quantum_continual_learning/
quantum_continual_learning.rs

1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2//! Quantum Continual Learning Example
3//!
4//! This example demonstrates various continual learning strategies for quantum neural networks,
5//! including Elastic Weight Consolidation, Experience Replay, Progressive Networks, and more.
6
7use quantrs2_ml::autodiff::optimizers::Adam;
8use quantrs2_ml::prelude::*;
9use quantrs2_ml::qnn::QNNLayerType;
10use scirs2_core::ndarray::{Array1, Array2};
11use scirs2_core::random::prelude::*;
12
13fn main() -> Result<()> {
14    println!("=== Quantum Continual Learning Demo ===\n");
15
16    // Step 1: Elastic Weight Consolidation (EWC)
17    println!("1. Elastic Weight Consolidation (EWC)...");
18    ewc_demo()?;
19
20    // Step 2: Experience Replay
21    println!("\n2. Experience Replay...");
22    experience_replay_demo()?;
23
24    // Step 3: Progressive Networks
25    println!("\n3. Progressive Networks...");
26    progressive_networks_demo()?;
27
28    // Step 4: Learning without Forgetting (LwF)
29    println!("\n4. Learning without Forgetting...");
30    lwf_demo()?;
31
32    // Step 5: Parameter Isolation
33    println!("\n5. Parameter Isolation...");
34    parameter_isolation_demo()?;
35
36    // Step 6: Task sequence evaluation
37    println!("\n6. Task Sequence Evaluation...");
38    task_sequence_demo()?;
39
40    // Step 7: Forgetting analysis
41    println!("\n7. Forgetting Analysis...");
42    forgetting_analysis_demo()?;
43
44    println!("\n=== Quantum Continual Learning Demo Complete ===");
45
46    Ok(())
47}
48
49/// Demonstrate Elastic Weight Consolidation
50fn ewc_demo() -> Result<()> {
51    // Create quantum model
52    let layers = vec![
53        QNNLayerType::EncodingLayer { num_features: 4 },
54        QNNLayerType::VariationalLayer { num_params: 12 },
55        QNNLayerType::EntanglementLayer {
56            connectivity: "circular".to_string(),
57        },
58        QNNLayerType::VariationalLayer { num_params: 8 },
59        QNNLayerType::MeasurementLayer {
60            measurement_basis: "computational".to_string(),
61        },
62    ];
63
64    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
65
66    // Create EWC strategy
67    let strategy = ContinualLearningStrategy::ElasticWeightConsolidation {
68        importance_weight: 1000.0,
69        fisher_samples: 200,
70    };
71
72    let mut learner = QuantumContinualLearner::new(model, strategy);
73
74    println!("   Created EWC continual learner:");
75    println!("   - Importance weight: 1000.0");
76    println!("   - Fisher samples: 200");
77
78    // Generate task sequence
79    let tasks = generate_task_sequence(3, 100, 4);
80
81    println!("\n   Learning sequence of {} tasks...", tasks.len());
82
83    let mut optimizer = Adam::new(0.001);
84    let mut task_accuracies = Vec::new();
85
86    for (i, task) in tasks.iter().enumerate() {
87        println!("   \n   Training on {}...", task.task_id);
88
89        let metrics = learner.learn_task(task.clone(), &mut optimizer, 30)?;
90        task_accuracies.push(metrics.current_accuracy);
91
92        println!("   - Current accuracy: {:.3}", metrics.current_accuracy);
93
94        // Evaluate forgetting on previous tasks
95        if i > 0 {
96            let all_accuracies = learner.evaluate_all_tasks()?;
97            let avg_prev_accuracy = all_accuracies
98                .iter()
99                .take(i)
100                .map(|(_, &acc)| acc)
101                .sum::<f64>()
102                / i as f64;
103
104            println!("   - Average accuracy on previous tasks: {avg_prev_accuracy:.3}");
105        }
106    }
107
108    // Final evaluation
109    let forgetting_metrics = learner.get_forgetting_metrics();
110    println!("\n   EWC Results:");
111    println!(
112        "   - Average accuracy: {:.3}",
113        forgetting_metrics.average_accuracy
114    );
115    println!(
116        "   - Forgetting measure: {:.3}",
117        forgetting_metrics.forgetting_measure
118    );
119    println!(
120        "   - Continual learning score: {:.3}",
121        forgetting_metrics.continual_learning_score
122    );
123
124    Ok(())
125}
126
127/// Demonstrate Experience Replay
128fn experience_replay_demo() -> Result<()> {
129    let layers = vec![
130        QNNLayerType::EncodingLayer { num_features: 4 },
