quantrs2_ml/
error_mitigation.rs

1//! Advanced Error Mitigation for Quantum Machine Learning
2//!
3//! This module provides comprehensive error mitigation techniques specifically designed
4//! for quantum machine learning applications, including noise-aware training,
5//! error correction protocols, and adaptive mitigation strategies.
6
7use crate::error::Result;
8use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayD, Axis};
9use std::collections::HashMap;
10use std::sync::Arc;
11
12/// Advanced error mitigation framework for quantum ML
13pub struct QuantumMLErrorMitigator {
14    pub mitigation_strategy: MitigationStrategy,
15    pub noise_model: NoiseModel,
16    pub calibration_data: CalibrationData,
17    pub adaptive_config: AdaptiveConfig,
18    pub performance_metrics: PerformanceMetrics,
19}
20
21/// Performance tracker for mitigation strategies
22#[derive(Debug, Clone)]
23pub struct PerformanceTracker {
24    /// Performance metrics over time
25    pub metrics_history: Vec<PerformanceMetrics>,
26    /// Current performance
27    pub current_performance: PerformanceMetrics,
28}
29
30/// Error mitigation strategies for quantum ML
31#[derive(Debug, Clone)]
32pub enum MitigationStrategy {
33    /// Zero Noise Extrapolation
34    ZNE {
35        scale_factors: Vec<f64>,
36        extrapolation_method: ExtrapolationMethod,
37        circuit_folding: CircuitFoldingMethod,
38    },
39    /// Readout Error Mitigation
40    ReadoutErrorMitigation {
41        calibration_matrix: Array2<f64>,
42        correction_method: ReadoutCorrectionMethod,
43        regularization: f64,
44    },
45    /// Clifford Data Regression
46    CDR {
47        training_circuits: Vec<CliffordCircuit>,
48        regression_model: CDRModel,
49        feature_extraction: FeatureExtractionMethod,
50    },
51    /// Symmetry Verification
52    SymmetryVerification {
53        symmetry_groups: Vec<SymmetryGroup>,
54        verification_circuits: Vec<VerificationCircuit>,
55        post_selection: bool,
56    },
57    /// Virtual Distillation
58    VirtualDistillation {
59        distillation_rounds: usize,
60        entanglement_protocol: EntanglementProtocol,
61        purification_threshold: f64,
62    },
63    /// Machine Learning-based Mitigation
64    MLMitigation {
65        noise_predictor: NoisePredictorModel,
66        correction_network: CorrectionNetwork,
67        training_data: TrainingDataSet,
68    },
69    /// Hybrid Classical-Quantum Error Correction
70    HybridErrorCorrection {
71        classical_preprocessing: ClassicalPreprocessor,
72        quantum_correction: QuantumErrorCorrector,
73        post_processing: ClassicalPostprocessor,
74    },
75    /// Adaptive Multi-Strategy
76    AdaptiveMultiStrategy {
77        strategies: Vec<MitigationStrategy>,
78        selection_policy: StrategySelectionPolicy,
79        performance_tracker: PerformanceTracker,
80    },
81}
82
83/// Noise models for quantum devices
84#[derive(Debug, Clone)]
85pub struct NoiseModel {
86    pub gate_errors: HashMap<String, GateErrorModel>,
87    pub measurement_errors: MeasurementErrorModel,
88    pub coherence_times: CoherenceTimeModel,
89    pub crosstalk_matrix: Array2<f64>,
90    pub temporal_correlations: TemporalCorrelationModel,
91}
92
93/// Gate error models
94#[derive(Debug, Clone)]
95pub struct GateErrorModel {
96    pub error_rate: f64,
97    pub error_type: ErrorType,
98    pub coherence_limited: bool,
99    pub gate_time: f64,
100    pub fidelity_model: FidelityModel,
101}
102
103/// Types of quantum errors
104#[derive(Debug, Clone)]
105pub enum ErrorType {
106    Depolarizing {
107        strength: f64,
108    },
109    Amplitude {
110        damping_rate: f64,
111    },
112    Phase {
113        dephasing_rate: f64,
114    },
115    Pauli {
116        px: f64,
117        py: f64,
118        pz: f64,
119    },
120    Coherent {
121        rotation_angle: f64,
122        rotation_axis: Array1<f64>,
123    },
124    Correlated {
125        correlation_matrix: Array2<f64>,
126    },
127}
128
129/// Measurement error model
130#[derive(Debug, Clone)]
131pub struct MeasurementErrorModel {
132    pub readout_fidelity: f64,
133    pub assignment_matrix: Array2<f64>,
134    pub state_preparation_errors: Array1<f64>,
135    pub measurement_crosstalk: Array2<f64>,
136}
137
138/// Coherence time parameters
139#[derive(Debug, Clone)]
140pub struct CoherenceTimeModel {
141    pub t1_times: Array1<f64>,      // Relaxation times
142    pub t2_times: Array1<f64>,      // Dephasing times
143    pub t2_echo_times: Array1<f64>, // Echo dephasing times
144    pub temporal_fluctuations: TemporalFluctuation,
145}
146
147/// Temporal correlation model for noise
148#[derive(Debug, Clone)]
149pub struct TemporalCorrelationModel {
150    pub correlation_function: CorrelationFunction,
151    pub correlation_time: f64,
152    pub noise_spectrum: NoiseSpectrum,
153}
154
155/// Calibration data for error mitigation
