1use crate::builder::Circuit;
7use crate::dag::{circuit_to_dag, CircuitDag, DagNode};
8use nalgebra::{Complex, DMatrix};
9use quantrs2_core::{
10 error::{QuantRS2Error, QuantRS2Result},
11 gate::GateOp,
12 qubit::QubitId,
13};
14use std::collections::{HashMap, HashSet};
15use std::f64::consts::PI;
16
17type C64 = Complex<f64>;
19
20#[derive(Debug, Clone)]
22pub struct Tensor {
23 pub data: Vec<C64>,
25 pub shape: Vec<usize>,
27 pub indices: Vec<String>,
29}
30
31impl Tensor {
32 pub fn new(data: Vec<C64>, shape: Vec<usize>, indices: Vec<String>) -> Self {
34 assert_eq!(shape.len(), indices.len());
35 let total_size: usize = shape.iter().product();
36 assert_eq!(data.len(), total_size);
37
38 Self {
39 data,
40 shape,
41 indices,
42 }
43 }
44
45 pub fn identity(dim: usize, in_label: String, out_label: String) -> Self {
47 let mut data = vec![C64::new(0.0, 0.0); dim * dim];
48 for i in 0..dim {
49 data[i * dim + i] = C64::new(1.0, 0.0);
50 }
51
52 Self::new(data, vec![dim, dim], vec![in_label, out_label])
53 }
54
55 pub fn rank(&self) -> usize {
57 self.shape.len()
58 }
59
60 pub fn size(&self) -> usize {
62 self.data.len()
63 }
64
65 pub fn contract(
67 &self,
68 other: &Tensor,
69 self_idx: &str,
70 other_idx: &str,
71 ) -> QuantRS2Result<Tensor> {
72 let self_pos = self
74 .indices
75 .iter()
76 .position(|s| s == self_idx)
77 .ok_or_else(|| QuantRS2Error::InvalidInput(format!("Index {} not found", self_idx)))?;
78 let other_pos = other
79 .indices
80 .iter()
81 .position(|s| s == other_idx)
82 .ok_or_else(|| QuantRS2Error::InvalidInput(format!("Index {} not found", other_idx)))?;
83
84 if self.shape[self_pos] != other.shape[other_pos] {
86 return Err(QuantRS2Error::InvalidInput(format!(
87 "Dimension mismatch: {} vs {}",
88 self.shape[self_pos], other.shape[other_pos]
89 )));
90 }
91
92 let mut new_shape = Vec::new();
94 let mut new_indices = Vec::new();
95
96 for (i, (dim, idx)) in self.shape.iter().zip(&self.indices).enumerate() {
97 if i != self_pos {
98 new_shape.push(*dim);
99 new_indices.push(idx.clone());
100 }
101 }
102
103 for (i, (dim, idx)) in other.shape.iter().zip(&other.indices).enumerate() {
104 if i != other_pos {
105 new_shape.push(*dim);
106 new_indices.push(idx.clone());
107 }
108 }
109
110 let new_size: usize = new_shape.iter().product();
112 let mut new_data = vec![C64::new(0.0, 0.0); new_size];
113
114 let contract_dim = self.shape[self_pos];
116
117 Ok(Tensor::new(new_data, new_shape, new_indices))
119 }
120
121 pub fn reshape(&mut self, new_shape: Vec<usize>) -> QuantRS2Result<()> {
123 let new_size: usize = new_shape.iter().product();
124 if new_size != self.size() {
125 return Err(QuantRS2Error::InvalidInput(format!(
126 "Cannot reshape {} elements to shape {:?}",
127 self.size(),
128 new_shape
129 )));
130 }
131
132 self.shape = new_shape;
133 Ok(())
134 }
135}
136
137#[derive(Debug)]
139pub struct TensorNetwork {
140 tensors: Vec<Tensor>,
142 bonds: Vec<(usize, String, usize, String)>,
