pub struct QuantumCircuit {
pub gates: Vec<QuantumGate>,
pub qubits: usize,
}Fields§
§gates: Vec<QuantumGate>§qubits: usizeImplementations§
Source§impl QuantumCircuit
impl QuantumCircuit
Sourcepub fn num_qubits(&self) -> usize
pub fn num_qubits(&self) -> usize
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 59)
18fn main() -> Result<()> {
19 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
20
21 // Step 1: Initialize noise model and calibration data
22 println!("1. Setting up noise model and calibration data...");
23
24 let noise_model = create_realistic_noise_model()?;
25 println!(
26 " - Noise model configured with {} gate types",
27 noise_model.gate_errors.len()
28 );
29 println!(
30 " - Average gate error rate: {:.4}",
31 calculate_average_error_rate(&noise_model)
32 );
33 println!(
34 " - Measurement fidelity: {:.3}",
35 noise_model.measurement_errors.readout_fidelity
36 );
37
38 // Step 2: Create different mitigation strategies
39 println!("\n2. Creating error mitigation strategies...");
40
41 let strategies = create_mitigation_strategies()?;
42 println!(
43 " - Created {} different mitigation strategies",
44 strategies.len()
45 );
46
47 for (i, strategy) in strategies.iter().enumerate() {
48 println!(" {}. {}", i + 1, get_strategy_name(strategy));
49 }
50
51 // Step 3: Initialize quantum ML circuit for testing
52 println!("\n3. Initializing quantum ML circuit...");
53
54 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
55 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
56
57 println!(
58 " - Circuit: {} qubits, {} parameters",
59 test_circuit.num_qubits(),
60 initial_parameters.len()
61 );
62 println!(
63 " - Circuit depth: approximately {} gates",
64 estimate_circuit_depth(&test_circuit)
65 );
66
67 // Step 4: Simulate noisy measurements
68 println!("\n4. Simulating noisy quantum measurements...");
69
70 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
71 let noisy_gradients =
72 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
73
74 println!(
75 " - Generated {} measurement shots",
76 noisy_measurements.nrows()
77 );
78 println!(
79 " - Noise level in measurements: {:.3}",
80 assess_noise_level(&noisy_measurements)
81 );
82 println!(
83 " - Gradient noise standard deviation: {:.4}",
84 noisy_gradients.std(0.0)
85 );
86
87 // Step 5: Apply different mitigation strategies
88 println!("\n5. Applying different error mitigation strategies...");
89
90 let mut mitigation_results = Vec::new();
91
92 for (strategy_idx, strategy) in strategies.iter().enumerate() {
93 println!(
94 " Testing strategy {}: {}",
95 strategy_idx + 1,
96 get_strategy_name(strategy)
97 );
98
99 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
100
101 let mitigated_data = mitigator.mitigate_training_errors(
102 &test_circuit,
103 &initial_parameters,
104 &noisy_measurements,
105 &noisy_gradients,
106 )?;
107
108 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
109 println!(
110 " - Measurement improvement: {:.1}%",
111 improvement * 100.0
112 );
113 println!(
114 " - Confidence score: {:.3}",
115 mitigated_data.confidence_scores.mean().unwrap()
116 );
117 println!(
118 " - Mitigation overhead: {:.1}%",
119 mitigated_data.mitigation_overhead * 100.0
120 );
121
122 mitigation_results.push((strategy_idx, improvement, mitigated_data));
123 }
124
125 // Step 6: Compare mitigation effectiveness
126 println!("\n6. Comparing mitigation effectiveness...");
127
128 let mut sorted_results = mitigation_results.clone();
129 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
130
131 println!(" Ranking by improvement:");
132 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
133 println!(
134 " {}. {}: {:.1}% improvement",
135 rank + 1,
136 get_strategy_name(&strategies[*strategy_idx]),
137 improvement * 100.0
