                memory_selection: MemorySelectionStrategy::Random,
404            },
405        ),
406        (
407            "Quantum Regularization",
408            ContinualLearningStrategy::QuantumRegularization {
409                entanglement_preservation: 0.1,
410                parameter_drift_penalty: 0.5,
411            },
412        ),
413    ];
414
415    // Generate challenging task sequence
416    let tasks = generate_challenging_sequence(5, 60, 4);
417
418    println!(
419        "\n   Comparing strategies on {} challenging tasks:",
420        tasks.len()
421    );
422
423    for (strategy_name, strategy) in strategies {
424        println!("\n   --- {strategy_name} ---");
425
426        let layers = vec![
427            QNNLayerType::EncodingLayer { num_features: 4 },
428            QNNLayerType::VariationalLayer { num_params: 8 },
429            QNNLayerType::MeasurementLayer {
430                measurement_basis: "computational".to_string(),
431            },
432        ];
433
434        let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
435        let mut learner = QuantumContinualLearner::new(model, strategy);
436        let mut optimizer = Adam::new(0.001);
437
438        for task in &tasks {
439            learner.learn_task(task.clone(), &mut optimizer, 20)?;
440        }
441
442        let final_metrics = learner.get_forgetting_metrics();
443        println!(
444            "   - Average accuracy: {:.3}",
445            final_metrics.average_accuracy
446        );
447        println!(
448            "   - Forgetting measure: {:.3}",
449            final_metrics.forgetting_measure
450        );
451        println!(
452            "   - CL score: {:.3}",
453            final_metrics.continual_learning_score
454        );
455    }
456
457    Ok(())
458}
459
460/// Demonstrate forgetting analysis
461fn forgetting_analysis_demo() -> Result<()> {
462    println!("   Detailed forgetting analysis...");
463
464    let layers = vec![
465        QNNLayerType::EncodingLayer { num_features: 4 },
466        QNNLayerType::VariationalLayer { num_params: 12 },
467        QNNLayerType::MeasurementLayer {
468            measurement_basis: "computational".to_string(),
469        },
470    ];
471
472    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
473
474    let strategy = ContinualLearningStrategy::ElasticWeightConsolidation {
475        importance_weight: 1000.0,
476        fisher_samples: 150,
477    };
478
479    let mut learner = QuantumContinualLearner::new(model, strategy);
480
481    // Create tasks with increasing difficulty
482    let tasks = generate_increasing_difficulty_tasks(4, 80, 4);
483
484    println!("\n   Learning tasks with increasing difficulty...");
485
486    let mut optimizer = Adam::new(0.001);
487    let mut accuracy_matrix = Vec::new();
488
489    for (i, task) in tasks.iter().enumerate() {
490        println!(
491            "   \n   Learning {} (difficulty level {})...",
492            task.task_id,
493            i + 1
494        );
495
496        learner.learn_task(task.clone(), &mut optimizer, 25)?;
497
498        // Evaluate on all tasks learned so far
499        let all_accuracies = learner.evaluate_all_tasks()?;
500        let mut current_row = Vec::new();
501
502        for j in 0..=i {
503            let task_id = &tasks[j].task_id;
504            let accuracy = all_accuracies.get(task_id).unwrap_or(&0.0);
505            current_row.push(*accuracy);
506        }
507
508        accuracy_matrix.push(current_row.clone());
509
510        // Print current performance
511        for (j, &acc) in current_row.iter().enumerate() {
512            println!("   - Task {}: {:.3}", j + 1, acc);
513        }
514    }
515
516    println!("\n   Forgetting Analysis Results:");
517
518    // Compute backward transfer
519    for i in 1..accuracy_matrix.len() {
520        for j in 0..i {
521            let current_acc = accuracy_matrix[i][j];
522            let original_acc = accuracy_matrix[j][j];
523            let forgetting = (original_acc - current_acc).max(0.0);
524
525            if forgetting > 0.1 {
526                println!("   - Significant forgetting detected for Task {} after learning Task {}: {:.3}",
527                    j + 1, i + 1, forgetting);
528            }
529        }
530    }
531
532    // Compute average forgetting
533    let mut total_forgetting = 0.0;
534    let mut num_comparisons = 0;
535
536    for i in 1..accuracy_matrix.len() {
537        for j in 0..i {
538            let current_acc = accuracy_matrix[i][j];
539            let original_acc = accuracy_matrix[j][j];
540            total_forgetting += (original_acc - current_acc).max(0.0);
541            num_comparisons += 1;
542        }
543    }
544
545    let avg_forgetting = if num_comparisons > 0 {
546        total_forgetting / f64::from(num_comparisons)
547    } else {
548        0.0
549    };
550
551    println!("   - Average forgetting: {avg_forgetting:.3}");
552
553    // Compute final average accuracy
554    if let Some(final_row) = accuracy_matrix.last() {
555        let final_avg = final_row.iter().sum::<f64>() / final_row.len() as f64;
556        println!("   - Final average accuracy: {final_avg:.3}");
557        println!(
558            "   - Continual learning effectiveness: {:.1}%",
559            (1.0 - avg_forgetting) * 100.0
560        );
561    }
562
563    Ok(())
564}

Trait Implementations§

Source§

impl Optimizer for Adam

Source§

fn step( &mut self, params: &mut HashMap<String, f64>, gradients: &HashMap<String, f64>, )

Update parameters given gradients
Source§

fn reset(&mut self)

Reset optimizer state

Auto Trait Implementations§

§

impl Freeze for Adam

§

impl RefUnwindSafe for Adam

§

impl Send for Adam

§

impl Sync for Adam

§

impl Unpin for Adam

§

impl UnwindSafe for Adam

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V