MatrixProductState

Struct MatrixProductState 

Source
pub struct MatrixProductState { /* private fields */ }
Expand description

Matrix Product State representation of a circuit

Implementations§

Source§

impl MatrixProductState

Source

pub fn from_circuit<const N: usize>( circuit: &Circuit<N>, ) -> QuantRS2Result<Self>

Create MPS from circuit

Examples found in repository?
examples/tensor_network_demo.rs (line 134)
111fn demo_mps_representation() -> quantrs2_core::error::QuantRS2Result<()> {
112    println!("--- Matrix Product State Representation ---");
113
114    // Create a circuit that generates an interesting entangled state
115    let mut circuit = Circuit::<6>::new();
116
117    // Create W state: (|100000⟩ + |010000⟩ + |001000⟩ + |000100⟩ + |000010⟩ + |000001⟩)/√6
118    circuit.add_gate(Hadamard { target: QubitId(0) })?;
119    circuit.add_gate(RotationZ {
120        target: QubitId(0),
121        theta: std::f64::consts::PI / 3.0,
122    })?;
123
124    for i in 0..5 {
125        circuit.add_gate(CNOT {
126            control: QubitId(i),
127            target: QubitId(i + 1),
128        })?;
129    }
130
131    println!("Created circuit for W state preparation");
132
133    // Convert to MPS
134    let mps = MatrixProductState::from_circuit(&circuit)?;
135    println!("Converted to MPS representation");
136
137    // Compress with different bond dimensions
138    let bond_dims = vec![2, 4, 8, 16];
139
140    for &max_bond in &bond_dims {
141        let mut mps_copy = MatrixProductState::from_circuit(&circuit)?;
142        mps_copy.compress(max_bond, 1e-10)?;
143
144        // In a real implementation, would calculate actual compression metrics
145        println!("Max bond dimension {}: compression successful", max_bond);
146    }
147
148    println!();
149    Ok(())
150}
151
152fn demo_compression_methods() -> quantrs2_core::error::QuantRS2Result<()> {
153    println!("--- Different Compression Methods ---");
154
155    let mut circuit = Circuit::<5>::new();
156
157    // Build a deep circuit
158    for _ in 0..5 {
159        for i in 0..5 {
160            circuit.add_gate(Hadamard { target: QubitId(i) })?;
161        }
162        for i in 0..4 {
163            circuit.add_gate(CNOT {
164                control: QubitId(i),
165                target: QubitId(i + 1),
166            })?;
167        }
168    }
169
170    println!("Built deep circuit with {} gates", circuit.num_gates());
171
172    // Test different compression methods
173    let methods = vec![
174        CompressionMethod::SVD,
175        CompressionMethod::DMRG,
176        CompressionMethod::TEBD,
177    ];
178
179    for method in methods {
180        let compressor = TensorNetworkCompressor::new(32).with_method(method.clone());
181
182        let compressed = compressor.compress(&circuit)?;
183
184        println!("\n{:?} compression:", method);
185        println!(
186            "  Compression ratio: {:.2}%",
187            compressed.compression_ratio() * 100.0
188        );
189
190        // Try to decompress
191        let decompressed = compressed.decompress()?;
192        println!("  Decompressed to {} gates", decompressed.num_gates());
193    }
194
195    println!();
196    Ok(())
197}
198
199fn demo_tensor_contraction() -> quantrs2_core::error::QuantRS2Result<()> {
200    println!("--- Tensor Contraction Optimization ---");
201
202    // Create a circuit with specific structure
203    let mut circuit = Circuit::<4>::new();
204
205    // Layer 1: Single-qubit gates
206    for i in 0..4 {
207        circuit.add_gate(Hadamard { target: QubitId(i) })?;
208    }
209
210    // Layer 2: Entangling gates
211    circuit.add_gate(CNOT {
212        control: QubitId(0),
213        target: QubitId(1),
214    })?;
215    circuit.add_gate(CNOT {
216        control: QubitId(2),
217        target: QubitId(3),
218    })?;
219
220    // Layer 3: Cross entangling
221    circuit.add_gate(CNOT {
222        control: QubitId(1),
223        target: QubitId(2),
224    })?;
225
226    // Convert to tensor network
227    let converter = CircuitToTensorNetwork::<4>::new()
228        .with_max_bond_dim(8)
229        .with_tolerance(1e-12);
230
231    let tn = converter.convert(&circuit)?;
232
233    println!("Converted circuit to tensor network");
234    println!("Network has {} tensors", circuit.num_gates());
235
236    // Contract the network
237    let result = tn.contract_all()?;
238    println!("Contracted to single tensor of rank {}", result.rank());
239
240    println!();
241    Ok(())
242}
243
244fn demo_circuit_analysis() -> quantrs2_core::error::QuantRS2Result<()> {
245    println!("--- Circuit Analysis via Tensor Networks ---");
246
247    // Create circuits to compare
248    let mut circuit1 = Circuit::<3>::new();
249    circuit1.add_gate(Hadamard { target: QubitId(0) })?;
250    circuit1.add_gate(CNOT {
251        control: QubitId(0),
252        target: QubitId(1),
253    })?;
254    circuit1.add_gate(CNOT {
255        control: QubitId(1),
256        target: QubitId(2),
257    })?;
258
259    let mut circuit2 = Circuit::<3>::new();
260    circuit2.add_gate(Hadamard { target: QubitId(0) })?;
261    circuit2.add_gate(CNOT {
262        control: QubitId(0),
263        target: QubitId(2),
264    })?;
265    circuit2.add_gate(CNOT {
266        control: QubitId(0),
267        target: QubitId(1),
268    })?;
269
270    // Convert to MPS for efficient comparison
271    let mps1 = MatrixProductState::from_circuit(&circuit1)?;
272    let mps2 = MatrixProductState::from_circuit(&circuit2)?;
273
274    // Calculate overlap (would indicate circuit similarity)
275    let overlap = mps1.overlap(&mps2)?;
276    println!("Circuit overlap: |⟨ψ₁|ψ₂⟩| = {:.6}", overlap.norm());
277
278    // Compress both circuits
279    let compressor = TensorNetworkCompressor::new(16);
280    let comp1 = compressor.compress(&circuit1)?;
281    let comp2 = compressor.compress(&circuit2)?;
282
283    println!(
284        "Circuit 1 compression: {:.2}%",
285        comp1.compression_ratio() * 100.0
286    );
287    println!(
288        "Circuit 2 compression: {:.2}%",
289        comp2.compression_ratio() * 100.0
290    );
291
292    Ok(())
293}
Source

