quantrs2_circuit/
tensor_network.rs

1//! Tensor network compression for quantum circuits
2//!
3//! This module provides tensor network representations of quantum circuits
4//! for efficient simulation and optimization.
5
6use crate::builder::Circuit;
7use crate::dag::{circuit_to_dag, CircuitDag, DagNode};
8use nalgebra::{Complex, DMatrix};
9use quantrs2_core::{
10    error::{QuantRS2Error, QuantRS2Result},
11    gate::GateOp,
12    qubit::QubitId,
13};
14use std::collections::{HashMap, HashSet};
15use std::f64::consts::PI;
16
17/// Complex number type
18type C64 = Complex<f64>;
19
20/// Tensor representing a quantum gate or state
21#[derive(Debug, Clone)]
22pub struct Tensor {
23    /// Tensor data in row-major order
24    pub data: Vec<C64>,
25    /// Shape of the tensor (dimensions)
26    pub shape: Vec<usize>,
27    /// Labels for each index
28    pub indices: Vec<String>,
29}
30
31impl Tensor {
32    /// Create a new tensor
33    pub fn new(data: Vec<C64>, shape: Vec<usize>, indices: Vec<String>) -> Self {
34        assert_eq!(shape.len(), indices.len());
35        let total_size: usize = shape.iter().product();
36        assert_eq!(data.len(), total_size);
37
38        Self {
39            data,
40            shape,
41            indices,
42        }
43    }
44
45    /// Create an identity tensor
46    pub fn identity(dim: usize, in_label: String, out_label: String) -> Self {
47        let mut data = vec![C64::new(0.0, 0.0); dim * dim];
48        for i in 0..dim {
49            data[i * dim + i] = C64::new(1.0, 0.0);
50        }
51
52        Self::new(data, vec![dim, dim], vec![in_label, out_label])
53    }
54
55    /// Get the rank (number of indices)
56    pub fn rank(&self) -> usize {
57        self.shape.len()
58    }
59
60    /// Get the total number of elements
61    pub fn size(&self) -> usize {
62        self.data.len()
63    }
64
65    /// Contract two tensors along specified indices
66    pub fn contract(
67        &self,
68        other: &Tensor,
69        self_idx: &str,
70        other_idx: &str,
71    ) -> QuantRS2Result<Tensor> {
72        // Find index positions
73        let self_pos = self
74            .indices
75            .iter()
76            .position(|s| s == self_idx)
77            .ok_or_else(|| QuantRS2Error::InvalidInput(format!("Index {} not found", self_idx)))?;
78        let other_pos = other
79            .indices
80            .iter()
81            .position(|s| s == other_idx)
82            .ok_or_else(|| QuantRS2Error::InvalidInput(format!("Index {} not found", other_idx)))?;
83
84        // Check dimensions match
85        if self.shape[self_pos] != other.shape[other_pos] {
86            return Err(QuantRS2Error::InvalidInput(format!(
87                "Dimension mismatch: {} vs {}",
88                self.shape[self_pos], other.shape[other_pos]
89            )));
90        }
91
92        // Compute new shape and indices
93        let mut new_shape = Vec::new();
94        let mut new_indices = Vec::new();
95
96        for (i, (dim, idx)) in self.shape.iter().zip(&self.indices).enumerate() {
97            if i != self_pos {
98                new_shape.push(*dim);
99                new_indices.push(idx.clone());
100            }
101        }
102
103        for (i, (dim, idx)) in other.shape.iter().zip(&other.indices).enumerate() {
104            if i != other_pos {
105                new_shape.push(*dim);
106                new_indices.push(idx.clone());
107            }
108        }
109
110        // Perform contraction (simplified implementation)
111        let new_size: usize = new_shape.iter().product();
112        let mut new_data = vec![C64::new(0.0, 0.0); new_size];
113
114        // This is a simplified contraction - in practice, would use optimized tensor libraries
115        let contract_dim = self.shape[self_pos];
116
117        // For now, return a placeholder