156#[derive(Debug, Clone)]
157pub struct CalibrationData {
158    pub process_tomography: HashMap<String, ProcessMatrix>,
159    pub state_tomography: HashMap<String, StateMatrix>,
160    pub randomized_benchmarking: RBData,
161    pub gate_set_tomography: GSTData,
162    pub noise_spectroscopy: SpectroscopyData,
163}
164
165/// Adaptive configuration for dynamic error mitigation
166#[derive(Debug, Clone)]
167pub struct AdaptiveConfig {
168    pub adaptation_frequency: usize,
169    pub performance_threshold: f64,
170    pub strategy_switching_policy: SwitchingPolicy,
171    pub online_calibration: bool,
172    pub feedback_mechanism: FeedbackMechanism,
173}
174
175impl QuantumMLErrorMitigator {
176    /// Create a new error mitigation framework
177    pub fn new(mitigation_strategy: MitigationStrategy, noise_model: NoiseModel) -> Result<Self> {
178        let calibration_data = CalibrationData::default();
179        let adaptive_config = AdaptiveConfig::default();
180        let performance_metrics = PerformanceMetrics::new();
181
182        Ok(Self {
183            mitigation_strategy,
184            noise_model,
185            calibration_data,
186            adaptive_config,
187            performance_metrics,
188        })
189    }
190
191    /// Apply error mitigation to quantum ML training
192    pub fn mitigate_training_errors(
193        &mut self,
194        circuit: &QuantumCircuit,
195        parameters: &Array1<f64>,
196        measurement_results: &Array2<f64>,
197        gradient_estimates: &Array1<f64>,
198    ) -> Result<MitigatedTrainingData> {
199        // Update noise model based on current measurements
200        self.update_noise_model(measurement_results)?;
201
202        // Apply mitigation strategy
203        let mitigated_measurements =
204            self.apply_measurement_mitigation(circuit, measurement_results)?;
205
206        let mitigated_gradients =
207            self.apply_gradient_mitigation(circuit, parameters, gradient_estimates)?;
208
209        // Update performance metrics
210        self.performance_metrics
211            .update(&mitigated_measurements, &mitigated_gradients)?;
212
213        // Adaptive strategy adjustment
214        if self.should_adapt_strategy()? {
215            self.adapt_mitigation_strategy()?;
216        }
217
218        Ok(MitigatedTrainingData {
219            measurements: mitigated_measurements,
220            gradients: mitigated_gradients,
221            confidence_scores: self.compute_confidence_scores(circuit)?,
222            mitigation_overhead: self.performance_metrics.mitigation_overhead,
223        })
224    }
225
226    /// Apply error mitigation to quantum ML inference
227    pub fn mitigate_inference_errors(
228        &mut self,
229        circuit: &QuantumCircuit,
230        measurement_results: &Array2<f64>,
231    ) -> Result<MitigatedInferenceData> {
232        let mitigated_measurements =
233            self.apply_measurement_mitigation(circuit, measurement_results)?;
234
235        let uncertainty_estimates =
236            self.compute_uncertainty_estimates(circuit, &mitigated_measurements)?;
237
238        Ok(MitigatedInferenceData {
239            measurements: mitigated_measurements,
240            uncertainty: uncertainty_estimates,
241            reliability_score: self.compute_reliability_score(circuit)?,
242        })
243    }
244
245    /// Apply measurement error mitigation
246    fn apply_measurement_mitigation(
247        &self,
248        circuit: &QuantumCircuit,
249        measurements: &Array2<f64>,
250    ) -> Result<Array2<f64>> {
251        match &self.mitigation_strategy {
252            MitigationStrategy::ZNE {
253                scale_factors,
254                extrapolation_method,
255                ..
256            } => self.apply_zne_mitigation(
257                circuit,
258                measurements,
259                scale_factors,
260                extrapolation_method,
261            ),
262            MitigationStrategy::ReadoutErrorMitigation {
263                calibration_matrix,
264                correction_method,
265                ..
266            } => self.apply_readout_error_mitigation(
267                measurements,
268                calibration_matrix,
269                correction_method,
270            ),
271            MitigationStrategy::CDR {
272                training_circuits,
273                regression_model,
274                ..
275            } => self.apply_cdr_mitigation(
276                circuit,
277                measurements,
278                training_circuits,
279                regression_model,
280            ),
281            MitigationStrategy::SymmetryVerification {
282                symmetry_groups, ..
283            } => self.apply_symmetry_verification(circuit, measurements, symmetry_groups),
284            MitigationStrategy::VirtualDistillation {
285                distillation_rounds,
286                ..
