Tensor

Struct Tensor 

Source
pub struct Tensor {
    pub data: Vec<Complex<f64>>,
    pub shape: Vec<usize>,
    pub indices: Vec<String>,
}
Expand description

Tensor representing a quantum gate or state

Fields§

§data: Vec<Complex<f64>>

Tensor data in row-major order

§shape: Vec<usize>

Shape of the tensor (dimensions)

§indices: Vec<String>

Labels for each index

Implementations§

Source§

impl Tensor

Source

pub fn new( data: Vec<Complex<f64>>, shape: Vec<usize>, indices: Vec<String>, ) -> Self

Create a new tensor

Examples found in repository?
examples/tensor_network_demo.rs (lines 43-47)
25fn demo_basic_tensor_network() -> quantrs2_core::error::QuantRS2Result<()> {
26    println!("--- Basic Tensor Network Construction ---");
27
28    // Create simple tensors
29    let identity = Tensor::identity(2, "in".to_string(), "out".to_string());
30    println!(
31        "Created identity tensor: rank={}, size={}",
32        identity.rank(),
33        identity.size()
34    );
35
36    // Create Hadamard tensor
37    let h_data = vec![
38        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
39        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
40        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
41        C64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
42    ];
43    let h_tensor = Tensor::new(
44        h_data,
45        vec![2, 2],
46        vec!["h_in".to_string(), "h_out".to_string()],
47    );
48
49    // Build tensor network
50    let mut tn = TensorNetwork::new();
51    let id_idx = tn.add_tensor(identity);
52    let h_idx = tn.add_tensor(h_tensor);
53
54    // Connect tensors
55    tn.add_bond(id_idx, "out".to_string(), h_idx, "h_in".to_string())?;
56
57    println!("Built tensor network with {} tensors and {} bonds", 2, 1);
58    println!();
59
60    Ok(())
61}
Source

pub fn identity(dim: usize, in_label: String, out_label: String) -> Self

Create an identity tensor

Examples found in repository?
examples/tensor_network_demo.rs (line 29)
25fn demo_basic_tensor_network() -> quantrs2_core::error::QuantRS2Result<()> {
26    println!("--- Basic Tensor Network Construction ---");
27
28    // Create simple tensors
29    let identity = Tensor::identity(2, "in".to_string(), "out".to_string());
30    println!(
31        "Created identity tensor: rank={}, size={}",
32        identity.rank(),
33        identity.size()
34    );
35
36    // Create Hadamard tensor
37    let h_data = vec![
38        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
39        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
40        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
41        C64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
42    ];
43    let h_tensor = Tensor::new(
44        h_data,
45        vec![2, 2],
46        vec!["h_in".to_string(), "h_out".to_string()],
47    );
48
49    // Build tensor network
50    let mut tn = TensorNetwork::new();
51    let id_idx = tn.add_tensor(identity);
52    let h_idx = tn.add_tensor(h_tensor);
53
54    // Connect tensors
55    tn.add_bond(id_idx, "out".to_string(), h_idx, "h_in".to_string())?;
56
57    println!("Built tensor network with {} tensors and {} bonds", 2, 1);
58    println!();
59
60    Ok(())
61}
Source

pub fn rank(&self) -> usize

Get the rank (number of indices)