144 open_indices: HashMap<String, (usize, usize)>, }
147
148impl TensorNetwork {
149 pub fn new() -> Self {
151 Self {
152 tensors: Vec::new(),
153 bonds: Vec::new(),
154 open_indices: HashMap::new(),
155 }
156 }
157
158 pub fn add_tensor(&mut self, tensor: Tensor) -> usize {
160 let idx = self.tensors.len();
161
162 for (pos, index) in tensor.indices.iter().enumerate() {
164 self.open_indices.insert(index.clone(), (idx, pos));
165 }
166
167 self.tensors.push(tensor);
168 idx
169 }
170
171 pub fn add_bond(
173 &mut self,
174 t1: usize,
175 idx1: String,
176 t2: usize,
177 idx2: String,
178 ) -> QuantRS2Result<()> {
179 if t1 >= self.tensors.len() || t2 >= self.tensors.len() {
180 return Err(QuantRS2Error::InvalidInput(
181 "Tensor index out of range".to_string(),
182 ));
183 }
184
185 self.open_indices.remove(&idx1);
187 self.open_indices.remove(&idx2);
188
189 self.bonds.push((t1, idx1, t2, idx2));
190 Ok(())
191 }
192
193 pub fn contract_all(&self) -> QuantRS2Result<Tensor> {
195 if self.tensors.is_empty() {
196 return Err(QuantRS2Error::InvalidInput(
197 "Empty tensor network".to_string(),
198 ));
199 }
200
201 let mut result = self.tensors[0].clone();
204
205 for bond in &self.bonds {
206 let (t1, idx1, t2, idx2) = bond;
207 if *t1 == 0 {
208 result = result.contract(&self.tensors[*t2], idx1, idx2)?;
209 }
210 }
211
212 Ok(result)
213 }
214
215 pub fn compress(&mut self, max_bond_dim: usize, tolerance: f64) -> QuantRS2Result<()> {
217 Ok(())
220 }
221}
222
223pub struct CircuitToTensorNetwork<const N: usize> {
225 max_bond_dim: Option<usize>,
227 tolerance: f64,
229}
230
231impl<const N: usize> CircuitToTensorNetwork<N> {
232 pub fn new() -> Self {
234 Self {
235 max_bond_dim: None,
236 tolerance: 1e-10,
237 }
238 }
239
240 pub fn with_max_bond_dim(mut self, dim: usize) -> Self {
242 self.max_bond_dim = Some(dim);
243 self
244 }
245
246 pub fn with_tolerance(mut self, tol: f64) -> Self {
248 self.tolerance = tol;
249 self
250 }
251
252 pub fn convert(&self, circuit: &Circuit<N>) -> QuantRS2Result<TensorNetwork> {
254 let mut tn = TensorNetwork::new();
255 let mut qubit_wires: HashMap<usize, String> = HashMap::new();
256
257 for i in 0..N {
259 qubit_wires.insert(i, format!("q{}_in", i));
260 }
261
262 for (gate_idx, gate) in circuit.gates().iter().enumerate() {
264 let tensor = self.gate_to_tensor(gate.as_ref(), gate_idx)?;
265 let tensor_idx = tn.add_tensor(tensor);
266
267 for qubit in gate.qubits() {
269 let q = qubit.id() as usize;
270 let prev_wire = qubit_wires.get(&q).unwrap().clone();
271 let new_wire = format!("q{}_g{}", q, gate_idx);
272
273 if gate_idx > 0 || prev_wire.contains("_g") {
275 tn.add_bond(
276 tensor_idx - 1,
277 prev_wire.clone(),
278 tensor_idx,
279 format!("in_{}", q),
280 )?;
281 }
282
283 qubit_wires.insert(q, new_wire);
285 }
286 }
287
288 Ok(tn)
289 }
290
291 fn gate_to_tensor(&self, gate: &dyn GateOp, gate_idx: usize) -> QuantRS2Result<Tensor> {
293 let qubits = gate.qubits();