287            } => self.apply_virtual_distillation(circuit, measurements, *distillation_rounds),
288            MitigationStrategy::MLMitigation {
289                noise_predictor,
290                correction_network,
291                ..
292            } => {
293                self.apply_ml_mitigation(circuit, measurements, noise_predictor, correction_network)
294            }
295            MitigationStrategy::HybridErrorCorrection {
296                classical_preprocessing,
297                quantum_correction,
298                post_processing,
299            } => self.apply_hybrid_error_correction(
300                circuit,
301                measurements,
302                classical_preprocessing,
303                quantum_correction,
304                post_processing,
305            ),
306            MitigationStrategy::AdaptiveMultiStrategy {
307                strategies,
308                selection_policy,
309                ..
310            } => self.apply_adaptive_multi_strategy(
311                circuit,
312                measurements,
313                strategies,
314                selection_policy,
315            ),
316        }
317    }
318
319    /// Apply Zero Noise Extrapolation
320    fn apply_zne_mitigation(
321        &self,
322        circuit: &QuantumCircuit,
323        measurements: &Array2<f64>,
324        scale_factors: &[f64],
325        extrapolation_method: &ExtrapolationMethod,
326    ) -> Result<Array2<f64>> {
327        let mut scaled_results = Vec::new();
328
329        for &scale_factor in scale_factors {
330            let scaled_circuit = self.scale_circuit_noise(circuit, scale_factor)?;
331            let scaled_measurements = self.execute_scaled_circuit(&scaled_circuit)?;
332            scaled_results.push((scale_factor, scaled_measurements));
333        }
334
335        // Extrapolate to zero noise
336        self.extrapolate_to_zero_noise(&scaled_results, extrapolation_method)
337    }
338
339    /// Apply readout error mitigation
340    fn apply_readout_error_mitigation(
341        &self,
342        measurements: &Array2<f64>,
343        calibration_matrix: &Array2<f64>,
344        correction_method: &ReadoutCorrectionMethod,
345    ) -> Result<Array2<f64>> {
346        match correction_method {
347            ReadoutCorrectionMethod::MatrixInversion => {
348                self.apply_matrix_inversion_correction(measurements, calibration_matrix)
349            }
350            ReadoutCorrectionMethod::ConstrainedLeastSquares => {
351                self.apply_constrained_least_squares_correction(measurements, calibration_matrix)
352            }
353            ReadoutCorrectionMethod::IterativeMaximumLikelihood => {
354                self.apply_ml_correction(measurements, calibration_matrix)
355            }
356        }
357    }
358
359    /// Apply Clifford Data Regression
360    fn apply_cdr_mitigation(
361        &self,
362        circuit: &QuantumCircuit,
363        measurements: &Array2<f64>,
364        training_circuits: &[CliffordCircuit],
365        regression_model: &CDRModel,
366    ) -> Result<Array2<f64>> {
367        // Extract features from the circuit
368        let circuit_features = self.extract_circuit_features(circuit)?;
369
370        // Generate training data from Clifford circuits
371        let training_features = self.generate_training_features(training_circuits)?;
372        let training_labels = self.execute_clifford_circuits(training_circuits)?;
373
374        // Train regression model
375        let trained_model = regression_model.train(&training_features, &training_labels)?;
376
377        // Predict error-free expectation values
378        let predicted_values = trained_model.predict(&circuit_features)?;
379
380        // Apply correction
381        self.apply_cdr_correction(measurements, &predicted_values)
382    }
383
384    /// Apply symmetry verification
385    fn apply_symmetry_verification(
386        &self,
387        circuit: &QuantumCircuit,
388        measurements: &Array2<f64>,
389        symmetry_groups: &[SymmetryGroup],
390    ) -> Result<Array2<f64>> {
391        let mut verified_measurements = measurements.clone();
392
393        for symmetry_group in symmetry_groups {
394            let symmetry_violations =
395                self.detect_symmetry_violations(circuit, &verified_measurements, symmetry_group)?;
396
397            verified_measurements = self.apply_symmetry_constraints(
398                &verified_measurements,
399                &symmetry_violations,
400                symmetry_group,
401            )?;
402        }
403
404        Ok(verified_measurements)
405    }
406
407    /// Apply virtual distillation
408    fn apply_virtual_distillation(
409        &self,
410        circuit: &QuantumCircuit,
411        measurements: &Array2<f64>,
412        distillation_rounds: usize,
413    ) -> Result<Array2<f64>> {
414        let mut distilled_measurements = measurements.clone();
415
416        for _ in 0..distillation_rounds {
417            // Create virtual copies with different random states
418            let virtual_copies = self.create_virtual_copies(circuit, 2)?;
419
420            // Measure entanglement between copies
421            let entanglement_measures = self.measure_virtual_entanglement(&virtual_copies)?;
422
423            // Apply distillation protocol
424            distilled_measurements =
425                self.apply_distillation_protocol(&distilled_measurements, &entanglement_measures)?;
426        }
427