pub fn compress( &mut self, max_bond_dim: usize, tolerance: f64, ) -> QuantRS2Result<()>

Compress the MPS

Examples found in repository?
examples/tensor_network_demo.rs (line 142)
111fn demo_mps_representation() -> quantrs2_core::error::QuantRS2Result<()> {
112    println!("--- Matrix Product State Representation ---");
113
114    // Create a circuit that generates an interesting entangled state
115    let mut circuit = Circuit::<6>::new();
116
117    // Create W state: (|100000⟩ + |010000⟩ + |001000⟩ + |000100⟩ + |000010⟩ + |000001⟩)/√6
118    circuit.add_gate(Hadamard { target: QubitId(0) })?;
119    circuit.add_gate(RotationZ {
120        target: QubitId(0),
121        theta: std::f64::consts::PI / 3.0,
122    })?;
123
124    for i in 0..5 {
125        circuit.add_gate(CNOT {
126            control: QubitId(i),
127            target: QubitId(i + 1),
128        })?;
129    }
130
131    println!("Created circuit for W state preparation");
132
133    // Convert to MPS
134    let mps = MatrixProductState::from_circuit(&circuit)?;
135    println!("Converted to MPS representation");
136
137    // Compress with different bond dimensions
138    let bond_dims = vec![2, 4, 8, 16];
139
140    for &max_bond in &bond_dims {
141        let mut mps_copy = MatrixProductState::from_circuit(&circuit)?;
142        mps_copy.compress(max_bond, 1e-10)?;
143
144        // In a real implementation, would calculate actual compression metrics
145        println!("Max bond dimension {}: compression successful", max_bond);
146    }
147
148    println!();
149    Ok(())
150}
Source

pub fn overlap( &self, other: &MatrixProductState, ) -> QuantRS2Result<Complex<f64>>

Calculate overlap with another MPS

Examples found in repository?
examples/tensor_network_demo.rs (line 275)
244fn demo_circuit_analysis() -> quantrs2_core::error::QuantRS2Result<()> {
245    println!("--- Circuit Analysis via Tensor Networks ---");
246
247    // Create circuits to compare
248    let mut circuit1 = Circuit::<3>::new();
249    circuit1.add_gate(Hadamard { target: QubitId(0) })?;
250    circuit1.add_gate(CNOT {
251        control: QubitId(0),
252        target: QubitId(1),
253    })?;
254    circuit1.add_gate(CNOT {
255        control: QubitId(1),
256        target: QubitId(2),
257    })?;
258
259    let mut circuit2 = Circuit::<3>::new();
260    circuit2.add_gate(Hadamard { target: QubitId(0) })?;
261    circuit2.add_gate(CNOT {
262        control: QubitId(0),
263        target: QubitId(2),
264    })?;
265    circuit2.add_gate(CNOT {
266        control: QubitId(0),
267        target: QubitId(1),
268    })?;
269
270    // Convert to MPS for efficient comparison
271    let mps1 = MatrixProductState::from_circuit(&circuit1)?;
272    let mps2 = MatrixProductState::from_circuit(&circuit2)?;
273
274    // Calculate overlap (would indicate circuit similarity)
275    let overlap = mps1.overlap(&mps2)?;
276    println!("Circuit overlap: |⟨ψ₁|ψ₂⟩| = {:.6}", overlap.norm());
277
278    // Compress both circuits
279    let compressor = TensorNetworkCompressor::new(16);
280    let comp1 = compressor.compress(&circuit1)?;
281    let comp2 = compressor.compress(&circuit2)?;
282
283    println!(
284        "Circuit 1 compression: {:.2}%",
285        comp1.compression_ratio() * 100.0
286    );
287    println!(
288        "Circuit 2 compression: {:.2}%",
289        comp2.compression_ratio() * 100.0
290    );
291
292    Ok(())
293}
Source

pub fn expectation_value( &self, observable: &TensorNetwork, ) -> QuantRS2Result<f64>

Calculate expectation value of observable

Trait Implementations§

Source§

impl Debug for MatrixProductState

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,