131        QNNLayerType::VariationalLayer { num_params: 8 },
132        QNNLayerType::MeasurementLayer {
133            measurement_basis: "computational".to_string(),
134        },
135    ];
136
137    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
138
139    let strategy = ContinualLearningStrategy::ExperienceReplay {
140        buffer_size: 500,
141        replay_ratio: 0.3,
142        memory_selection: MemorySelectionStrategy::Random,
143    };
144
145    let mut learner = QuantumContinualLearner::new(model, strategy);
146
147    println!("   Created Experience Replay learner:");
148    println!("   - Buffer size: 500");
149    println!("   - Replay ratio: 30%");
150    println!("   - Selection: Random");
151
152    // Generate diverse tasks
153    let tasks = generate_diverse_tasks(4, 80, 4);
154
155    println!("\n   Learning {} diverse tasks...", tasks.len());
156
157    let mut optimizer = Adam::new(0.002);
158
159    for (i, task) in tasks.iter().enumerate() {
160        println!("   \n   Learning {}...", task.task_id);
161
162        let metrics = learner.learn_task(task.clone(), &mut optimizer, 25)?;
163
164        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
165
166        // Show memory buffer status
167        println!("   - Memory buffer usage: replay experiences stored");
168
169        if i > 0 {
170            let all_accuracies = learner.evaluate_all_tasks()?;
171            let retention_rate = all_accuracies.values().sum::<f64>() / all_accuracies.len() as f64;
172            println!("   - Average retention: {retention_rate:.3}");
173        }
174    }
175
176    let final_metrics = learner.get_forgetting_metrics();
177    println!("\n   Experience Replay Results:");
178    println!(
179        "   - Final average accuracy: {:.3}",
180        final_metrics.average_accuracy
181    );
182    println!(
183        "   - Forgetting reduction: {:.3}",
184        1.0 - final_metrics.forgetting_measure
185    );
186
187    Ok(())
188}
189
190/// Demonstrate Progressive Networks
191fn progressive_networks_demo() -> Result<()> {
192    let layers = vec![
193        QNNLayerType::EncodingLayer { num_features: 4 },
194        QNNLayerType::VariationalLayer { num_params: 6 },
195        QNNLayerType::MeasurementLayer {
196            measurement_basis: "computational".to_string(),
197        },
198    ];
199
200    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
201
202    let strategy = ContinualLearningStrategy::ProgressiveNetworks {
203        lateral_connections: true,
204        adaptation_layers: 2,
205    };
206
207    let mut learner = QuantumContinualLearner::new(model, strategy);
208
209    println!("   Created Progressive Networks learner:");
210    println!("   - Lateral connections: enabled");
211    println!("   - Adaptation layers: 2");
212
213    // Generate related tasks for transfer learning
214    let tasks = generate_related_tasks(3, 60, 4);
215
216    println!("\n   Learning {} related tasks...", tasks.len());
217
218    let mut optimizer = Adam::new(0.001);
219    let mut learning_speeds = Vec::new();
220
221    for (i, task) in tasks.iter().enumerate() {
222        println!("   \n   Adding column for {}...", task.task_id);
223
224        let start_time = std::time::Instant::now();
225        let metrics = learner.learn_task(task.clone(), &mut optimizer, 20)?;
226        let learning_time = start_time.elapsed();
227
228        learning_speeds.push(learning_time);
229
230        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
231        println!("   - Learning time: {learning_time:.2?}");
232
233        if i > 0 {
234            let speedup = learning_speeds[0].as_secs_f64() / learning_time.as_secs_f64();
235            println!("   - Learning speedup: {speedup:.2}x");
236        }
237    }
238
239    println!("\n   Progressive Networks Results:");
240    println!("   - No catastrophic forgetting (by design)");
241    println!("   - Lateral connections enable knowledge transfer");
242    println!("   - Model capacity grows with new tasks");
243
244    Ok(())
245}
246
247/// Demonstrate Learning without Forgetting
248fn lwf_demo() -> Result<()> {
249    let layers = vec![
250        QNNLayerType::EncodingLayer { num_features: 4 },
251        QNNLayerType::VariationalLayer { num_params: 10 },
252        QNNLayerType::EntanglementLayer {
253            connectivity: "circular".to_string(),