428        Ok(distilled_measurements)
429    }
430
431    /// Apply ML-based error mitigation
432    fn apply_ml_mitigation(
433        &self,
434        circuit: &QuantumCircuit,
435        measurements: &Array2<f64>,
436        noise_predictor: &NoisePredictorModel,
437        correction_network: &CorrectionNetwork,
438    ) -> Result<Array2<f64>> {
439        // Predict noise characteristics
440        let circuit_features = self.extract_circuit_features(circuit)?;
441        let predicted_noise = noise_predictor.predict(&circuit_features)?;
442
443        // Apply neural network correction
444        let correction_input = self.prepare_correction_input(measurements, &predicted_noise)?;
445        let corrections = correction_network.forward(&correction_input)?;
446
447        // Apply corrections to measurements
448        Ok(measurements + &corrections)
449    }
450
451    /// Apply hybrid error correction
452    fn apply_hybrid_error_correction(
453        &self,
454        circuit: &QuantumCircuit,
455        measurements: &Array2<f64>,
456        classical_preprocessing: &ClassicalPreprocessor,
457        quantum_correction: &QuantumErrorCorrector,
458        post_processing: &ClassicalPostprocessor,
459    ) -> Result<Array2<f64>> {
460        // Classical preprocessing
461        let preprocessed_data = classical_preprocessing.process(measurements)?;
462
463        // Quantum error correction
464        let quantum_corrected = quantum_correction.correct(circuit, &preprocessed_data)?;
465
466        // Classical post-processing
467        post_processing.process(&quantum_corrected)
468    }
469
470    /// Apply adaptive multi-strategy mitigation
471    fn apply_adaptive_multi_strategy(
472        &self,
473        circuit: &QuantumCircuit,
474        measurements: &Array2<f64>,
475        strategies: &[MitigationStrategy],
476        selection_policy: &StrategySelectionPolicy,
477    ) -> Result<Array2<f64>> {
478        // Select best strategy based on current circuit and performance history
479        let selected_strategy =
480            selection_policy.select_strategy(circuit, &self.performance_metrics, strategies)?;
481
482        // Apply selected strategy
483        let mitigator = QuantumMLErrorMitigator {
484            mitigation_strategy: selected_strategy,
485            noise_model: self.noise_model.clone(),
486            calibration_data: self.calibration_data.clone(),
487            adaptive_config: self.adaptive_config.clone(),
488            performance_metrics: self.performance_metrics.clone(),
489        };
490
491        mitigator.apply_measurement_mitigation(circuit, measurements)
492    }
493
494    /// Apply gradient error mitigation
495    fn apply_gradient_mitigation(
496        &self,
497        circuit: &QuantumCircuit,
498        parameters: &Array1<f64>,
499        gradients: &Array1<f64>,
500    ) -> Result<Array1<f64>> {
501        // Parameter shift rule with error mitigation
502        let mut mitigated_gradients = Array1::zeros(gradients.len());
503
504        for (i, &param) in parameters.iter().enumerate() {
505            // Create shifted circuits
506            let mut params_plus = parameters.clone();
507            let mut params_minus = parameters.clone();
508            params_plus[i] = param + std::f64::consts::PI / 2.0;
509            params_minus[i] = param - std::f64::consts::PI / 2.0;
510
511            // Apply error mitigation to shifted measurements
512            let circuit_plus = circuit.with_parameters(&params_plus)?;
513            let circuit_minus = circuit.with_parameters(&params_minus)?;
514
515            let measurements_plus = self.measure_circuit(&circuit_plus)?;
516            let measurements_minus = self.measure_circuit(&circuit_minus)?;
517
518            let mitigated_plus =
519                self.apply_measurement_mitigation(&circuit_plus, &measurements_plus)?;
520            let mitigated_minus =
521                self.apply_measurement_mitigation(&circuit_minus, &measurements_minus)?;
522
523            // Compute mitigated gradient
524            mitigated_gradients[i] =
525                (mitigated_plus.mean().unwrap() - mitigated_minus.mean().unwrap()) / 2.0;
526        }
527
528        Ok(mitigated_gradients)
529    }
530
531    /// Update noise model based on current measurements
532    fn update_noise_model(&mut self, measurements: &Array2<f64>) -> Result<()> {
533        // Analyze measurement statistics to infer noise characteristics
534        let noise_statistics = self.analyze_noise_statistics(measurements)?;
535
536        // Update gate error models
537        for (gate_name, error_model) in &mut self.noise_model.gate_errors {
538            error_model.update_from_statistics(&noise_statistics)?;
539        }
540
541        // Update measurement error model
542        self.noise_model
543            .measurement_errors
544            .update_from_measurements(measurements)?;
545
546        Ok(())
547    }
548
549    /// Check if mitigation strategy should be adapted
550    fn should_adapt_strategy(&self) -> Result<bool> {
551        let current_performance = self.performance_metrics.current_performance();
552        let adaptation_threshold = self.adaptive_config.performance_threshold;
553
554        Ok(current_performance < adaptation_threshold)
555    }
556
557    /// Adapt mitigation strategy based on performance
558    fn adapt_mitigation_strategy(&mut self) -> Result<()> {
559        match &self.adaptive_config.strategy_switching_policy {
560            SwitchingPolicy::PerformanceBased => {