118        Ok(Tensor::new(new_data, new_shape, new_indices))
119    }
120
121    /// Reshape the tensor
122    pub fn reshape(&mut self, new_shape: Vec<usize>) -> QuantRS2Result<()> {
123        let new_size: usize = new_shape.iter().product();
124        if new_size != self.size() {
125            return Err(QuantRS2Error::InvalidInput(format!(
126                "Cannot reshape {} elements to shape {:?}",
127                self.size(),
128                new_shape
129            )));
130        }
131
132        self.shape = new_shape;
133        Ok(())
134    }
135}
136
137/// Tensor network representation of a quantum circuit
138#[derive(Debug)]
139pub struct TensorNetwork {
140    /// Tensors in the network
141    tensors: Vec<Tensor>,
142    /// Connections between tensors (tensor_idx1, idx1, tensor_idx2, idx2)
143    bonds: Vec<(usize, String, usize, String)>,
144    /// Open indices (external legs)
145    open_indices: HashMap<String, (usize, usize)>, // index -> (tensor_idx, position)
146}
147
148impl TensorNetwork {
149    /// Create a new empty tensor network
150    pub fn new() -> Self {
151        Self {
152            tensors: Vec::new(),
153            bonds: Vec::new(),
154            open_indices: HashMap::new(),
155        }
156    }
157
158    /// Add a tensor to the network
159    pub fn add_tensor(&mut self, tensor: Tensor) -> usize {
160        let idx = self.tensors.len();
161
162        // Track open indices
163        for (pos, index) in tensor.indices.iter().enumerate() {
164            self.open_indices.insert(index.clone(), (idx, pos));
165        }
166
167        self.tensors.push(tensor);
168        idx
169    }
170
171    /// Connect two tensor indices
172    pub fn add_bond(
173        &mut self,
174        t1: usize,
175        idx1: String,
176        t2: usize,
177        idx2: String,
178    ) -> QuantRS2Result<()> {
179        if t1 >= self.tensors.len() || t2 >= self.tensors.len() {
180            return Err(QuantRS2Error::InvalidInput(
181                "Tensor index out of range".to_string(),
182            ));
183        }
184
185        // Remove from open indices
186        self.open_indices.remove(&idx1);
187        self.open_indices.remove(&idx2);
188
189        self.bonds.push((t1, idx1, t2, idx2));
190        Ok(())
191    }
192
193    /// Contract the entire network to a single tensor
194    pub fn contract_all(&self) -> QuantRS2Result<Tensor> {
195        if self.tensors.is_empty() {
196            return Err(QuantRS2Error::InvalidInput(
197                "Empty tensor network".to_string(),
198            ));
199        }
200
201        // Simple contraction order: left to right
202        // In practice, would use optimal contraction ordering
203        let mut result = self.tensors[0].clone();
204
205        for bond in &self.bonds {
206            let (t1, idx1, t2, idx2) = bond;
207            if *t1 == 0 {
208                result = result.contract(&self.tensors[*t2], idx1, idx2)?;
209            }
210        }
211
212        Ok(result)
213    }
214
215    /// Apply SVD-based compression
216    pub fn compress(&mut self, max_bond_dim: usize, tolerance: f64) -> QuantRS2Result<()> {
217        // Placeholder for SVD-based compression
218        // Would implement MPS/MPO compression techniques
219        Ok(())
220    }
221}
222
223/// Convert a quantum circuit to tensor network representation
224pub struct CircuitToTensorNetwork<const N: usize> {
225    /// Maximum bond dimension for compression
226    max_bond_dim: Option<usize>,
227    /// Truncation tolerance
228    tolerance: f64,
229}
230
231impl<const N: usize> CircuitToTensorNetwork<N> {
232    /// Create a new converter
233    pub fn new() -> Self {
234        Self {
235            max_bond_dim: None,
236            tolerance: 1e-10,
237        }
238    }
239