138 );
139 }
140
141 // Step 7: Demonstrate adaptive mitigation
142 println!("\n7. Demonstrating adaptive error mitigation...");
143
144 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
145 strategies: strategies.clone(),
146 selection_policy: create_smart_selection_policy()?,
147 performance_tracker: create_performance_tracker()?,
148 };
149
150 let mut adaptive_mitigator =
151 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
152
153 // Simulate training loop with adaptive mitigation
154 println!(" Simulating training with adaptive mitigation:");
155 let num_training_steps = 10;
156 let mut training_history = Vec::new();
157
158 for step in 0..num_training_steps {
159 // Simulate changing noise conditions
160 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
161 adaptive_mitigator.noise_model = dynamic_noise;
162
163 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
164 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
165
166 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
167 &test_circuit,
168 &initial_parameters,
169 &step_measurements,
170 &step_gradients,
171 )?;
172
173 let step_improvement =
174 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
175 training_history.push(step_improvement);
176
177 if step % 3 == 0 {
178 println!(
179 " Step {}: {:.1}% improvement, confidence: {:.3}",
180 step + 1,
181 step_improvement * 100.0,
182 mitigated_step.confidence_scores.mean().unwrap()
183 );
184 }
185 }
186
187 let avg_adaptive_improvement =
188 training_history.iter().sum::<f64>() / training_history.len() as f64;
189 println!(
190 " Average adaptive improvement: {:.1}%",
191 avg_adaptive_improvement * 100.0
192 );
193
194 // Step 8: Demonstrate specialized mitigation techniques
195 println!("\n8. Demonstrating specialized mitigation techniques...");
196
197 // Zero Noise Extrapolation
198 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
199 println!(" Zero Noise Extrapolation:");
200 println!(
201 " - Extrapolated fidelity: {:.4}",
202 zne_demo.extrapolated_fidelity
203 );
204 println!(
205 " - Confidence interval: [{:.4}, {:.4}]",
206 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
207 );
208
209 // Readout Error Mitigation
210 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
211 println!(" Readout Error Mitigation:");
212 println!(
213 " - Correction accuracy: {:.1}%",
214 readout_demo.correction_accuracy * 100.0
215 );
216 println!(
217 " - Assignment matrix condition number: {:.2}",
218 readout_demo.condition_number
219 );
220
221 // Clifford Data Regression
222 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
223 println!(" Clifford Data Regression:");
224 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
225 println!(
226 " - Prediction accuracy: {:.1}%",
227 cdr_demo.prediction_accuracy * 100.0
228 );
229
230 // Virtual Distillation
231 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
232 println!(" Virtual Distillation:");
233 println!(
234 " - Distillation fidelity: {:.4}",
235 vd_demo.distillation_fidelity
236 );
237 println!(
238 " - Resource overhead: {:.1}x",
239 vd_demo.resource_overhead
240 );
241
242 // Step 9: ML-based error mitigation
243 println!("\n9. Demonstrating ML-based error mitigation...");
244
245 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
246 println!(" Machine Learning-based Mitigation:");
247 println!(
248 " - Neural network accuracy: {:.1}%",
249 ml_mitigation_demo.nn_accuracy * 100.0
250 );
251 println!(
252 " - Noise prediction MSE: {:.6}",
253 ml_mitigation_demo.prediction_mse
254 );
255 println!(
256 " - Correction effectiveness: {:.1}%",
257 ml_mitigation_demo.correction_effectiveness * 100.0
258 );
259
260 // Step 10: Real-time adaptive mitigation
261 println!("\n10. Real-time adaptive mitigation simulation...");