561                self.switch_to_best_performing_strategy()?;
562            }
563            SwitchingPolicy::ResourceOptimized => {
564                self.switch_to_resource_optimal_strategy()?;
565            }
566            SwitchingPolicy::HybridAdaptive => {
567                self.switch_to_hybrid_adaptive_strategy()?;
568            }
569        }
570
571        Ok(())
572    }
573
574    /// Compute confidence scores for mitigation results
575    fn compute_confidence_scores(&self, circuit: &QuantumCircuit) -> Result<Array1<f64>> {
576        let circuit_complexity = self.assess_circuit_complexity(circuit)?;
577        let noise_level = self.estimate_noise_level(circuit)?;
578        let mitigation_effectiveness = self.estimate_mitigation_effectiveness()?;
579
580        let base_confidence = 1.0 - (circuit_complexity * noise_level);
581        let adjusted_confidence = base_confidence * mitigation_effectiveness;
582
583        Ok(Array1::from_elem(circuit.num_qubits(), adjusted_confidence))
584    }
585
586    /// Compute uncertainty estimates
587    fn compute_uncertainty_estimates(
588        &self,
589        circuit: &QuantumCircuit,
590        measurements: &Array2<f64>,
591    ) -> Result<Array1<f64>> {
592        // Bootstrap sampling for uncertainty estimation
593        let num_bootstrap_samples = 1000;
594        let mut bootstrap_results = Vec::new();
595
596        for _ in 0..num_bootstrap_samples {
597            let bootstrap_measurements = self.bootstrap_sample(measurements)?;
598            let mitigated_bootstrap =
599                self.apply_measurement_mitigation(circuit, &bootstrap_measurements)?;
600            bootstrap_results.push(mitigated_bootstrap.mean().unwrap());
601        }
602
603        // Compute standard deviation as uncertainty
604        let mean_result = bootstrap_results.iter().sum::<f64>() / bootstrap_results.len() as f64;
605        let variance = bootstrap_results
606            .iter()
607            .map(|&x| (x - mean_result).powi(2))
608            .sum::<f64>()
609            / bootstrap_results.len() as f64;
610        let uncertainty = variance.sqrt();
611
612        Ok(Array1::from_elem(1, uncertainty))
613    }
614
615    /// Compute reliability score
616    fn compute_reliability_score(&self, circuit: &QuantumCircuit) -> Result<f64> {
617        let mitigation_fidelity = self.estimate_mitigation_fidelity(circuit)?;
618        let noise_resilience = self.assess_noise_resilience(circuit)?;
619        let calibration_quality = self.assess_calibration_quality()?;
620
621        Ok(mitigation_fidelity * noise_resilience * calibration_quality)
622    }
623
624    // Helper methods for implementation details...
625
626    fn scale_circuit_noise(
627        &self,
628        circuit: &QuantumCircuit,
629        scale_factor: f64,
630    ) -> Result<QuantumCircuit> {
631        // Implement noise scaling by circuit folding or gate repetition
632        // This is a placeholder implementation
633        Ok(circuit.clone())
634    }
635
636    fn execute_scaled_circuit(&self, circuit: &QuantumCircuit) -> Result<Array2<f64>> {
637        // Execute circuit with scaled noise and return measurements
638        // This is a placeholder implementation
639        Ok(Array2::zeros((100, circuit.num_qubits())))
640    }
641
642    fn extrapolate_to_zero_noise(
643        &self,
644        scaled_results: &[(f64, Array2<f64>)],
645        extrapolation_method: &ExtrapolationMethod,
646    ) -> Result<Array2<f64>> {
647        // Implement polynomial or exponential extrapolation
648        // This is a placeholder implementation
649        Ok(scaled_results[0].1.clone())
650    }
651
652    fn measure_circuit(&self, circuit: &QuantumCircuit) -> Result<Array2<f64>> {
653        // Execute circuit and return measurements
654        // This is a placeholder implementation
655        Ok(Array2::zeros((100, circuit.num_qubits())))
656    }
657
658    fn analyze_noise_statistics(&self, measurements: &Array2<f64>) -> Result<NoiseStatistics> {
659        // Analyze measurement data to extract noise characteristics
660        Ok(NoiseStatistics::default())
661    }
662
663    fn assess_circuit_complexity(&self, circuit: &QuantumCircuit) -> Result<f64> {
664        // Assess circuit complexity for confidence scoring
665        Ok(0.5) // Placeholder
666    }
667
668    fn estimate_noise_level(&self, circuit: &QuantumCircuit) -> Result<f64> {
669        // Estimate current noise level
670        Ok(0.1) // Placeholder
671    }
672
673    fn estimate_mitigation_effectiveness(&self) -> Result<f64> {
674        // Estimate how effective the current mitigation strategy is
675        Ok(0.8) // Placeholder
676    }
677
678    fn bootstrap_sample(&self, measurements: &Array2<f64>) -> Result<Array2<f64>> {
679        // Create bootstrap sample from measurements
680        Ok(measurements.clone()) // Placeholder
681    }
682
683    fn estimate_mitigation_fidelity(&self, circuit: &QuantumCircuit) -> Result<f64> {
684        // Estimate fidelity of mitigation process
685        Ok(0.9) // Placeholder
686    }
687
688    fn assess_noise_resilience(&self, circuit: &QuantumCircuit) -> Result<f64> {
689        // Assess how resilient the circuit is to noise
690        Ok(0.7) // Placeholder
691    }
692
693    fn assess_calibration_quality(&self) -> Result<f64> {
694        // Assess quality of calibration data
695        Ok(0.85) // Placeholder
696    }
697
698    // Additional helper methods would be implemented here...