Examples found in repository?
examples/tensor_network_demo.rs (line 32)
25fn demo_basic_tensor_network() -> quantrs2_core::error::QuantRS2Result<()> {
26    println!("--- Basic Tensor Network Construction ---");
27
28    // Create simple tensors
29    let identity = Tensor::identity(2, "in".to_string(), "out".to_string());
30    println!(
31        "Created identity tensor: rank={}, size={}",
32        identity.rank(),
33        identity.size()
34    );
35
36    // Create Hadamard tensor
37    let h_data = vec![
38        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
39        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
40        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
41        C64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
42    ];
43    let h_tensor = Tensor::new(
44        h_data,
45        vec![2, 2],
46        vec!["h_in".to_string(), "h_out".to_string()],
47    );
48
49    // Build tensor network
50    let mut tn = TensorNetwork::new();
51    let id_idx = tn.add_tensor(identity);
52    let h_idx = tn.add_tensor(h_tensor);
53
54    // Connect tensors
55    tn.add_bond(id_idx, "out".to_string(), h_idx, "h_in".to_string())?;
56
57    println!("Built tensor network with {} tensors and {} bonds", 2, 1);
58    println!();
59
60    Ok(())
61}
62
63fn demo_circuit_compression() -> quantrs2_core::error::QuantRS2Result<()> {
64    println!("--- Circuit Compression ---");
65
66    // Create a circuit with repetitive structure
67    let mut circuit = Circuit::<4>::new();
68
69    // Add many gates
70    for i in 0..3 {
71        circuit.add_gate(Hadamard { target: QubitId(i) })?;
72    }
73
74    for i in 0..3 {
75        circuit.add_gate(CNOT {
76            control: QubitId(i),
77            target: QubitId(i + 1),
78        })?;
79    }
80
81    for i in 0..4 {
82        circuit.add_gate(T { target: QubitId(i) })?;
83    }
84
85    for i in (1..4).rev() {
86        circuit.add_gate(CNOT {
87            control: QubitId(i - 1),
88            target: QubitId(i),
89        })?;
90    }
91
92    println!("Original circuit: {} gates", circuit.num_gates());
93
94    // Compress using tensor networks
95    let compressor = TensorNetworkCompressor::new(16); // max bond dimension
96    let compressed = compressor.compress(&circuit)?;
97
98    println!(
99        "Compression ratio: {:.2}%",
100        compressed.compression_ratio() * 100.0
101    );
102
103    // Check fidelity
104    let fidelity = compressed.fidelity(&circuit)?;
105    println!("Fidelity with original: {:.6}", fidelity);
106
107    println!();
108    Ok(())
109}
110
111fn demo_mps_representation() -> quantrs2_core::error::QuantRS2Result<()> {
112    println!("--- Matrix Product State Representation ---");
113
114    // Create a circuit that generates an interesting entangled state
115    let mut circuit = Circuit::<6>::new();
116
117    // Create W state: (|100000⟩ + |010000⟩ + |001000⟩ + |000100⟩ + |000010⟩ + |000001⟩)/√6
118    circuit.add_gate(Hadamard { target: QubitId(0) })?;
119    circuit.add_gate(RotationZ {
120        target: QubitId(0),
121        theta: std::f64::consts::PI / 3.0,
122    })?;
123
124    for i in 0..5 {
125        circuit.add_gate(CNOT {
126            control: QubitId(i),
127            target: QubitId(i + 1),
128        })?;
129    }
130
131    println!("Created circuit for W state preparation");
132
133    // Convert to MPS
134    let mps = MatrixProductState::from_circuit(&circuit)?;
135    println!("Converted to MPS representation");
136
137    // Compress with different bond dimensions
138    let bond_dims = vec![2, 4, 8, 16];
139
140    for &max_bond in &bond_dims {
141        let mut mps_copy = MatrixProductState::from_circuit(&circuit)?;
142        mps_copy.compress(max_bond, 1e-10)?;
143
144        // In a real implementation, would calculate actual compression metrics
145        println!("Max bond dimension {}: compression successful", max_bond);
146    }
147
148    println!();
149    Ok(())
150}
151
152fn demo_compression_methods() -> quantrs2_core::error::QuantRS2Result<()> {
153    println!("--- Different Compression Methods ---");
154
155    let mut circuit = Circuit::<5>::new();
156
157    // Build a deep circuit
158    for _ in 0..5 {
159        for i in 0..5 {
160            circuit.add_gate(Hadamard { target: QubitId(i) })?;
161        }
162        for i in 0..4 {
163            circuit.add_gate(CNOT {
164                control: QubitId(i),
165                target: QubitId(i + 1),
166            })?;
167        }
168    }
169
170    println!("Built deep circuit with {} gates", circuit.num_gates());
171
172    // Test different compression methods
173    let methods = vec![
174        CompressionMethod::SVD,
175        CompressionMethod::DMRG,
176        CompressionMethod::TEBD,
177    ];
178
179    for method in methods {
180        let compressor = TensorNetworkCompressor::new(32).with_method(method.clone());
181
182        let compressed = compressor.compress(&circuit)?;
183
184        println!("\n{:?} compression:", method);
185        println!(
186            "  Compression ratio: {:.2}%",
187            compressed.compression_ratio() * 100.0
188        );
189
190        // Try to decompress
191        let decompressed = compressed.decompress()?;
192        println!("  Decompressed to {} gates", decompressed.num_gates());
193    }
194
195    println!();
196    Ok(())
197}
198
199fn demo_tensor_contraction() -> quantrs2_core::error::QuantRS2Result<()> {
200    println!("--- Tensor Contraction Optimization ---");
201
202    // Create a circuit with specific structure
203    let mut circuit = Circuit::<4>::new();
204
205    // Layer 1: Single-qubit gates
206    for i in 0..4 {
207        circuit.add_gate(Hadamard { target: QubitId(i) })?;
208    }
209
210    // Layer 2: Entangling gates
211    circuit.add_gate(CNOT {
212        control: QubitId(0),
213        target: QubitId(1),
214    })?;
215    circuit.add_gate(CNOT {
216        control: QubitId(2),
217        target: QubitId(3),
218    })?;
219
220    // Layer 3: Cross entangling
221    circuit.add_gate(CNOT {
222        control: QubitId(1),
223        target: QubitId(2),
224    })?;
225
226    // Convert to tensor network
227    let converter = CircuitToTensorNetwork::<4>::new()
228        .with_max_bond_dim(8)
229        .with_tolerance(1e-12);
230
231    let tn = converter.convert(&circuit)?;
232
233    println!("Converted circuit to tensor network");
234    println!("Network has {} tensors", circuit.num_gates());
235
236    // Contract the network
237    let result = tn.contract_all()?;
238    println!("Contracted to single tensor of rank {}", result.rank());
239
240    println!();
241    Ok(())
242}
Source

