tensor_network_demo/
tensor_network_demo.rs

1//! Demonstration of tensor network compression for quantum circuits
2//!
3//! This example shows how to use tensor network methods to compress
4//! and analyze quantum circuits efficiently.
5
6use nalgebra::Complex;
7use quantrs2_circuit::prelude::*;
8use quantrs2_core::gate::multi::CNOT;
9use quantrs2_core::gate::single::{Hadamard, RotationZ, T};
10use quantrs2_core::qubit::QubitId;
11
12type C64 = Complex<f64>;
13
14fn main() -> quantrs2_core::error::QuantRS2Result<()> {
15    println!("=== Tensor Network Compression Demo ===\n");
16
17    demo_basic_tensor_network()?;
18    demo_circuit_compression()?;
19    demo_mps_representation()?;
20    demo_compression_methods()?;
21
22    Ok(())
23}
24
25fn demo_basic_tensor_network() -> quantrs2_core::error::QuantRS2Result<()> {
26    println!("--- Basic Tensor Network Construction ---");
27
28    // Create simple tensors
29    let identity = Tensor::identity(2, "in".to_string(), "out".to_string());
30    println!(
31        "Created identity tensor: rank={}, size={}",
32        identity.rank(),
33        identity.size()
34    );
35
36    // Create Hadamard tensor
37    let h_data = vec![
38        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
39        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
40        C64::new(1.0 / 2.0_f64.sqrt(), 0.0),
41        C64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
42    ];
43    let h_tensor = Tensor::new(
44        h_data,
45        vec![2, 2],
46        vec!["h_in".to_string(), "h_out".to_string()],
47    );
48
49    // Build tensor network
50    let mut tn = TensorNetwork::new();
51    let id_idx = tn.add_tensor(identity);
52    let h_idx = tn.add_tensor(h_tensor);
53
54    // Connect tensors
55    tn.add_bond(id_idx, "out".to_string(), h_idx, "h_in".to_string())?;
56
57    println!("Built tensor network with {} tensors and {} bonds", 2, 1);
58    println!();
59
60    Ok(())
61}
62
63fn demo_circuit_compression() -> quantrs2_core::error::QuantRS2Result<()> {
64    println!("--- Circuit Compression ---");
65
66    // Create a circuit with repetitive structure
67    let mut circuit = Circuit::<4>::new();
68
69    // Add many gates
70    for i in 0..3 {
71        circuit.add_gate(Hadamard { target: QubitId(i) })?;
72    }
73
74    for i in 0..3 {
75        circuit.add_gate(CNOT {
76            control: QubitId(i),
77            target: QubitId(i + 1),
78        })?;
79    }
80
81    for i in 0..4 {
82        circuit.add_gate(T { target: QubitId(i) })?;
83    }
84
85    for i in (1..4).rev() {
86        circuit.add_gate(CNOT {
87            control: QubitId(i - 1),
88            target: QubitId(i),
89        })?;
90    }
91
92    println!("Original circuit: {} gates", circuit.num_gates());
93
94    // Compress using tensor networks
95    let compressor = TensorNetworkCompressor::new(16); // max bond dimension
96    let compressed = compressor.compress(&circuit)?;
97
98    println!(
99        "Compression ratio: {:.2}%",
100        compressed.compression_ratio() * 100.0
101    );
102
103    // Check fidelity
104    let fidelity = compressed.fidelity(&circuit)?;
105    println!("Fidelity with original: {:.6}", fidelity);
106
107    println!();
108    Ok(())
109}
110
111fn demo_mps_representation() -> quantrs2_core::error::QuantRS2Result<()> {
112    println!("--- Matrix Product State Representation ---");
113
114    // Create a circuit that generates an interesting entangled state
115    let mut circuit = Circuit::<6>::new();
116
117    // Create W state: (|100000⟩ + |010000⟩ + |001000⟩ + |000100⟩ + |000010⟩ + |000001⟩)/√6
118    circuit.add_gate(Hadamard { target: QubitId(0) })?;
119    circuit.add_gate(RotationZ {
120        target: QubitId(0),
121        theta: std::f64::consts::PI / 3.0,
122    })?;
123
124    for i in 0..5 {
125        circuit.add_gate(CNOT {
126            control: QubitId(i),
127            target: QubitId(i + 1),
128        })?;
129    }
130
131    println!("Created circuit for W state preparation");
132
133    // Convert to MPS
134    let mps = MatrixProductState::from_circuit(&circuit)?;
135    println!("Converted to MPS representation");
136
137    // Compress with different bond dimensions
138    let bond_dims = vec![2, 4, 8, 16];
139
140    for &max_bond in &bond_dims {
141        let mut mps_copy = MatrixProductState::from_circuit(&circuit)?;
142        mps_copy.compress(max_bond, 1e-10)?;
143
144        // In a real implementation, would calculate actual compression metrics
145        println!("Max bond dimension {}: compression successful", max_bond);