699}
700
701// Supporting structures and implementations...
702
703#[derive(Debug, Clone)]
704pub struct MitigatedTrainingData {
705    pub measurements: Array2<f64>,
706    pub gradients: Array1<f64>,
707    pub confidence_scores: Array1<f64>,
708    pub mitigation_overhead: f64,
709}
710
711#[derive(Debug, Clone)]
712pub struct MitigatedInferenceData {
713    pub measurements: Array2<f64>,
714    pub uncertainty: Array1<f64>,
715    pub reliability_score: f64,
716}
717
718#[derive(Debug, Clone)]
719pub enum ExtrapolationMethod {
720    Polynomial { degree: usize },
721    Exponential { exponential_form: ExponentialForm },
722    Richardson { orders: Vec<usize> },
723    Adaptive { method_selection: MethodSelection },
724}
725
726#[derive(Debug, Clone)]
727pub enum ReadoutCorrectionMethod {
728    MatrixInversion,
729    ConstrainedLeastSquares,
730    IterativeMaximumLikelihood,
731}
732
733#[derive(Debug, Clone)]
734pub enum CircuitFoldingMethod {
735    GlobalFolding,
736    LocalFolding { gate_priorities: Vec<String> },
737    ParametricFolding { scaling_function: ScalingFunction },
738}
739
740// Additional supporting types and implementations...
741
742#[derive(Debug, Clone)]
743pub struct QuantumCircuit {
744    pub gates: Vec<QuantumGate>,
745    pub qubits: usize,
746}
747
748impl QuantumCircuit {
749    pub fn num_qubits(&self) -> usize {
750        self.qubits
751    }
752
753    pub fn with_parameters(&self, params: &Array1<f64>) -> Result<Self> {
754        // Create circuit with new parameters
755        Ok(self.clone())
756    }
757
758    pub fn clone(&self) -> Self {
759        Self {
760            gates: self.gates.clone(),
761            qubits: self.qubits,
762        }
763    }
764}
765
766#[derive(Debug, Clone)]
767pub struct QuantumGate {
768    pub name: String,
769    pub qubits: Vec<usize>,
770    pub parameters: Array1<f64>,
771}
772
773// Default implementations
774impl Default for CalibrationData {
775    fn default() -> Self {
776        Self {
777            process_tomography: HashMap::new(),
778            state_tomography: HashMap::new(),
779            randomized_benchmarking: RBData::default(),
780            gate_set_tomography: GSTData::default(),
781            noise_spectroscopy: SpectroscopyData::default(),
782        }
783    }
784}
785
786impl Default for AdaptiveConfig {
787    fn default() -> Self {
788        Self {
789            adaptation_frequency: 100,
790            performance_threshold: 0.8,
791            strategy_switching_policy: SwitchingPolicy::PerformanceBased,
792            online_calibration: true,
793            feedback_mechanism: FeedbackMechanism::default(),
794        }
795    }
796}
797
798impl Default for PerformanceTracker {
799    fn default() -> Self {
800        Self {
801            metrics_history: Vec::new(),
802            current_performance: PerformanceMetrics::new(),
803        }
804    }
805}
806
807// Additional placeholder structures for compilation
808#[derive(Debug, Clone, Default)]
809pub struct ProcessMatrix;
810
811#[derive(Debug, Clone, Default)]
812pub struct StateMatrix;
813
814#[derive(Debug, Clone, Default)]
815pub struct RBData;
816
817#[derive(Debug, Clone, Default)]
818pub struct GSTData;
819
820#[derive(Debug, Clone, Default)]
821pub struct SpectroscopyData;
822
823#[derive(Debug, Clone)]
824pub enum SwitchingPolicy {
825    PerformanceBased,
826    ResourceOptimized,
827    HybridAdaptive,
828}
829
830#[derive(Debug, Clone, Default)]
831pub struct FeedbackMechanism;
832
833#[derive(Debug, Clone, Default)]
834pub struct PerformanceMetrics {
835    pub mitigation_overhead: f64,
836}
837
838impl PerformanceMetrics {
839    pub fn new() -> Self {
840        Self {
841            mitigation_overhead: 0.1,
842        }
843    }
844
845    pub fn update(&mut self, _measurements: &Array2<f64>, _gradients: &Array1<f64>) -> Result<()> {
846        // Update performance metrics
847        Ok(())
848    }
849
850    pub fn current_performance(&self) -> f64 {
851        0.85 // Placeholder
852    }
853}
854
855// Additional placeholder types for full compilation
856#[derive(Debug, Clone)]
857pub struct CliffordCircuit;
858
859#[derive(Debug, Clone)]
