Module error_mitigation

Module error_mitigation 

Source
Expand description

Advanced Error Mitigation for Quantum Machine Learning

This module provides comprehensive error mitigation techniques specifically designed for quantum machine learning applications, including noise-aware training, error correction protocols, and adaptive mitigation strategies.

Structs§

AdaptiveConfig
Adaptive configuration for dynamic error mitigation
CDRModel
CalibrationData
Calibration data for error mitigation
ClassicalPostprocessor
ClassicalPreprocessor
CliffordCircuit
CoherenceTimeModel
Coherence time parameters
CorrectionNetwork
FeedbackMechanism
FidelityModel
GSTData
GateErrorModel
Gate error models
MeasurementErrorModel
Measurement error model
MitigatedInferenceData
MitigatedTrainingData
NoiseModel
Noise models for quantum devices
NoisePredictorModel
NoiseSpectrum
NoiseStatistics
PerformanceMetrics
PerformanceTracker
Performance tracker for mitigation strategies
ProcessMatrix
QuantumCircuit
QuantumErrorCorrector
QuantumGate
QuantumMLErrorMitigator
Advanced error mitigation framework for quantum ML
RBData
SpectroscopyData
StateMatrix
StrategySelectionPolicy
SymmetryGroup
TemporalCorrelationModel
Temporal correlation model for noise
TemporalFluctuation
TrainedCDRModel
TrainingDataSet
VerificationCircuit

Enums§

CircuitFoldingMethod
CorrelationFunction
EntanglementProtocol
ErrorType
Types of quantum errors
ExponentialForm
ExtrapolationMethod
FeatureExtractionMethod
MethodSelection
MitigationStrategy
Error mitigation strategies for quantum ML
ReadoutCorrectionMethod
ScalingFunction
SwitchingPolicy