MatPolynomialRingZq

Struct MatPolynomialRingZq 

Source
pub struct MatPolynomialRingZq { /* private fields */ }
Expand description

MatPolynomialRingZq is a matrix with entries of type PolynomialRingZq.

Attributes:

§Examples

§Matrix usage

use qfall_math::{
    integer::{PolyOverZ, MatPolyOverZ},
    integer_mod_q::{MatPolynomialRingZq, PolyOverZq},
    traits::{MatrixGetEntry, MatrixSetEntry},
};
use std::str::FromStr;

// instantiate new matrix
let id_mat = MatPolyOverZ::identity(2, 2);
// instantiate modulus_object
let modulus = PolyOverZq::from_str("5  1 0 0 0 1 mod 17").unwrap();

let poly_mat = MatPolynomialRingZq::from((id_mat, modulus));

// clone object, set and get entry
let mut clone = poly_mat.clone();
clone.set_entry(0, 0, PolyOverZ::from(-16));

let entry: PolyOverZ = clone.get_entry(0,0).unwrap();
assert_eq!(
    entry,
    PolyOverZ::from(1),
);

// to_string
assert_eq!("[[1  1, 0],[0, 1  1]] / 5  1 0 0 0 1 mod 17", &poly_mat.to_string());

§Vector usage

use qfall_math::{
    integer::{PolyOverZ, MatPolyOverZ},
    integer_mod_q::{MatPolynomialRingZq, PolyOverZq},
};
use std::str::FromStr;

let row_vec = MatPolyOverZ::from_str("[[1  1, 0, 1  1]]").unwrap();
let col_vec = MatPolyOverZ::from_str("[[1  -5],[1  -1],[0]]").unwrap();

let modulus = PolyOverZq::from_str("5  1 0 0 0 1 mod 17").unwrap();

let row_vec = MatPolynomialRingZq::from((row_vec, modulus));
let col_vec = MatPolynomialRingZq::from((col_vec, row_vec.get_mod()));

// check if matrix instance is vector
assert!(row_vec.is_row_vector());
assert!(col_vec.is_column_vector());

Implementations§

Source§

impl MatPolynomialRingZq

Source

pub fn add_safe(&self, other: &Self) -> Result<MatPolynomialRingZq, MathError>

Implements addition for two MatPolynomialRingZq values.

Parameters:

  • other: specifies the polynomial to add to self

Returns the sum of both polynomials as a MatPolynomialRingZq or an error if the moduli mismatch, or the dimensions of the matrices mismatch.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat_1 = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat_1 = MatPolynomialRingZq::from((&poly_mat_1, &modulus));
let poly_mat_2 = MatPolyOverZ::from_str("[[3  3 0 1, 1  42],[0, 1  17]]").unwrap();
let poly_ring_mat_2 = MatPolynomialRingZq::from((&poly_mat_2, &modulus));

let poly_ring_mat_3: MatPolynomialRingZq = poly_ring_mat_1.add_safe(&poly_ring_mat_2).unwrap();
§Errors and Failures
Source

pub fn add_mat_poly_over_z_safe( &self, other: &MatPolyOverZ, ) -> Result<Self, MathError>

Implements addition for a MatPolynomialRingZq matrix with a MatPolyOverZ matrix.

Parameters:

  • other: specifies the value to add with self

Returns the addition of self and other as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let mat_1 = MatPolynomialRingZq::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]] / 3  1 2 3 mod 17").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]]").unwrap();

let mat_3 = &mat_1.add_mat_poly_over_z_safe(&mat_2).unwrap();
§Errors and Failures
Source§

impl MatPolynomialRingZq

Source

pub fn mul_safe(&self, other: &Self) -> Result<Self, MathError>

Implements multiplication for two MatPolynomialRingZq values.

Parameters:

  • other: specifies the value to multiply with self

Returns the product of self and other as a MatPolynomialRingZq or an error if the dimensions of self and other do not match for multiplication or the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat_1 = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat_1 = MatPolynomialRingZq::from((&poly_mat_1, &modulus));
let poly_mat_2 = MatPolyOverZ::from_str("[[3  3 0 1, 1  42],[0, 1  17]]").unwrap();
let poly_ring_mat_2 = MatPolynomialRingZq::from((&poly_mat_2, &modulus));

let poly_ring_mat_3: MatPolynomialRingZq = poly_ring_mat_1.mul_safe(&poly_ring_mat_2).unwrap();
§Errors and Failures
Source

pub fn mul_mat_poly_over_z_safe( &self, other: &MatPolyOverZ, ) -> Result<Self, MathError>

Implements multiplication for a MatPolynomialRingZq matrix with a MatPolyOverZ matrix.

Parameters:

  • other: specifies the value to multiply with self

Returns the product of self and other as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let mat_1 = MatPolynomialRingZq::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]] / 3  1 2 3 mod 17").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]]").unwrap();

let mat_3 = &mat_1.mul_mat_poly_over_z_safe(&mat_2).unwrap();
§Errors and Failures
Source§

impl MatPolynomialRingZq

Source

pub fn mul_scalar_zq_safe(&self, scalar: &Zq) -> Result<Self, MathError>

Implements multiplication for a MatPolynomialRingZq matrix with a Zq.