146    }
147
148    println!();
149    Ok(())
150}
151
152fn demo_compression_methods() -> quantrs2_core::error::QuantRS2Result<()> {
153    println!("--- Different Compression Methods ---");
154
155    let mut circuit = Circuit::<5>::new();
156
157    // Build a deep circuit
158    for _ in 0..5 {
159        for i in 0..5 {
160            circuit.add_gate(Hadamard { target: QubitId(i) })?;
161        }
162        for i in 0..4 {
163            circuit.add_gate(CNOT {
164                control: QubitId(i),
165                target: QubitId(i + 1),
166            })?;
167        }
168    }
169
170    println!("Built deep circuit with {} gates", circuit.num_gates());
171
172    // Test different compression methods
173    let methods = vec![
174        CompressionMethod::SVD,
175        CompressionMethod::DMRG,
176        CompressionMethod::TEBD,
177    ];
178
179    for method in methods {
180        let compressor = TensorNetworkCompressor::new(32).with_method(method.clone());
181
182        let compressed = compressor.compress(&circuit)?;
183
184        println!("\n{:?} compression:", method);
185        println!(
186            "  Compression ratio: {:.2}%",
187            compressed.compression_ratio() * 100.0
188        );
189
190        // Try to decompress
191        let decompressed = compressed.decompress()?;
192        println!("  Decompressed to {} gates", decompressed.num_gates());
193    }
194
195    println!();
196    Ok(())
197}
198
199fn demo_tensor_contraction() -> quantrs2_core::error::QuantRS2Result<()> {
200    println!("--- Tensor Contraction Optimization ---");
201
202    // Create a circuit with specific structure
203    let mut circuit = Circuit::<4>::new();
204
205    // Layer 1: Single-qubit gates
206    for i in 0..4 {
207        circuit.add_gate(Hadamard { target: QubitId(i) })?;
208    }
209
210    // Layer 2: Entangling gates
211    circuit.add_gate(CNOT {
212        control: QubitId(0),
213        target: QubitId(1),
214    })?;
215    circuit.add_gate(CNOT {
216        control: QubitId(2),
217        target: QubitId(3),
218    })?;
219
220    // Layer 3: Cross entangling
221    circuit.add_gate(CNOT {
222        control: QubitId(1),
223        target: QubitId(2),
224    })?;
225
226    // Convert to tensor network
227    let converter = CircuitToTensorNetwork::<4>::new()
228        .with_max_bond_dim(8)
229        .with_tolerance(1e-12);
230
231    let tn = converter.convert(&circuit)?;
232
233    println!("Converted circuit to tensor network");
234    println!("Network has {} tensors", circuit.num_gates());
235
236    // Contract the network
237    let result = tn.contract_all()?;
238    println!("Contracted to single tensor of rank {}", result.rank());
239
240    println!();
241    Ok(())
242}
243
244fn demo_circuit_analysis() -> quantrs2_core::error::QuantRS2Result<()> {
245    println!("--- Circuit Analysis via Tensor Networks ---");
246
247    // Create circuits to compare
248    let mut circuit1 = Circuit::<3>::new();
249    circuit1.add_gate(Hadamard { target: QubitId(0) })?;
250    circuit1.add_gate(CNOT {
251        control: QubitId(0),
252        target: QubitId(1),
253    })?;
254    circuit1.add_gate(CNOT {
255        control: QubitId(1),
256        target: QubitId(2),
257    })?;
258
259    let mut circuit2 = Circuit::<3>::new();
260    circuit2.add_gate(Hadamard { target: QubitId(0) })?;
261    circuit2.add_gate(CNOT {
262        control: QubitId(0),
263        target: QubitId(2),
264    })?;
265    circuit2.add_gate(CNOT {
266        control: QubitId(0),
267        target: QubitId(1),
268    })?;
269
270    // Convert to MPS for efficient comparison
271    let mps1 = MatrixProductState::from_circuit(&circuit1)?;
272    let mps2 = MatrixProductState::from_circuit(&circuit2)?;
273
274    // Calculate overlap (would indicate circuit similarity)
275    let overlap = mps1.overlap(&mps2)?;
276    println!("Circuit overlap: |⟨ψ₁|ψ₂⟩| = {:.6}", overlap.norm());
277
278    // Compress both circuits
279    let compressor = TensorNetworkCompressor::new(16);
280    let comp1 = compressor.compress(&circuit1)?;
281    let comp2 = compressor.compress(&circuit2)?;
282
283    println!(
284        "Circuit 1 compression: {:.2}%",
285        comp1.compression_ratio() * 100.0
286    );
287    println!(
288        "Circuit 2 compression: {:.2}%",
289        comp2.compression_ratio() * 100.0
290    );
291
292    Ok(())
293}
294
295#[cfg(test)]
296mod tests {
297    use super::*;
298
299    #[test]
300    fn test_tensor_network_demo() {
301        assert!(main().is_ok());
302    }
303}