860pub struct CDRModel;
861
862#[derive(Debug, Clone)]
863pub enum FeatureExtractionMethod {
864    CircuitDepth,
865    GateCount,
866    EntanglementStructure,
867}
868
869#[derive(Debug, Clone)]
870pub struct SymmetryGroup;
871
872#[derive(Debug, Clone)]
873pub struct VerificationCircuit;
874
875#[derive(Debug, Clone)]
876pub enum EntanglementProtocol {
877    Bell,
878    GHZ,
879    Cluster,
880}
881
882#[derive(Debug, Clone)]
883pub struct NoisePredictorModel;
884
885#[derive(Debug, Clone)]
886pub struct CorrectionNetwork;
887
888#[derive(Debug, Clone)]
889pub struct TrainingDataSet;
890
891#[derive(Debug, Clone)]
892pub struct ClassicalPreprocessor;
893
894#[derive(Debug, Clone)]
895pub struct QuantumErrorCorrector;
896
897#[derive(Debug, Clone)]
898pub struct ClassicalPostprocessor;
899
900#[derive(Debug, Clone)]
901pub struct StrategySelectionPolicy;
902
903#[derive(Debug, Clone)]
904pub enum ExponentialForm {
905    SingleExponential,
906    DoubleExponential,
907    Stretched,
908}
909
910#[derive(Debug, Clone)]
911pub enum MethodSelection {
912    CrossValidation,
913    BayesianOptimization,
914    AdaptiveGrid,
915}
916
917#[derive(Debug, Clone)]
918pub enum ScalingFunction {
919    Linear,
920    Polynomial,
921    Exponential,
922}
923
924#[derive(Debug, Clone)]
925pub struct FidelityModel;
926
927#[derive(Debug, Clone)]
928pub struct TemporalFluctuation;
929
930#[derive(Debug, Clone)]
931pub enum CorrelationFunction {
932    Exponential,
933    Gaussian,
934    PowerLaw,
935}
936
937#[derive(Debug, Clone)]
938pub struct NoiseSpectrum;
939
940#[derive(Debug, Clone, Default)]
941pub struct NoiseStatistics;
942
943// Additional implementation methods for supporting types
944impl GateErrorModel {
945    pub fn update_from_statistics(&mut self, _stats: &NoiseStatistics) -> Result<()> {
946        // Update gate error model from statistics
947        Ok(())
948    }
949}
950
951impl MeasurementErrorModel {
952    pub fn update_from_measurements(&mut self, _measurements: &Array2<f64>) -> Result<()> {
953        // Update measurement error model
954        Ok(())
955    }
956}
957
958impl QuantumMLErrorMitigator {
959    // Additional helper method implementations
960    fn apply_matrix_inversion_correction(
961        &self,
962        measurements: &Array2<f64>,
963        calibration_matrix: &Array2<f64>,
964    ) -> Result<Array2<f64>> {
965        // Implement matrix inversion correction
966        Ok(measurements.clone()) // Placeholder
967    }
968
969    fn apply_constrained_least_squares_correction(
970        &self,
971        measurements: &Array2<f64>,
972        calibration_matrix: &Array2<f64>,
973    ) -> Result<Array2<f64>> {
974        // Implement constrained least squares correction
975        Ok(measurements.clone()) // Placeholder
976    }
977
978    fn apply_ml_correction(
979        &self,
980        measurements: &Array2<f64>,
981        calibration_matrix: &Array2<f64>,
982    ) -> Result<Array2<f64>> {
983        // Implement maximum likelihood correction
984        Ok(measurements.clone()) // Placeholder
985    }
986
987    fn extract_circuit_features(&self, circuit: &QuantumCircuit) -> Result<Array1<f64>> {
988        // Extract features from quantum circuit
989        Ok(Array1::zeros(10)) // Placeholder
990    }
991
992    fn generate_training_features(&self, circuits: &[CliffordCircuit]) -> Result<Array2<f64>> {
993        // Generate training features from Clifford circuits
994        Ok(Array2::zeros((circuits.len(), 10))) // Placeholder
995    }
996
997    fn execute_clifford_circuits(&self, circuits: &[CliffordCircuit]) -> Result<Array1<f64>> {
998        // Execute Clifford circuits and return results
999        Ok(Array1::zeros(circuits.len())) // Placeholder
1000    }
1001
1002    fn apply_cdr_correction(
1003        &self,
1004        measurements: &Array2<f64>,
1005        predicted_values: &Array1<f64>,
1006    ) -> Result<Array2<f64>> {
1007        // Apply CDR correction
1008        Ok(measurements.clone()) // Placeholder
1009    }
1010
1011    fn detect_symmetry_violations(
1012        &self,
1013        circuit: &QuantumCircuit,
1014        measurements: &Array2<f64>,
1015        symmetry_group: &SymmetryGroup,