254        },
255        QNNLayerType::MeasurementLayer {
256            measurement_basis: "computational".to_string(),
257        },
258    ];
259
260    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
261
262    let strategy = ContinualLearningStrategy::LearningWithoutForgetting {
263        distillation_weight: 0.5,
264        temperature: 3.0,
265    };
266
267    let mut learner = QuantumContinualLearner::new(model, strategy);
268
269    println!("   Created Learning without Forgetting learner:");
270    println!("   - Distillation weight: 0.5");
271    println!("   - Temperature: 3.0");
272
273    // Generate task sequence
274    let tasks = generate_task_sequence(4, 70, 4);
275
276    println!("\n   Learning with knowledge distillation...");
277
278    let mut optimizer = Adam::new(0.001);
279    let mut distillation_losses = Vec::new();
280
281    for (i, task) in tasks.iter().enumerate() {
282        println!("   \n   Learning {}...", task.task_id);
283
284        let metrics = learner.learn_task(task.clone(), &mut optimizer, 25)?;
285
286        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
287
288        if i > 0 {
289            // Simulate distillation loss tracking
290            let distillation_loss = 0.3f64.mul_add(fastrand::f64(), 0.1);
291            distillation_losses.push(distillation_loss);
292            println!("   - Distillation loss: {distillation_loss:.3}");
293
294            let all_accuracies = learner.evaluate_all_tasks()?;
295            let stability = all_accuracies
296                .values()
297                .map(|&acc| if acc > 0.6 { 1.0 } else { 0.0 })
298                .sum::<f64>()
299                / all_accuracies.len() as f64;
300
301            println!("   - Knowledge retention: {:.1}%", stability * 100.0);
302        }
303    }
304
305    println!("\n   LwF Results:");
306    println!("   - Knowledge distillation preserves previous task performance");
307    println!("   - Temperature scaling provides soft targets");
308    println!("   - Balances plasticity and stability");
309
310    Ok(())
311}
312
313/// Demonstrate Parameter Isolation
314fn parameter_isolation_demo() -> Result<()> {
315    let layers = vec![
316        QNNLayerType::EncodingLayer { num_features: 4 },
317        QNNLayerType::VariationalLayer { num_params: 16 },
318        QNNLayerType::EntanglementLayer {
319            connectivity: "full".to_string(),
320        },
321        QNNLayerType::MeasurementLayer {
322            measurement_basis: "computational".to_string(),
323        },
324    ];
325
326    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
327
328    let strategy = ContinualLearningStrategy::ParameterIsolation {
329        allocation_strategy: ParameterAllocationStrategy::Masking,
330        growth_threshold: 0.8,
331    };
332
333    let mut learner = QuantumContinualLearner::new(model, strategy);
334
335    println!("   Created Parameter Isolation learner:");
336    println!("   - Allocation strategy: Masking");
337    println!("   - Growth threshold: 0.8");
338
339    // Generate tasks with different requirements
340    let tasks = generate_varying_complexity_tasks(3, 90, 4);
341
342    println!("\n   Learning with parameter isolation...");
343
344    let mut optimizer = Adam::new(0.001);
345    let mut parameter_usage = Vec::new();
346
347    for (i, task) in tasks.iter().enumerate() {
348        println!("   \n   Allocating parameters for {}...", task.task_id);
349
350        let metrics = learner.learn_task(task.clone(), &mut optimizer, 30)?;
351
352        // Simulate parameter usage tracking
353        let used_params = 16 * (i + 1) / tasks.len(); // Gradually use more parameters
354        parameter_usage.push(used_params);
355
356        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
357        println!("   - Parameters allocated: {}/{}", used_params, 16);
358        println!(
359            "   - Parameter efficiency: {:.1}%",
360            used_params as f64 / 16.0 * 100.0
361        );
362
363        if i > 0 {
364            let all_accuracies = learner.evaluate_all_tasks()?;
365            let interference = 1.0
366                - all_accuracies
367                    .values()
368                    .take(i)
369                    .map(|&acc| if acc > 0.7 { 1.0 } else { 0.0 })
370                    .sum::<f64>()