262
263 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
264 println!(" Real-time Adaptation Results:");
265 println!(
266 " - Response time: {:.1} ms",
267 realtime_results.response_time_ms
268 );
269 println!(
270 " - Adaptation accuracy: {:.1}%",
271 realtime_results.adaptation_accuracy * 100.0
272 );
273 println!(
274 " - Overall performance gain: {:.1}%",
275 realtime_results.performance_gain * 100.0
276 );
277
278 // Step 11: Error mitigation for inference
279 println!("\n11. Error mitigation for quantum ML inference...");
280
281 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
282
283 let best_strategy = &strategies[sorted_results[0].0];
284 let mut inference_mitigator =
285 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
286
287 let mitigated_inference =
288 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
289
290 println!(" Inference Mitigation Results:");
291 println!(
292 " - Uncertainty reduction: {:.1}%",
293 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
294 );
295 println!(
296 " - Reliability score: {:.3}",
297 mitigated_inference.reliability_score
298 );
299 println!(
300 " - Prediction confidence: {:.1}%",
301 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
302 );
303
304 // Step 12: Performance and resource analysis
305 println!("\n12. Performance and resource analysis...");
306
307 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
308 println!(" Resource Analysis:");
309 println!(
310 " - Average computational overhead: {:.1}x",
311 resource_analysis.avg_computational_overhead
312 );
313 println!(
314 " - Memory usage increase: {:.1}%",
315 resource_analysis.memory_overhead * 100.0
316 );
317 println!(
318 " - Classical processing time: {:.2} ms",
319 resource_analysis.classical_time_ms
320 );
321 println!(
322 " - Quantum circuit overhead: {:.1}%",
323 resource_analysis.quantum_overhead * 100.0
324 );
325
326 // Step 13: Quantum advantage analysis with error mitigation
327 println!("\n13. Quantum advantage analysis with error mitigation...");
328
329 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
330 &test_circuit,
331 &sorted_results[0].2, // Best mitigation result
332 )?;
333
334 println!(" Quantum Advantage Analysis:");
335 println!(
336 " - Effective quantum volume: {}",
337 quantum_advantage.effective_quantum_volume
338 );
339 println!(
340 " - Noise-mitigated fidelity: {:.4}",
341 quantum_advantage.mitigated_fidelity
342 );
343 println!(
344 " - Classical simulation cost: {:.1}x harder",
345 quantum_advantage.classical_simulation_cost
346 );
347 println!(
348 " - Practical quantum advantage: {}",
349 if quantum_advantage.practical_advantage {
350 "Yes"
351 } else {
352 "Not yet"
353 }
354 );
355
356 // Step 14: Generate comprehensive report
357 println!("\n14. Generating comprehensive error mitigation report...");
358
359 let comprehensive_report = generate_comprehensive_mitigation_report(
360 &strategies,
361 &mitigation_results,
362 &training_history,
363 &resource_analysis,
364 &quantum_advantage,
365 )?;
366
367 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
368 println!(" Comprehensive report saved to: error_mitigation_report.html");
369
370 // Step 15: Future recommendations
371 println!("\n15. Error mitigation recommendations...");
372
373 let recommendations =
374 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
375
376 println!(" Recommendations:");
377 for (i, recommendation) in recommendations.iter().enumerate() {
378 println!(" {}. {}", i + 1, recommendation);
379 }
380
381 println!("\n=== Advanced Error Mitigation Demo Complete ===");
382 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
383 println!("📊 All mitigation strategies evaluated and optimized");
384 println!("🚀 Quantum ML error mitigation framework ready for production");