1016    ) -> Result<Array1<f64>> {
1017        // Detect symmetry violations
1018        Ok(Array1::zeros(measurements.nrows())) // Placeholder
1019    }
1020
1021    fn apply_symmetry_constraints(
1022        &self,
1023        measurements: &Array2<f64>,
1024        violations: &Array1<f64>,
1025        symmetry_group: &SymmetryGroup,
1026    ) -> Result<Array2<f64>> {
1027        // Apply symmetry constraints
1028        Ok(measurements.clone()) // Placeholder
1029    }
1030
1031    fn create_virtual_copies(
1032        &self,
1033        circuit: &QuantumCircuit,
1034        num_copies: usize,
1035    ) -> Result<Vec<QuantumCircuit>> {
1036        // Create virtual copies of circuit
1037        Ok(vec![circuit.clone(); num_copies]) // Placeholder
1038    }
1039
1040    fn measure_virtual_entanglement(&self, circuits: &[QuantumCircuit]) -> Result<Array1<f64>> {
1041        // Measure entanglement between virtual copies
1042        Ok(Array1::zeros(circuits.len())) // Placeholder
1043    }
1044
1045    fn apply_distillation_protocol(
1046        &self,
1047        measurements: &Array2<f64>,
1048        entanglement_measures: &Array1<f64>,
1049    ) -> Result<Array2<f64>> {
1050        // Apply virtual distillation protocol
1051        Ok(measurements.clone()) // Placeholder
1052    }
1053
1054    fn prepare_correction_input(
1055        &self,
1056        measurements: &Array2<f64>,
1057        predicted_noise: &Array1<f64>,
1058    ) -> Result<Array2<f64>> {
1059        // Prepare input for correction network
1060        Ok(measurements.clone()) // Placeholder
1061    }
1062
1063    fn switch_to_best_performing_strategy(&mut self) -> Result<()> {
1064        // Switch to best performing mitigation strategy
1065        Ok(())
1066    }
1067
1068    fn switch_to_resource_optimal_strategy(&mut self) -> Result<()> {
1069        // Switch to most resource efficient strategy
1070        Ok(())
1071    }
1072
1073    fn switch_to_hybrid_adaptive_strategy(&mut self) -> Result<()> {
1074        // Switch to hybrid adaptive strategy
1075        Ok(())
1076    }
1077}
1078
1079// Trait implementations for ML models
1080impl CDRModel {
1081    pub fn train(&self, features: &Array2<f64>, labels: &Array1<f64>) -> Result<TrainedCDRModel> {
1082        // Train CDR regression model
1083        Ok(TrainedCDRModel::default())
1084    }
1085}
1086
1087#[derive(Debug, Clone, Default)]
1088pub struct TrainedCDRModel;
1089
1090impl TrainedCDRModel {
1091    pub fn predict(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
1092        // Predict using trained CDR model
1093        Ok(Array1::zeros(features.len())) // Placeholder
1094    }
1095}
1096
1097impl NoisePredictorModel {
1098    pub fn predict(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
1099        // Predict noise characteristics
1100        Ok(Array1::zeros(features.len())) // Placeholder
1101    }
1102}
1103
1104impl CorrectionNetwork {
1105    pub fn forward(&self, input: &Array2<f64>) -> Result<Array2<f64>> {
1106        // Forward pass through correction network
1107        Ok(Array2::zeros(input.dim())) // Placeholder
1108    }
1109}
1110
1111impl ClassicalPreprocessor {
1112    pub fn process(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1113        // Classical preprocessing
1114        Ok(data.clone()) // Placeholder
1115    }
1116}
1117
1118impl QuantumErrorCorrector {
1119    pub fn correct(&self, circuit: &QuantumCircuit, data: &Array2<f64>) -> Result<Array2<f64>> {
1120        // Quantum error correction
1121        Ok(data.clone()) // Placeholder
1122    }
1123}
1124
1125impl ClassicalPostprocessor {
1126    pub fn process(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1127        // Classical post-processing
1128        Ok(data.clone()) // Placeholder
1129    }
1130}
1131
1132impl StrategySelectionPolicy {
1133    pub fn select_strategy(
1134        &self,
1135        circuit: &QuantumCircuit,
1136        metrics: &PerformanceMetrics,
1137        strategies: &[MitigationStrategy],
1138    ) -> Result<MitigationStrategy> {
1139        // Select best strategy based on policy
1140        Ok(strategies[0].clone()) // Placeholder
1141    }
1142}