371                    / i as f64;
372
373            println!("   - Task interference: {:.1}%", interference * 100.0);
374        }
375    }
376
377    println!("\n   Parameter Isolation Results:");
378    println!("   - Dedicated parameters prevent interference");
379    println!("   - Scalable to many tasks");
380    println!("   - Maintains task-specific knowledge");
381
382    Ok(())
383}
384
385/// Demonstrate comprehensive task sequence evaluation
386fn task_sequence_demo() -> Result<()> {
387    println!("   Comprehensive continual learning evaluation...");
388
389    // Compare different strategies
390    let strategies = vec![
391        (
392            "EWC",
393            ContinualLearningStrategy::ElasticWeightConsolidation {
394                importance_weight: 500.0,
395                fisher_samples: 100,
396            },
397        ),
398        (
399            "Experience Replay",
400            ContinualLearningStrategy::ExperienceReplay {
401                buffer_size: 300,
402                replay_ratio: 0.2,
403                memory_selection: MemorySelectionStrategy::Random,
404            },
405        ),
406        (
407            "Quantum Regularization",
408            ContinualLearningStrategy::QuantumRegularization {
409                entanglement_preservation: 0.1,
410                parameter_drift_penalty: 0.5,
411            },
412        ),
413    ];
414
415    // Generate challenging task sequence
416    let tasks = generate_challenging_sequence(5, 60, 4);
417
418    println!(
419        "\n   Comparing strategies on {} challenging tasks:",
420        tasks.len()
421    );
422
423    for (strategy_name, strategy) in strategies {
424        println!("\n   --- {strategy_name} ---");
425
426        let layers = vec![
427            QNNLayerType::EncodingLayer { num_features: 4 },
428            QNNLayerType::VariationalLayer { num_params: 8 },
429            QNNLayerType::MeasurementLayer {
430                measurement_basis: "computational".to_string(),
431            },
432        ];
433
434        let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
435        let mut learner = QuantumContinualLearner::new(model, strategy);
436        let mut optimizer = Adam::new(0.001);
437
438        for task in &tasks {
439            learner.learn_task(task.clone(), &mut optimizer, 20)?;
440        }
441
442        let final_metrics = learner.get_forgetting_metrics();
443        println!(
444            "   - Average accuracy: {:.3}",
445            final_metrics.average_accuracy
446        );
447        println!(
448            "   - Forgetting measure: {:.3}",
449            final_metrics.forgetting_measure
450        );
451        println!(
452            "   - CL score: {:.3}",
453            final_metrics.continual_learning_score
454        );
455    }
456
457    Ok(())
458}
459
460/// Demonstrate forgetting analysis
461fn forgetting_analysis_demo() -> Result<()> {
462    println!("   Detailed forgetting analysis...");
463
464    let layers = vec![
465        QNNLayerType::EncodingLayer { num_features: 4 },
466        QNNLayerType::VariationalLayer { num_params: 12 },
467        QNNLayerType::MeasurementLayer {
468            measurement_basis: "computational".to_string(),
469        },
470    ];
471
472    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
473
474    let strategy = ContinualLearningStrategy::ElasticWeightConsolidation {
475        importance_weight: 1000.0,
476        fisher_samples: 150,
477    };
478
479    let mut learner = QuantumContinualLearner::new(model, strategy);
480
481    // Create tasks with increasing difficulty
482    let tasks = generate_increasing_difficulty_tasks(4, 80, 4);
483
484    println!("\n   Learning tasks with increasing difficulty...");
485
486    let mut optimizer = Adam::new(0.001);
487    let mut accuracy_matrix = Vec::new();
488
489    for (i, task) in tasks.iter().enumerate() {
490        println!(
491            "   \n   Learning {} (difficulty level {})...",
492            task.task_id,
493            i + 1
494        );
495
496        learner.learn_task(task.clone(), &mut optimizer, 25)?;
497
498        // Evaluate on all tasks learned so far
499        let all_accuracies = learner.evaluate_all_tasks()?;
500        let mut current_row = Vec::new();
501
502        for j in 0..=i {
503            let task_id = &tasks[j].task_id;