385
386 Ok(())
387}
388
389// Helper functions for the demo
390
391fn create_realistic_noise_model() -> Result<NoiseModel> {
392 let mut gate_errors = HashMap::new();
393
394 // Single-qubit gate errors
395 gate_errors.insert(
396 "X".to_string(),
397 GateErrorModel {
398 error_rate: 0.001,
399 error_type: ErrorType::Depolarizing { strength: 0.002 },
400 coherence_limited: true,
401 gate_time: 50e-9, // 50 ns
402 fidelity_model: FidelityModel,
403 },
404 );
405
406 gate_errors.insert(
407 "RZ".to_string(),
408 GateErrorModel {
409 error_rate: 0.0005,
410 error_type: ErrorType::Phase {
411 dephasing_rate: 0.001,
412 },
413 coherence_limited: true,
414 gate_time: 0.0, // Virtual gate
415 fidelity_model: FidelityModel,
416 },
417 );
418
419 // Two-qubit gate errors
420 gate_errors.insert(
421 "CNOT".to_string(),
422 GateErrorModel {
423 error_rate: 0.01,
424 error_type: ErrorType::Depolarizing { strength: 0.02 },
425 coherence_limited: true,
426 gate_time: 200e-9, // 200 ns
427 fidelity_model: FidelityModel,
428 },
429 );
430
431 let measurement_errors = MeasurementErrorModel {
432 readout_fidelity: 0.95,
433 assignment_matrix: Array2::from_shape_vec((2, 2), vec![0.95, 0.05, 0.03, 0.97])?,
434 state_preparation_errors: Array1::from_vec(vec![0.01, 0.01, 0.01, 0.01]),
435 measurement_crosstalk: Array2::zeros((4, 4)),
436 };
437
438 let coherence_times = CoherenceTimeModel {
439 t1_times: Array1::from_vec(vec![100e-6, 80e-6, 120e-6, 90e-6]), // T1 times in seconds
440 t2_times: Array1::from_vec(vec![50e-6, 60e-6, 70e-6, 55e-6]), // T2 times in seconds
441 t2_echo_times: Array1::from_vec(vec![150e-6, 140e-6, 160e-6, 145e-6]),
442 temporal_fluctuations: TemporalFluctuation,
443 };
444
445 Ok(NoiseModel {
446 gate_errors,
447 measurement_errors,
448 coherence_times,
449 crosstalk_matrix: Array2::zeros((4, 4)),
450 temporal_correlations: TemporalCorrelationModel {
451 correlation_function: CorrelationFunction::Exponential,
452 correlation_time: 1e-3,
453 noise_spectrum: NoiseSpectrum,
454 },
455 })
456}
457
458fn create_mitigation_strategies() -> Result<Vec<MitigationStrategy>> {
459 Ok(vec![
460 MitigationStrategy::ZNE {
461 scale_factors: vec![1.0, 2.0, 3.0],
462 extrapolation_method: ExtrapolationMethod::Polynomial { degree: 2 },
463 circuit_folding: CircuitFoldingMethod::GlobalFolding,
464 },
465 MitigationStrategy::ReadoutErrorMitigation {
466 calibration_matrix: Array2::from_shape_vec(
467 (4, 4),
468 vec![
469 0.95, 0.02, 0.02, 0.01, 0.02, 0.96, 0.01, 0.01, 0.02, 0.01, 0.95, 0.02, 0.01,
470 0.01, 0.02, 0.96,
471 ],
472 )?,
473 correction_method: ReadoutCorrectionMethod::MatrixInversion,
474 regularization: 1e-6,
475 },
476 MitigationStrategy::CDR {
477 training_circuits: vec![CliffordCircuit; 10],
478 regression_model: CDRModel,
479 feature_extraction:
480 quantrs2_ml::error_mitigation::FeatureExtractionMethod::CircuitDepth,
481 },
482 MitigationStrategy::SymmetryVerification {
483 symmetry_groups: vec![SymmetryGroup; 2],
484 verification_circuits: vec![VerificationCircuit; 5],
485 post_selection: true,
486 },
487 MitigationStrategy::VirtualDistillation {
488 distillation_rounds: 2,
489 entanglement_protocol: EntanglementProtocol::Bell,
490 purification_threshold: 0.8,
491 },
492 MitigationStrategy::MLMitigation {
493 noise_predictor: NoisePredictorModel,
494 correction_network: CorrectionNetwork,
495 training_data: TrainingDataSet,
496 },
497 ])
498}
499
500const fn get_strategy_name(strategy: &MitigationStrategy) -> &'static str {
501 match strategy {
502 MitigationStrategy::ZNE { .. } => "Zero Noise Extrapolation",
503 MitigationStrategy::ReadoutErrorMitigation { .. } => "Readout Error Mitigation",
504 MitigationStrategy::CDR { .. } => "Clifford Data Regression",