240    /// Set maximum bond dimension
241    pub fn with_max_bond_dim(mut self, dim: usize) -> Self {
242        self.max_bond_dim = Some(dim);
243        self
244    }
245
246    /// Set truncation tolerance
247    pub fn with_tolerance(mut self, tol: f64) -> Self {
248        self.tolerance = tol;
249        self
250    }
251
252    /// Convert circuit to tensor network
253    pub fn convert(&self, circuit: &Circuit<N>) -> QuantRS2Result<TensorNetwork> {
254        let mut tn = TensorNetwork::new();
255        let mut qubit_wires: HashMap<usize, String> = HashMap::new();
256
257        // Initialize qubit wires
258        for i in 0..N {
259            qubit_wires.insert(i, format!("q{}_in", i));
260        }
261
262        // Convert each gate to a tensor
263        for (gate_idx, gate) in circuit.gates().iter().enumerate() {
264            let tensor = self.gate_to_tensor(gate.as_ref(), gate_idx)?;
265            let tensor_idx = tn.add_tensor(tensor);
266
267            // Connect to previous wires
268            for qubit in gate.qubits() {
269                let q = qubit.id() as usize;
270                let prev_wire = qubit_wires.get(&q).unwrap().clone();
271                let new_wire = format!("q{}_g{}", q, gate_idx);
272
273                // Add bond from previous wire to this gate
274                if gate_idx > 0 || prev_wire.contains("_g") {
275                    tn.add_bond(
276                        tensor_idx - 1,
277                        prev_wire.clone(),
278                        tensor_idx,
279                        format!("in_{}", q),
280                    )?;
281                }
282
283                // Update wire for next connection
284                qubit_wires.insert(q, new_wire);
285            }
286        }
287
288        Ok(tn)
289    }
290
291    /// Convert a gate to tensor representation
292    fn gate_to_tensor(&self, gate: &dyn GateOp, gate_idx: usize) -> QuantRS2Result<Tensor> {
293        let qubits = gate.qubits();
294        let n_qubits = qubits.len();
295
296        match n_qubits {
297            1 => {
298                // Single-qubit gate
299                let matrix = self.get_single_qubit_matrix(gate)?;
300                let q = qubits[0].id() as usize;
301
302                Ok(Tensor::new(
303                    matrix.iter().cloned().collect(),
304                    vec![2, 2],
305                    vec![format!("in_{}", q), format!("out_{}", q)],
306                ))
307            }
308            2 => {
309                // Two-qubit gate
310                let matrix = self.get_two_qubit_matrix(gate)?;
311                let q0 = qubits[0].id() as usize;
312                let q1 = qubits[1].id() as usize;
313
314                Ok(Tensor::new(
315                    matrix,
316                    vec![2, 2, 2, 2],
317                    vec![
318                        format!("in_{}", q0),
319                        format!("in_{}", q1),
320                        format!("out_{}", q0),
321                        format!("out_{}", q1),
322                    ],
323                ))
324            }
325            _ => Err(QuantRS2Error::UnsupportedOperation(format!(
326                "{}-qubit gates not yet supported for tensor networks",
327                n_qubits
328            ))),
329        }
330    }
331
332    /// Get matrix representation of single-qubit gate
333    fn get_single_qubit_matrix(&self, gate: &dyn GateOp) -> QuantRS2Result<Vec<C64>> {
334        // Simplified - would use actual gate matrices
335        match gate.name() {
336            "H" => Ok(vec![
337                C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
338                C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
339                C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
340                C64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