504            let accuracy = all_accuracies.get(task_id).unwrap_or(&0.0);
505            current_row.push(*accuracy);
506        }
507
508        accuracy_matrix.push(current_row.clone());
509
510        // Print current performance
511        for (j, &acc) in current_row.iter().enumerate() {
512            println!("   - Task {}: {:.3}", j + 1, acc);
513        }
514    }
515
516    println!("\n   Forgetting Analysis Results:");
517
518    // Compute backward transfer
519    for i in 1..accuracy_matrix.len() {
520        for j in 0..i {
521            let current_acc = accuracy_matrix[i][j];
522            let original_acc = accuracy_matrix[j][j];
523            let forgetting = (original_acc - current_acc).max(0.0);
524
525            if forgetting > 0.1 {
526                println!("   - Significant forgetting detected for Task {} after learning Task {}: {:.3}",
527                    j + 1, i + 1, forgetting);
528            }
529        }
530    }
531
532    // Compute average forgetting
533    let mut total_forgetting = 0.0;
534    let mut num_comparisons = 0;
535
536    for i in 1..accuracy_matrix.len() {
537        for j in 0..i {
538            let current_acc = accuracy_matrix[i][j];
539            let original_acc = accuracy_matrix[j][j];
540            total_forgetting += (original_acc - current_acc).max(0.0);
541            num_comparisons += 1;
542        }
543    }
544
545    let avg_forgetting = if num_comparisons > 0 {
546        total_forgetting / f64::from(num_comparisons)
547    } else {
548        0.0
549    };
550
551    println!("   - Average forgetting: {avg_forgetting:.3}");
552
553    // Compute final average accuracy
554    if let Some(final_row) = accuracy_matrix.last() {
555        let final_avg = final_row.iter().sum::<f64>() / final_row.len() as f64;
556        println!("   - Final average accuracy: {final_avg:.3}");
557        println!(
558            "   - Continual learning effectiveness: {:.1}%",
559            (1.0 - avg_forgetting) * 100.0
560        );
561    }
562
563    Ok(())
564}
565
566/// Generate diverse tasks with different characteristics
567fn generate_diverse_tasks(
568    num_tasks: usize,
569    samples_per_task: usize,
570    feature_dim: usize,
571) -> Vec<ContinualTask> {
572    let mut tasks = Vec::new();
573
574    for i in 0..num_tasks {
575        let task_type = match i % 3 {
576            0 => "classification",
577            1 => "pattern_recognition",
578            _ => "feature_detection",
579        };
580
581        // Generate task-specific data with different distributions
582        let data = Array2::from_shape_fn((samples_per_task, feature_dim), |(row, col)| {
583            match i % 3 {
584                0 => {
585                    // Gaussian-like distribution
586                    let center = i as f64 * 0.2;
587                    0.2f64.mul_add(fastrand::f64() - 0.5, center)
588                }
589                1 => {
590                    // Sinusoidal pattern
591                    let freq = (i + 1) as f64;
592                    0.3f64.mul_add(
593                        (freq * row as f64).mul_add(0.1, col as f64 * 0.2).sin(),
594                        0.5,
595                    )
596                }
597                _ => {
598                    // Random with task-specific bias
599                    let bias = i as f64 * 0.1;
600                    fastrand::f64().mul_add(0.6, bias)
601                }
602            }
603        });
604
605        let labels = Array1::from_shape_fn(samples_per_task, |row| {
606            let features_sum = data.row(row).sum();
607            usize::from(features_sum > feature_dim as f64 * 0.5)
608        });
609
610        let task = create_continual_task(
611            format!("{task_type}_{i}"),
612            TaskType::Classification { num_classes: 2 },
613            data,
614            labels,
615            0.8,
616        );
617
618        tasks.push(task);
619    }
620
621    tasks
622}
623
624/// Generate related tasks for transfer learning
625fn generate_related_tasks(
626    num_tasks: usize,
627    samples_per_task: usize,
628    feature_dim: usize,
629) -> Vec<ContinualTask> {
630    let mut tasks = Vec::new();
631    let base_pattern = Array1::from_shape_fn(feature_dim, |i| (i as f64 * 0.3).sin());
632
633    for i in 0..num_tasks {
634        // Each task is a variation of the base pattern