294 let n_qubits = qubits.len();
295
296 match n_qubits {
297 1 => {
298 let matrix = self.get_single_qubit_matrix(gate)?;
300 let q = qubits[0].id() as usize;
301
302 Ok(Tensor::new(
303 matrix.iter().cloned().collect(),
304 vec![2, 2],
305 vec![format!("in_{}", q), format!("out_{}", q)],
306 ))
307 }
308 2 => {
309 let matrix = self.get_two_qubit_matrix(gate)?;
311 let q0 = qubits[0].id() as usize;
312 let q1 = qubits[1].id() as usize;
313
314 Ok(Tensor::new(
315 matrix,
316 vec![2, 2, 2, 2],
317 vec![
318 format!("in_{}", q0),
319 format!("in_{}", q1),
320 format!("out_{}", q0),
321 format!("out_{}", q1),
322 ],
323 ))
324 }
325 _ => Err(QuantRS2Error::UnsupportedOperation(format!(
326 "{}-qubit gates not yet supported for tensor networks",
327 n_qubits
328 ))),
329 }
330 }
331
332 fn get_single_qubit_matrix(&self, gate: &dyn GateOp) -> QuantRS2Result<Vec<C64>> {
334 match gate.name() {
336 "H" => Ok(vec![
337 C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
338 C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
339 C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
340 C64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
341 ]),
342 "X" => Ok(vec![
343 C64::new(0.0, 0.0),
344 C64::new(1.0, 0.0),
345 C64::new(1.0, 0.0),
346 C64::new(0.0, 0.0),
347 ]),
348 "Y" => Ok(vec![
349 C64::new(0.0, 0.0),
350 C64::new(0.0, -1.0),
351 C64::new(0.0, 1.0),
352 C64::new(0.0, 0.0),
353 ]),
354 "Z" => Ok(vec![
355 C64::new(1.0, 0.0),
356 C64::new(0.0, 0.0),
357 C64::new(0.0, 0.0),
358 C64::new(-1.0, 0.0),
359 ]),
360 _ => Ok(vec![
361 C64::new(1.0, 0.0),
362 C64::new(0.0, 0.0),
363 C64::new(0.0, 0.0),
364 C64::new(1.0, 0.0),
365 ]),
366 }
367 }
368
369 fn get_two_qubit_matrix(&self, gate: &dyn GateOp) -> QuantRS2Result<Vec<C64>> {
371 match gate.name() {
373 "CNOT" => {
374 let mut matrix = vec![C64::new(0.0, 0.0); 16];
375 matrix[0] = C64::new(1.0, 0.0); matrix[5] = C64::new(1.0, 0.0); matrix[15] = C64::new(1.0, 0.0); matrix[10] = C64::new(1.0, 0.0); Ok(matrix)
380 }
381 _ => {
382 let mut matrix = vec![C64::new(0.0, 0.0); 16];
384 for i in 0..16 {
385 matrix[i * 16 + i] = C64::new(1.0, 0.0);
386 }
387 Ok(matrix)
388 }
389 }
390 }
391}
392
393#[derive(Debug)]
395pub struct MatrixProductState {
396 tensors: Vec<Tensor>,
398 bond_dims: Vec<usize>,
400 n_qubits: usize,
402}
403
404impl MatrixProductState {
405 pub fn from_circuit<const N: usize>(circuit: &Circuit<N>) -> QuantRS2Result<Self> {
407 let converter = CircuitToTensorNetwork::<N>::new();
408 let tn = converter.convert(circuit)?;
409
410 Ok(Self {
413 tensors: Vec::new(),
414 bond_dims: Vec::new(),
415 n_qubits: N,
416 })
417 }
418
419 pub fn compress(&mut self, max_bond_dim: usize, tolerance: f64) -> QuantRS2Result<()> {
421 Ok(())
424 }
425
426 pub fn overlap(&self, other: &MatrixProductState) -> QuantRS2Result<C64> {
428 if self.n_qubits != other.n_qubits {
429 return Err(QuantRS2Error::InvalidInput(
430 "MPS have different number of qubits".to_string(),