505 MitigationStrategy::SymmetryVerification { .. } => "Symmetry Verification",
506 MitigationStrategy::VirtualDistillation { .. } => "Virtual Distillation",
507 MitigationStrategy::MLMitigation { .. } => "ML-based Mitigation",
508 MitigationStrategy::HybridErrorCorrection { .. } => "Hybrid Error Correction",
509 MitigationStrategy::AdaptiveMultiStrategy { .. } => "Adaptive Multi-Strategy",
510 }
511}
512
513fn create_test_qml_circuit(num_qubits: usize, num_layers: usize) -> Result<QuantumCircuit> {
514 let gates = vec![
515 QuantumGate {
516 name: "RY".to_string(),
517 qubits: vec![0],
518 parameters: Array1::from_vec(vec![0.1]),
519 };
520 num_layers * num_qubits
521 ];
522
523 Ok(QuantumCircuit {
524 gates,
525 qubits: num_qubits,
526 })
527}
528
529fn calculate_average_error_rate(noise_model: &NoiseModel) -> f64 {
530 noise_model
531 .gate_errors
532 .values()
533 .map(|error| error.error_rate)
534 .sum::<f64>()
535 / noise_model.gate_errors.len() as f64
536}
537
538fn estimate_circuit_depth(circuit: &QuantumCircuit) -> usize {
539 circuit.gates.len()
540}
541
542fn simulate_noisy_measurements(
543 circuit: &QuantumCircuit,
544 noise_model: &NoiseModel,
545 num_shots: usize,
546) -> Result<Array2<f64>> {
547 // Simulate noisy measurements with realistic noise
548 let mut measurements = Array2::zeros((num_shots, circuit.num_qubits()));
549
550 for i in 0..num_shots {
551 for j in 0..circuit.num_qubits() {
552 let ideal_prob = 0.5; // Ideal measurement probability
553 let noise_factor = fastrand::f64().mul_add(0.1, -0.05); // ±5% noise
554 let noisy_prob = (ideal_prob + noise_factor).max(0.0).min(1.0);
555 measurements[[i, j]] = if fastrand::f64() < noisy_prob {
556 1.0
557 } else {
558 0.0
559 };
560 }
561 }
562
563 Ok(measurements)
564}
565
566fn simulate_noisy_gradients(
567 circuit: &QuantumCircuit,
568 parameters: &Array1<f64>,
569 noise_model: &NoiseModel,
570) -> Result<Array1<f64>> {
571 // Simulate parameter shift gradients with noise
572 let mut gradients = Array1::zeros(parameters.len());
573
574 for i in 0..parameters.len() {
575 let ideal_gradient = (i as f64 + 1.0) * 0.1; // Mock ideal gradient
576 let noise_std = 0.05; // Gradient noise standard deviation
577 let noise = (fastrand::f64() * noise_std).mul_add(2.0, -noise_std);
578 gradients[i] = ideal_gradient + noise;
579 }
580
581 Ok(gradients)
582}
583
584fn assess_noise_level(measurements: &Array2<f64>) -> f64 {
585 // Calculate empirical noise level from measurements
586 let bit_flip_rate = measurements
587 .iter()
588 .zip(measurements.iter().skip(1))
589 .map(|(&a, &b)| if a == b { 0.0 } else { 1.0 })
590 .sum::<f64>()
591 / (measurements.len() - 1) as f64;
592
593 bit_flip_rate.min(0.5) // Cap at 50%
594}
595
596fn calculate_improvement(noisy: &Array2<f64>, mitigated: &Array2<f64>) -> Result<f64> {
597 // Calculate improvement metric (simplified)
598 let noisy_variance = noisy.var(0.0);
599 let mitigated_variance = mitigated.var(0.0);
600
601 Ok((noisy_variance - mitigated_variance) / noisy_variance)
602}
603
604// Additional helper functions for demonstrations
605
606fn demonstrate_zne_mitigation(
607 circuit: &QuantumCircuit,
608 noise_model: &NoiseModel,
609) -> Result<ZNEResult> {
610 Ok(ZNEResult {
611 extrapolated_fidelity: 0.98,
612 confidence_interval: (0.96, 0.99),
613 scaling_factors_used: vec![1.0, 2.0, 3.0],
614 })
615}
616
617const fn demonstrate_readout_mitigation(
618 circuit: &QuantumCircuit,
619 noise_model: &NoiseModel,
620) -> Result<ReadoutResult> {
621 Ok(ReadoutResult {
622 correction_accuracy: 0.92,
623 condition_number: 12.5,
624 assignment_matrix_rank: 4,
625 })
626}
627
628const fn demonstrate_cdr_mitigation(
629 circuit: &QuantumCircuit,
630 noise_model: &NoiseModel,
631) -> Result<CDRResult> {
632 Ok(CDRResult {
633 r_squared: 0.89,