635        let variation_strength = (i as f64).mul_add(0.1, 0.1);
636
637        let data = Array2::from_shape_fn((samples_per_task, feature_dim), |(row, col)| {
638            let base_value = base_pattern[col];
639            let variation = variation_strength * (row as f64).mul_add(0.05, col as f64 * 0.1).cos();
640            let noise = 0.05 * (fastrand::f64() - 0.5);
641            (base_value + variation + noise).max(0.0).min(1.0)
642        });
643
644        let labels = Array1::from_shape_fn(samples_per_task, |row| {
645            let correlation = data
646                .row(row)
647                .iter()
648                .zip(base_pattern.iter())
649                .map(|(&x, &y)| x * y)
650                .sum::<f64>();
651            usize::from(correlation > 0.5)
652        });
653
654        let task = create_continual_task(
655            format!("related_task_{i}"),
656            TaskType::Classification { num_classes: 2 },
657            data,
658            labels,
659            0.8,
660        );
661
662        tasks.push(task);
663    }
664
665    tasks
666}
667
668/// Generate tasks with varying complexity
669fn generate_varying_complexity_tasks(
670    num_tasks: usize,
671    samples_per_task: usize,
672    feature_dim: usize,
673) -> Vec<ContinualTask> {
674    let mut tasks = Vec::new();
675
676    for i in 0..num_tasks {
677        let complexity = (i + 1) as f64; // Increasing complexity
678
679        let data = Array2::from_shape_fn((samples_per_task, feature_dim), |(row, col)| {
680            // More complex decision boundaries for later tasks
681            let x = row as f64 / samples_per_task as f64;
682            let y = col as f64 / feature_dim as f64;
683
684            let value = match i {
685                0 => {
686                    if x > 0.5 {
687                        1.0
688                    } else {
689                        0.0
690                    }
691                } // Simple linear
692                1 => {
693                    if x.mul_add(x, y * y) > 0.25 {
694                        1.0
695                    } else {
696                        0.0
697                    }
698                } // Circular
699                2 => {
700                    if (x * 4.0).sin() * (y * 4.0).cos() > 0.0 {
701                        1.0
702                    } else {
703                        0.0
704                    }
705                } // Sinusoidal
706                _ => {
707                    // Very complex pattern
708                    let pattern = (x * 8.0)
709                        .sin()
710                        .mul_add((y * 8.0).cos(), (x * y * 16.0).sin());
711                    if pattern > 0.0 {
712                        1.0
713                    } else {
714                        0.0
715                    }
716                }
717            };
718
719            0.1f64.mul_add(fastrand::f64() - 0.5, value) // Add noise
720        });
721
722        let labels = Array1::from_shape_fn(samples_per_task, |row| {
723            // Complex labeling based on multiple features
724            let features = data.row(row);
725            let decision_value = features
726                .iter()
727                .enumerate()
728                .map(|(j, &x)| x * (j as f64 * complexity).mul_add(0.1, 1.0))
729                .sum::<f64>();
730
731            usize::from(decision_value > feature_dim as f64 * 0.5)
732        });
733
734        let task = create_continual_task(
735            format!("complex_task_{i}"),
736            TaskType::Classification { num_classes: 2 },
737            data,
738            labels,
739            0.8,
740        );
741
742        tasks.push(task);
743    }
744
745    tasks
746}
747
748/// Generate challenging task sequence
749fn generate_challenging_sequence(
750    num_tasks: usize,
751    samples_per_task: usize,
752    feature_dim: usize,
753) -> Vec<ContinualTask> {
754    let mut tasks = Vec::new();
755
756    for i in 0..num_tasks {
757        // Alternating between different types of challenges
758        let challenge_type = i % 4;
759
760        let data = Array2::from_shape_fn((samples_per_task, feature_dim), |(row, col)| {
761            match challenge_type {
762                0 => {
763                    // High-frequency patterns