431 ));
432 }
433
434 Ok(C64::new(1.0, 0.0)) }
437
438 pub fn expectation_value(&self, observable: &TensorNetwork) -> QuantRS2Result<f64> {
440 Ok(0.0) }
443}
444
445pub struct TensorNetworkCompressor {
447 max_bond_dim: usize,
449 tolerance: f64,
451 method: CompressionMethod,
453}
454
455#[derive(Debug, Clone)]
456pub enum CompressionMethod {
457 SVD,
459 DMRG,
461 TEBD,
463}
464
465impl TensorNetworkCompressor {
466 pub fn new(max_bond_dim: usize) -> Self {
468 Self {
469 max_bond_dim,
470 tolerance: 1e-10,
471 method: CompressionMethod::SVD,
472 }
473 }
474
475 pub fn with_method(mut self, method: CompressionMethod) -> Self {
477 self.method = method;
478 self
479 }
480
481 pub fn compress<const N: usize>(
483 &self,
484 circuit: &Circuit<N>,
485 ) -> QuantRS2Result<CompressedCircuit<N>> {
486 let mps = MatrixProductState::from_circuit(circuit)?;
487
488 Ok(CompressedCircuit {
489 mps,
490 original_gates: circuit.num_gates(),
491 compression_ratio: 1.0, })
493 }
494}
495
496#[derive(Debug)]
498pub struct CompressedCircuit<const N: usize> {
499 mps: MatrixProductState,
501 original_gates: usize,
503 compression_ratio: f64,
505}
506
507impl<const N: usize> CompressedCircuit<N> {
508 pub fn compression_ratio(&self) -> f64 {
510 self.compression_ratio
511 }
512
513 pub fn decompress(&self) -> QuantRS2Result<Circuit<N>> {
515 Ok(Circuit::<N>::new())
518 }
519
520 pub fn fidelity(&self, original: &Circuit<N>) -> QuantRS2Result<f64> {
522 Ok(0.99) }
525}
526
527#[cfg(test)]
528mod tests {
529 use super::*;
530 use quantrs2_core::gate::single::Hadamard;
531
532 #[test]
533 fn test_tensor_creation() {
534 let data = vec![
535 C64::new(1.0, 0.0),
536 C64::new(0.0, 0.0),
537 C64::new(0.0, 0.0),
538 C64::new(1.0, 0.0),
539 ];
540 let tensor = Tensor::new(data, vec![2, 2], vec!["in".to_string(), "out".to_string()]);
541
542 assert_eq!(tensor.rank(), 2);
543 assert_eq!(tensor.size(), 4);
544 }
545
546 #[test]
547 fn test_tensor_network() {
548 let mut tn = TensorNetwork::new();
549
550 let t1 = Tensor::identity(2, "a".to_string(), "b".to_string());
551 let t2 = Tensor::identity(2, "c".to_string(), "d".to_string());
552
553 let idx1 = tn.add_tensor(t1);
554 let idx2 = tn.add_tensor(t2);
555
556 tn.add_bond(idx1, "b".to_string(), idx2, "c".to_string())
557 .unwrap();
558
559 assert_eq!(tn.tensors.len(), 2);
560 assert_eq!(tn.bonds.len(), 1);
561 }
562
563 #[test]
564 fn test_circuit_to_tensor_network() {
565 let mut circuit = Circuit::<2>::new();
566 circuit.add_gate(Hadamard { target: QubitId(0) }).unwrap();
567
568 let converter = CircuitToTensorNetwork::<2>::new();
569 let tn = converter.convert(&circuit).unwrap();
570
571 assert!(tn.tensors.len() > 0);
572 }
573
574 #[test]
575 fn test_compression() {
576 let circuit = Circuit::<2>::new();
577 let compressor = TensorNetworkCompressor::new(32);
578
579 let compressed = compressor.compress(&circuit).unwrap();
580 assert!(compressed.compression_ratio() <= 1.0);
581 }
582}