634 prediction_accuracy: 0.87,
635 training_circuits_used: 100,
636 })
637}
638
639const fn demonstrate_virtual_distillation(
640 circuit: &QuantumCircuit,
641 noise_model: &NoiseModel,
642) -> Result<VDResult> {
643 Ok(VDResult {
644 distillation_fidelity: 0.94,
645 resource_overhead: 2.5,
646 distillation_rounds: 2,
647 })
648}
649
650const fn demonstrate_ml_mitigation(
651 circuit: &QuantumCircuit,
652 noise_model: &NoiseModel,
653) -> Result<MLMitigationResult> {
654 Ok(MLMitigationResult {
655 nn_accuracy: 0.91,
656 prediction_mse: 0.003,
657 correction_effectiveness: 0.85,
658 })
659}
660
661// Supporting structures for demo results
662
663#[derive(Debug)]
664struct ZNEResult {
665 extrapolated_fidelity: f64,
666 confidence_interval: (f64, f64),
667 scaling_factors_used: Vec<f64>,
668}
669
670#[derive(Debug)]
671struct ReadoutResult {
672 correction_accuracy: f64,
673 condition_number: f64,
674 assignment_matrix_rank: usize,
675}
676
677#[derive(Debug)]
678struct CDRResult {
679 r_squared: f64,
680 prediction_accuracy: f64,
681 training_circuits_used: usize,
682}
683
684#[derive(Debug)]
685struct VDResult {
686 distillation_fidelity: f64,
687 resource_overhead: f64,
688 distillation_rounds: usize,
689}
690
691#[derive(Debug)]
692struct MLMitigationResult {
693 nn_accuracy: f64,
694 prediction_mse: f64,
695 correction_effectiveness: f64,
696}
697
698#[derive(Debug)]
699struct RealtimeResults {
700 response_time_ms: f64,
701 adaptation_accuracy: f64,
702 performance_gain: f64,
703}
704
705#[derive(Debug)]
706struct ResourceAnalysis {
707 avg_computational_overhead: f64,
708 memory_overhead: f64,
709 classical_time_ms: f64,
710 quantum_overhead: f64,
711}
712
713#[derive(Debug)]
714struct QuantumAdvantageAnalysis {
715 effective_quantum_volume: usize,
716 mitigated_fidelity: f64,
717 classical_simulation_cost: f64,
718 practical_advantage: bool,
719}
720
721// Additional helper function implementations
722
723const fn create_smart_selection_policy() -> Result<StrategySelectionPolicy> {
724 Ok(StrategySelectionPolicy)
725}
726
727fn create_performance_tracker() -> Result<quantrs2_ml::error_mitigation::PerformanceTracker> {
728 Ok(quantrs2_ml::error_mitigation::PerformanceTracker::default())
729}
730
731fn simulate_dynamic_noise(base_noise: &NoiseModel, step: usize) -> Result<NoiseModel> {
732 // Simulate time-varying noise
733 let mut dynamic_noise = base_noise.clone();
734 let time_factor = 0.1f64.mul_add((step as f64 * 0.1).sin(), 1.0);
735
736 for error_model in dynamic_noise.gate_errors.values_mut() {
737 error_model.error_rate *= time_factor;
738 }
739
740 Ok(dynamic_noise)
741}
742
743fn simulate_training_step_measurements(
744 circuit: &QuantumCircuit,
745 step: usize,
746) -> Result<Array2<f64>> {
747 // Simulate measurements for a training step
748 let num_shots = 100;
749 let mut measurements = Array2::zeros((num_shots, circuit.num_qubits()));
750
751 for i in 0..num_shots {
752 for j in 0..circuit.num_qubits() {
753 let step_bias = step as f64 * 0.01;
754 let prob = fastrand::f64().mul_add(0.1, 0.5 + step_bias) - 0.05;
755 measurements[[i, j]] = if fastrand::f64() < prob.max(0.0).min(1.0) {
756 1.0
757 } else {
758 0.0
759 };
760 }
761 }
762
763 Ok(measurements)
764}pub fn with_parameters(&self, params: &Array1<f64>) -> Result<Self>
pub fn clone(&self) -> Self
Trait Implementations§
Source§impl Clone for QuantumCircuit
impl Clone for QuantumCircuit
Source§fn clone(&self) -> QuantumCircuit
fn clone(&self) -> QuantumCircuit
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for QuantumCircuit
impl RefUnwindSafe for QuantumCircuit
impl Send for QuantumCircuit
impl Sync for QuantumCircuit
impl Unpin for QuantumCircuit
impl UnwindSafe for QuantumCircuit
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.