Parameters:

  • scalar: specifies the scalar by which the matrix is multiplied

Returns the product of self and scalar as a MatPolynomialRingZq or an error if the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, Zq};
use std::str::FromStr;

let mat_1 = MatPolynomialRingZq::from_str("[[1  42, 1  17],[2  1 8, 1  6]] / 3  1 2 3 mod 61").unwrap();
let integer = Zq::from((2, 61));

let mat_2 = &mat_1.mul_scalar_zq_safe(&integer).unwrap();
§Errors and Failures
Source

pub fn mul_scalar_poly_over_zq_safe( &self, scalar: &PolyOverZq, ) -> Result<Self, MathError>

Implements multiplication for a MatPolynomialRingZq matrix with a PolyOverZq.

Parameters:

  • scalar: Specifies the scalar by which the matrix is multiplied.

Returns the product of self and scalar as a MatPolynomialRingZq or an error if the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq, PolynomialRingZq, PolyOverZq};
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat1 = MatPolynomialRingZq::from((&poly_mat1, &modulus));
let poly = PolyOverZq::from_str("3  1 0 1 mod 17").unwrap();

let poly_ring_mat2 = &poly_ring_mat1.mul_scalar_poly_over_zq_safe(&poly);
§Errors and Failures
Source

pub fn mul_scalar_poly_ring_zq_safe( &self, scalar: &PolynomialRingZq, ) -> Result<Self, MathError>

Implements multiplication for a MatPolynomialRingZq matrix with a PolynomialRingZq.

Parameters:

  • scalar: Specifies the scalar by which the matrix is multiplied.

Returns the product of self and scalar as a MatPolynomialRingZq or an error if the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq, PolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, PolyOverZ, Z};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat1 = MatPolynomialRingZq::from((&poly_mat1, &modulus));
let poly = PolyOverZ::from_str("3  1 0 1").unwrap();
let poly_ring = PolynomialRingZq::from((&poly, &modulus));

let poly_ring_mat2 = &poly_ring_mat1.mul_scalar_poly_ring_zq_safe(&poly_ring);
§Errors and Failures
Source§

impl MatPolynomialRingZq

Source

pub fn sub_safe(&self, other: &Self) -> Result<MatPolynomialRingZq, MathError>

Implements subtraction for two MatPolynomialRingZq matrices.

Parameters:

  • other: specifies the value to subtract fromself

Returns the result of the subtraction as a MatPolynomialRingZq or an error if the matrix dimensions or moduli mismatch.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat_1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  3],[0, 2  1 2]]").unwrap();
let poly_ring_mat_1 = MatPolynomialRingZq::from((&poly_mat_1, &modulus));
let poly_mat_2 = MatPolyOverZ::from_str("[[3  3 0 1, 1  7],[0, 1  16]]").unwrap();
let poly_ring_mat_2 = MatPolynomialRingZq::from((&poly_mat_2, &modulus));

let poly_ring_mat_3 = poly_ring_mat_1.sub_safe(&poly_ring_mat_2);
§Errors and Failures
Source

pub fn sub_mat_poly_over_z_safe( &self, other: &MatPolyOverZ, ) -> Result<Self, MathError>

Implements subtraction for a MatPolynomialRingZq matrix with a MatPolyOverZ matrix.

Parameters:

  • other: specifies the value to subtract from self

Returns the subtraction of self by other as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let mat_1 = MatPolynomialRingZq::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]] / 3  1 2 3 mod 17").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]]").unwrap();

let mat_3 = &mat_1.sub_mat_poly_over_z_safe(&mat_2).unwrap();
§Errors and Failures
Source§

impl MatPolynomialRingZq

Source

pub fn new( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<ModulusPolynomialRingZq>, ) -> Self

Creates a new matrix with num_rows rows, num_cols columns, zeros as entries and modulus as the modulus.

Parameters:

  • num_rows: number of rows the new matrix should have
  • num_cols: number of columns the new matrix should have
  • modulus: the common modulus of the matrix entries

Returns a new MatPolynomialRingZq instance of the provided dimensions.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use std::str::FromStr;

let poly_mod = PolyOverZq::from_str("3  1 0 1 mod 17").unwrap();
let modulus = ModulusPolynomialRingZq::try_from(&poly_mod).unwrap();

let matrix = MatPolynomialRingZq::new(5, 10, &modulus);
§Panics …
  • if the number of rows or columns is negative, 0, or does not fit into an i64.
Source

pub fn identity( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<ModulusPolynomialRingZq>, ) -> Self

Generate a num_rows times num_columns matrix with 1 on the diagonal and 0 anywhere else with a given modulus.