764                    let freq = (i as f64).mul_add(2.0, 10.0);
765                    0.4f64.mul_add((freq * row as f64 * 0.01).sin(), 0.5)
766                }
767                1 => {
768                    // Overlapping distributions
769                    let center1 = (i as f64).mul_add(0.05, 0.3);
770                    let center2 = (i as f64).mul_add(-0.05, 0.7);
771                    if row % 2 == 0 {
772                        0.15f64.mul_add(fastrand::f64() - 0.5, center1)
773                    } else {
774                        0.15f64.mul_add(fastrand::f64() - 0.5, center2)
775                    }
776                }
777                2 => {
778                    // Non-linear patterns
779                    let x = row as f64 / samples_per_task as f64;
780                    let y = col as f64 / feature_dim as f64;
781                    let pattern = (i as f64).mul_add(0.1, x.mul_add(x, -(y * y))).tanh();
782                    0.3f64.mul_add(pattern, 0.5)
783                }
784                _ => {
785                    // Sparse patterns
786                    if fastrand::f64() < 0.2 {
787                        0.2f64.mul_add(fastrand::f64(), 0.8)
788                    } else {
789                        0.1 * fastrand::f64()
790                    }
791                }
792            }
793        });
794
795        let labels = Array1::from_shape_fn(samples_per_task, |row| {
796            let features = data.row(row);
797            match challenge_type {
798                0 => usize::from(features.sum() > feature_dim as f64 * 0.5),
799                1 => usize::from(features[0] > 0.5),
800                2 => usize::from(
801                    features
802                        .iter()
803                        .enumerate()
804                        .map(|(j, &x)| x * (j as f64 + 1.0))
805                        .sum::<f64>()
806                        > 2.0,
807                ),
808                _ => usize::from(features.iter().filter(|&&x| x > 0.5).count() > feature_dim / 2),
809            }
810        });
811
812        let task = create_continual_task(
813            format!("challenge_{i}"),
814            TaskType::Classification { num_classes: 2 },
815            data,
816            labels,
817            0.8,
818        );
819
820        tasks.push(task);
821    }
822
823    tasks
824}
825
826/// Generate tasks with increasing difficulty
827fn generate_increasing_difficulty_tasks(
828    num_tasks: usize,
829    samples_per_task: usize,
830    feature_dim: usize,
831) -> Vec<ContinualTask> {
832    let mut tasks = Vec::new();
833
834    for i in 0..num_tasks {
835        let difficulty = (i + 1) as f64;
836        let noise_level = 0.05 + difficulty * 0.02;
837        let pattern_complexity = 1.0 + difficulty * 0.5;
838
839        let data = Array2::from_shape_fn((samples_per_task, feature_dim), |(row, col)| {
840            let x = row as f64 / samples_per_task as f64;
841            let y = col as f64 / feature_dim as f64;
842
843            // Increasingly complex patterns
844            let base_pattern = (x * pattern_complexity * std::f64::consts::PI).sin()
845                * (y * pattern_complexity * std::f64::consts::PI).cos();
846
847            let pattern_value = 0.3f64.mul_add(base_pattern, 0.5);
848            let noise = noise_level * (fastrand::f64() - 0.5);
849
850            (pattern_value + noise).max(0.0).min(1.0)
851        });
852
853        let labels = Array1::from_shape_fn(samples_per_task, |row| {
854            let features = data.row(row);
855
856            // Increasingly complex decision boundaries
857            let decision_value = features
858                .iter()
859                .enumerate()
860                .map(|(j, &x)| {
861                    let weight = 1.0 + (j as f64 * difficulty * 0.1).sin();
862                    x * weight
863                })
864                .sum::<f64>();
865
866            let threshold = feature_dim as f64 * 0.5 * (1.0 + difficulty * 0.1);
867            usize::from(decision_value > threshold)
868        });
869
870        let task = create_continual_task(
871            format!("difficulty_{}", i + 1),
872            TaskType::Classification { num_classes: 2 },
873            data,
874            labels,
875            0.8,
876        );
877
878        tasks.push(task);
879    }
880
881    tasks
882}