341            ]),
342            "X" => Ok(vec![
343                C64::new(0.0, 0.0),
344                C64::new(1.0, 0.0),
345                C64::new(1.0, 0.0),
346                C64::new(0.0, 0.0),
347            ]),
348            "Y" => Ok(vec![
349                C64::new(0.0, 0.0),
350                C64::new(0.0, -1.0),
351                C64::new(0.0, 1.0),
352                C64::new(0.0, 0.0),
353            ]),
354            "Z" => Ok(vec![
355                C64::new(1.0, 0.0),
356                C64::new(0.0, 0.0),
357                C64::new(0.0, 0.0),
358                C64::new(-1.0, 0.0),
359            ]),
360            _ => Ok(vec![
361                C64::new(1.0, 0.0),
362                C64::new(0.0, 0.0),
363                C64::new(0.0, 0.0),
364                C64::new(1.0, 0.0),
365            ]),
366        }
367    }
368
369    /// Get matrix representation of two-qubit gate
370    fn get_two_qubit_matrix(&self, gate: &dyn GateOp) -> QuantRS2Result<Vec<C64>> {
371        // Simplified - would use actual gate matrices
372        match gate.name() {
373            "CNOT" => {
374                let mut matrix = vec![C64::new(0.0, 0.0); 16];
375                matrix[0] = C64::new(1.0, 0.0); // |00⟩ -> |00⟩
376                matrix[5] = C64::new(1.0, 0.0); // |01⟩ -> |01⟩
377                matrix[15] = C64::new(1.0, 0.0); // |10⟩ -> |11⟩
378                matrix[10] = C64::new(1.0, 0.0); // |11⟩ -> |10⟩
379                Ok(matrix)
380            }
381            _ => {
382                // Identity for unsupported gates
383                let mut matrix = vec![C64::new(0.0, 0.0); 16];
384                for i in 0..16 {
385                    matrix[i * 16 + i] = C64::new(1.0, 0.0);
386                }
387                Ok(matrix)
388            }
389        }
390    }
391}
392
393/// Matrix Product State representation of a circuit
394#[derive(Debug)]
395pub struct MatrixProductState {
396    /// Site tensors
397    tensors: Vec<Tensor>,
398    /// Bond dimensions
399    bond_dims: Vec<usize>,
400    /// Number of qubits
401    n_qubits: usize,
402}
403
404impl MatrixProductState {
405    /// Create MPS from circuit
406    pub fn from_circuit<const N: usize>(circuit: &Circuit<N>) -> QuantRS2Result<Self> {
407        let converter = CircuitToTensorNetwork::<N>::new();
408        let tn = converter.convert(circuit)?;
409
410        // Convert tensor network to MPS form
411        // This is a placeholder - would implement actual MPS conversion
412        Ok(Self {
413            tensors: Vec::new(),
414            bond_dims: Vec::new(),
415            n_qubits: N,
416        })
417    }
418
419    /// Compress the MPS
420    pub fn compress(&mut self, max_bond_dim: usize, tolerance: f64) -> QuantRS2Result<()> {
421        // Implement SVD-based compression
422        // Sweep through the MPS and truncate bonds
423        Ok(())
424    }
425
426    /// Calculate overlap with another MPS
427    pub fn overlap(&self, other: &MatrixProductState) -> QuantRS2Result<C64> {
428        if self.n_qubits != other.n_qubits {
429            return Err(QuantRS2Error::InvalidInput(
430                "MPS have different number of qubits".to_string(),
431            ));
432        }
433
434        // Calculate ⟨ψ|φ⟩
435        Ok(C64::new(1.0, 0.0)) // Placeholder
436    }
437
438    /// Calculate expectation value of observable
439    pub fn expectation_value(&self, observable: &TensorNetwork) -> QuantRS2Result<f64> {
440        // Calculate ⟨ψ|O|ψ⟩
441        Ok(0.0) // Placeholder
442    }
443}
444
445/// Circuit compression using tensor networks
446pub struct TensorNetworkCompressor {
447    /// Maximum bond dimension
448    max_bond_dim: usize,
449    /// Truncation tolerance
450    tolerance: f64,
451    /// Compression method
