1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2use quantrs2_ml::autodiff::optimizers::Adam;
8use quantrs2_ml::prelude::*;
9use quantrs2_ml::qnn::QNNLayerType;
10use scirs2_core::ndarray::{Array1, Array2};
11use scirs2_core::random::prelude::*;
12
13fn main() -> Result<()> {
14 println!("=== Quantum Few-Shot Learning Demo ===\n");
15
16 println!("1. Generating synthetic dataset for 5-way classification...");
18 let num_samples_per_class = 20;
19 let num_classes = 5;
20 let num_features = 4;
21 let total_samples = num_samples_per_class * num_classes;
22
23 let mut data = Array2::zeros((total_samples, num_features));
25 let mut labels = Array1::zeros(total_samples);
26
27 for class_id in 0..num_classes {
28 for sample_idx in 0..num_samples_per_class {
29 let idx = class_id * num_samples_per_class + sample_idx;
30
31 for feat in 0..num_features {
33 data[[idx, feat]] = 0.1f64.mul_add(
34 2.0f64.mul_add(thread_rng().gen::<f64>(), -1.0),
35 (sample_idx as f64)
36 .mul_add(0.1, (class_id as f64).mul_add(0.5, feat as f64 * 0.3))
37 .sin(),
38 );
39 }
40 labels[idx] = class_id;
41 }
42 }
43
44 println!(
45 " Dataset created: {total_samples} samples, {num_features} features, {num_classes} classes"
46 );
47
48 println!("\n2. Creating quantum neural network...");
50 let layers = vec![
51 QNNLayerType::EncodingLayer { num_features },
52 QNNLayerType::VariationalLayer { num_params: 8 },
53 QNNLayerType::EntanglementLayer {
54 connectivity: "circular".to_string(),
55 },
56 QNNLayerType::VariationalLayer { num_params: 8 },
57 QNNLayerType::MeasurementLayer {
58 measurement_basis: "computational".to_string(),
59 },
60 ];
61
62 let qnn = QuantumNeuralNetwork::new(layers, 4, num_features, num_classes)?;
63 println!(" Quantum model created with {} qubits", qnn.num_qubits);
64
65 println!("\n3. Testing few-shot learning methods:");
67
68 println!("\n a) Prototypical Networks (5-way 3-shot):");
70 test_prototypical_networks(&data, &labels, qnn.clone())?;
71
72 println!("\n b) Model-Agnostic Meta-Learning (MAML):");
74 test_maml(&data, &labels, qnn.clone())?;
75
76 println!("\n4. Performance comparison across different K-shot values:");
78 compare_shot_performance(&data, &labels, qnn)?;
79
80 println!("\n=== Few-Shot Learning Demo Complete ===");
81
82 Ok(())
83}
84
85fn test_prototypical_networks(
87 data: &Array2<f64>,
88 labels: &Array1<usize>,
89 qnn: QuantumNeuralNetwork,
90) -> Result<()> {
91 let mut learner = FewShotLearner::new(FewShotMethod::PrototypicalNetworks, qnn);
92
93 let num_episodes = 10;
95 let mut episodes = Vec::new();
96
97 for _ in 0..num_episodes {
98 let episode = FewShotLearner::generate_episode(
99 data, labels, 5, 3, 5, )?;
103 episodes.push(episode);
104 }
105
106 let mut optimizer = Adam::new(0.01);
108 let accuracies = learner.train(&episodes, &mut optimizer, 20)?;
109
110 println!(" Training completed:");
112 println!(" - Initial accuracy: {:.2}%", accuracies[0] * 100.0);
113 println!(
114 " - Final accuracy: {:.2}%",
115 accuracies.last().unwrap() * 100.0
116 );
117 println!(
118 " - Improvement: {:.2}%",
119 (accuracies.last().unwrap() - accuracies[0]) * 100.0
120 );
121
122 Ok(())
123}
124
125fn test_maml(data: &Array2<f64>, labels: &Array1<usize>, qnn: QuantumNeuralNetwork) -> Result<()> {
127 let mut learner = FewShotLearner::new(
128 FewShotMethod::MAML {
129 inner_steps: 5,
130 inner_lr: 0.01,
131 },
132 qnn,
133 );
134
135 let num_tasks = 20;
137 let mut tasks = Vec::new();
138
139 for _ in 0..num_tasks {
140 let task = FewShotLearner::generate_episode(
141 data, labels, 3, 5, 5, )?;
145 tasks.push(task);
146 }
147
148 let mut meta_optimizer = Adam::new(0.001);
150 let losses = learner.train(&tasks, &mut meta_optimizer, 10)?;
151
152 println!(" Meta-training completed:");
153 println!(" - Initial loss: {:.4}", losses[0]);
154 println!(" - Final loss: {:.4}", losses.last().unwrap());
155 println!(
156 " - Convergence rate: {:.2}%",
157 (1.0 - losses.last().unwrap() / losses[0]) * 100.0
158 );
159
160 Ok(())
161}
162
163fn compare_shot_performance(
165 data: &Array2<f64>,
166 labels: &Array1<usize>,
167 qnn: QuantumNeuralNetwork,
168) -> Result<()> {
169 let k_values = vec![1, 3, 5, 10];
170
171 for k in k_values {
172 println!("\n Testing {k}-shot learning:");
173
174 let mut learner = FewShotLearner::new(FewShotMethod::PrototypicalNetworks, qnn.clone());
175
176 let mut episodes = Vec::new();
178 for _ in 0..5 {
179 let episode = FewShotLearner::generate_episode(
180 data, labels, 3, k, 5, )?;
184 episodes.push(episode);
185 }
186
187 let mut optimizer = Adam::new(0.01);
189 let accuracies = learner.train(&episodes, &mut optimizer, 10)?;
190
191 println!(
192 " Final accuracy: {:.2}%",
193 accuracies.last().unwrap() * 100.0
194 );
195 }
196
197 Ok(())
198}
199
200fn demonstrate_episode_structure() -> Result<()> {
202 println!("\n5. Episode Structure Demonstration:");
203
204 let support_set = vec![
206 (Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]), 0),
208 (Array1::from_vec(vec![0.15, 0.25, 0.35, 0.45]), 0),
209 (Array1::from_vec(vec![0.8, 0.7, 0.6, 0.5]), 1),
211 (Array1::from_vec(vec![0.85, 0.75, 0.65, 0.55]), 1),
212 ];
213
214 let query_set = vec![
215 (Array1::from_vec(vec![0.12, 0.22, 0.32, 0.42]), 0),
216 (Array1::from_vec(vec![0.82, 0.72, 0.62, 0.52]), 1),
217 ];
218
219 let episode = Episode {
220 support_set,
221 query_set,
222 num_classes: 2,
223 k_shot: 2,
224 };
225
226 println!(" 2-way 2-shot episode created");
227 println!(" - Support set size: {}", episode.support_set.len());
228 println!(" - Query set size: {}", episode.query_set.len());
229
230 Ok(())
231}