pub fn size(&self) -> usize

Get the total number of elements

Examples found in repository?
examples/tensor_network_demo.rs (line 33)
25fn demo_basic_tensor_network() -> quantrs2_core::error::QuantRS2Result<()> {
26    println!("--- Basic Tensor Network Construction ---");
27
28    // Create simple tensors
29    let identity = Tensor::identity(2, "in".to_string(), "out".to_string());
30    println!(
31        "Created identity tensor: rank={}, size={}",
32        identity.rank(),
33        identity.size()
34    );
35
36    // Create Hadamard tensor
37    let h_data = vec![
38        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
39        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
40        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
41        C64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
42    ];
43    let h_tensor = Tensor::new(
44        h_data,
45        vec![2, 2],
46        vec!["h_in".to_string(), "h_out".to_string()],
47    );
48
49    // Build tensor network
50    let mut tn = TensorNetwork::new();
51    let id_idx = tn.add_tensor(identity);
52    let h_idx = tn.add_tensor(h_tensor);
53
54    // Connect tensors
55    tn.add_bond(id_idx, "out".to_string(), h_idx, "h_in".to_string())?;
56
57    println!("Built tensor network with {} tensors and {} bonds", 2, 1);
58    println!();
59
60    Ok(())
61}
Source

pub fn contract( &self, other: &Tensor, self_idx: &str, other_idx: &str, ) -> QuantRS2Result<Tensor>

Contract two tensors along specified indices

Source

pub fn reshape(&mut self, new_shape: Vec<usize>) -> QuantRS2Result<()>

Reshape the tensor

Trait Implementations§

Source§

impl Clone for Tensor

Source§

fn clone(&self) -> Tensor

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Tensor

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

§

impl Freeze for Tensor

§

impl RefUnwindSafe for Tensor

§

impl Send for Tensor

§

impl Sync for Tensor

§

impl Unpin for Tensor

§

impl UnwindSafe for Tensor

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,