452    method: CompressionMethod,
453}
454
455#[derive(Debug, Clone)]
456pub enum CompressionMethod {
457    /// Singular Value Decomposition
458    SVD,
459    /// Density Matrix Renormalization Group
460    DMRG,
461    /// Time-Evolving Block Decimation
462    TEBD,
463}
464
465impl TensorNetworkCompressor {
466    /// Create a new compressor
467    pub fn new(max_bond_dim: usize) -> Self {
468        Self {
469            max_bond_dim,
470            tolerance: 1e-10,
471            method: CompressionMethod::SVD,
472        }
473    }
474
475    /// Set compression method
476    pub fn with_method(mut self, method: CompressionMethod) -> Self {
477        self.method = method;
478        self
479    }
480
481    /// Compress a circuit
482    pub fn compress<const N: usize>(
483        &self,
484        circuit: &Circuit<N>,
485    ) -> QuantRS2Result<CompressedCircuit<N>> {
486        let mps = MatrixProductState::from_circuit(circuit)?;
487
488        Ok(CompressedCircuit {
489            mps,
490            original_gates: circuit.num_gates(),
491            compression_ratio: 1.0, // Placeholder
492        })
493    }
494}
495
496/// Compressed circuit representation
497#[derive(Debug)]
498pub struct CompressedCircuit<const N: usize> {
499    /// MPS representation
500    mps: MatrixProductState,
501    /// Original number of gates
502    original_gates: usize,
503    /// Compression ratio
504    compression_ratio: f64,
505}
506
507impl<const N: usize> CompressedCircuit<N> {
508    /// Get compression ratio
509    pub fn compression_ratio(&self) -> f64 {
510        self.compression_ratio
511    }
512
513    /// Decompress back to circuit
514    pub fn decompress(&self) -> QuantRS2Result<Circuit<N>> {
515        // Convert MPS back to circuit representation
516        // This is non-trivial and would require gate synthesis
517        Ok(Circuit::<N>::new())
518    }
519
520    /// Get fidelity with original circuit
521    pub fn fidelity(&self, original: &Circuit<N>) -> QuantRS2Result<f64> {
522        // Calculate |⟨ψ_compressed|ψ_original⟩|²
523        Ok(0.99) // Placeholder
524    }
525}
526
527#[cfg(test)]
528mod tests {
529    use super::*;
530    use quantrs2_core::gate::single::Hadamard;
531
532    #[test]
533    fn test_tensor_creation() {
534        let data = vec![
535            C64::new(1.0, 0.0),
536            C64::new(0.0, 0.0),
537            C64::new(0.0, 0.0),
538            C64::new(1.0, 0.0),
539        ];
540        let tensor = Tensor::new(data, vec![2, 2], vec!["in".to_string(), "out".to_string()]);
541
542        assert_eq!(tensor.rank(), 2);
543        assert_eq!(tensor.size(), 4);
544    }
545
546    #[test]
547    fn test_tensor_network() {
548        let mut tn = TensorNetwork::new();
549
550        let t1 = Tensor::identity(2, "a".to_string(), "b".to_string());
551        let t2 = Tensor::identity(2, "c".to_string(), "d".to_string());
552
553        let idx1 = tn.add_tensor(t1);
554        let idx2 = tn.add_tensor(t2);
555
556        tn.add_bond(idx1, "b".to_string(), idx2, "c".to_string())
557            .unwrap();
558
559        assert_eq!(tn.tensors.len(), 2);
560        assert_eq!(tn.bonds.len(), 1);
561    }
562
563    #[test]
564    fn test_circuit_to_tensor_network() {
565        let mut circuit = Circuit::<2>::new();
566        circuit.add_gate(Hadamard { target: QubitId(0) }).unwrap();
567
568        let converter = CircuitToTensorNetwork::<2>::new();
569        let tn = converter.convert(&circuit).unwrap();
570
571        assert!(tn.tensors.len() > 0);
572    }
573
574    #[test]
575    fn test_compression() {
576        let circuit = Circuit::<2>::new();
577        let compressor = TensorNetworkCompressor::new(32);
578
579        let compressed = compressor.compress(&circuit).unwrap();
580        assert!(compressed.compression_ratio() <= 1.0);
581    }
582}