Parameters:

  • rum_rows: the number of rows of the identity matrix
  • num_columns: the number of columns of the identity matrix
  • modulus: the polynomial mod q which serves as the modulus of the matrix

Returns a matrix with 1 across the diagonal and 0 anywhere else.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("3  1 0 1 mod 17").unwrap();
let matrix = MatPolynomialRingZq::identity(2, 3, &modulus);

let identity = MatPolynomialRingZq::identity(10, 10, &modulus);
§Panics …
  • if the provided number of rows and columns are not suited to create a matrix. For further information see MatPolyOverZ::new.
Source§

impl MatPolynomialRingZq

Source

pub fn get_mod(&self) -> ModulusPolynomialRingZq

Returns the modulus of the matrix as a ModulusPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));

let modulus = poly_ring_mat.get_mod();
Source§

impl MatPolynomialRingZq

Source

pub fn get_representative_least_nonnegative_residue(&self) -> MatPolyOverZ

Creates a MatPolyOverZ where each entry is a representative of the equivalence class of each entry from a MatPolynomialRingZq.

The representation of the coefficients is in the range [0, modulus) and the representation of the polynomials is in the range [0, modulus_polynomial).

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));

let matrix = poly_ring_mat.get_representative_least_nonnegative_residue();

let cmp_poly_mat = MatPolyOverZ::from_str("[[3  15 0 1, 1  8],[0, 2  1 2]]").unwrap();
assert_eq!(cmp_poly_mat, matrix);
Source§

impl MatPolynomialRingZq

Source

pub fn norm_l_2_infty_sqrd(&self) -> Z

Outputs the squared l_{2, ∞}-norm, i.e. it computes the squared Euclidean norm of each column of the matrix and returns the largest one.

§Examples
use qfall_math::{integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq}, integer::{Z, MatPolyOverZ}};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 7").unwrap();
let mat = MatPolyOverZ::from_str("[[1  2, 1  3],[1  2, 0]]").unwrap();
let mat = MatPolynomialRingZq::from((&mat, &modulus));

let eucl_norm = mat.norm_l_2_infty_sqrd();

// 3^2 + 0^2 = 9
assert_eq!(Z::from(9), eucl_norm);
Source

pub fn norm_l_2_infty(&self) -> Q

Outputs the l_{2, ∞}-norm, i.e. it computes the Euclidean norm of each column of the matrix and returns the largest one.

§Examples
use qfall_math::{integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq}, integer::{Z, MatPolyOverZ}};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 5").unwrap();
let mat = MatPolyOverZ::from_str("[[1  2, 1  3],[1  2, 1  0],[1  3, 1  4],[1  3, 1  4]]").unwrap();
let mat = MatPolynomialRingZq::from((&mat, &modulus));

let eucl_norm = mat.norm_l_2_infty();

// sqrt(4 * 2^2) = 4
assert_eq!(Q::from(4), eucl_norm);
Source

pub fn norm_l_infty_infty(&self) -> Z

Outputs the l_{∞, ∞}-norm, i.e. it computes the ∞-norm of each column of the matrix and returns the largest one.

§Examples
use qfall_math::{integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq}, integer::{Z, MatPolyOverZ}};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 7").unwrap();
let mat = MatPolyOverZ::from_str("[[1  2, 1  4],[1  2, 0]]").unwrap();
let mat = MatPolynomialRingZq::from((&mat, &modulus));

let eucl_norm = mat.norm_l_infty_infty();

// max{2, 3} = 3
assert_eq!(Z::from(3), eucl_norm);
Source§

impl MatPolynomialRingZq

Source

pub fn is_identity(&self) -> bool

Checks if a MatPolynomialRingZq is the identity matrix.

Returns true if every diagonal entry of the matrix is the constant polynomial 1 and all other entries are 0.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, PolyOverZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = PolyOverZq::from_str("5  1 0 0 0 1 mod 17").unwrap();
let id_mat = MatPolyOverZ::identity(2, 2);

let poly_ring_mat = MatPolynomialRingZq::from((id_mat, modulus));
assert!(poly_ring_mat.is_identity());
use qfall_math::integer_mod_q::{MatPolynomialRingZq, PolyOverZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = PolyOverZq::from_str("5  1 0 0 0 1 mod 17").unwrap();
let id_mat = MatPolyOverZ::from_str("[[1  1, 0],[0, 1  1],[0, 0]]").unwrap();

let poly_ring_mat = MatPolynomialRingZq::from((id_mat, modulus));
assert!(poly_ring_mat.is_identity());
Source

pub fn is_square(&self) -> bool

Checks if a MatPolynomialRingZq is a square matrix.

Returns true if the number of rows and columns is identical.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, PolyOverZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = PolyOverZq::from_str("5  1 0 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[1  13, 0],[2  1 1, 1  1]]").unwrap();

let poly_ring_mat = MatPolynomialRingZq::from((poly_mat, modulus));
assert!(poly_ring_mat.is_square());
Source

pub fn is_zero(&self) -> bool

Checks if every entry of a MatPolynomialRingZq is 0.

Returns true if every entry is 0.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, PolyOverZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = PolyOverZq::from_str("5  1 0 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::new(2,2);

let poly_ring_mat = MatPolynomialRingZq::from((poly_mat, modulus));
assert!(poly_ring_mat.is_zero());
Source

pub fn is_symmetric(&self) -> bool

Checks if a MatPolynomialRingZq is symmetric.

Returns true if we have a_ij == a_ji for all i,j.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("2  2 1 mod 17").unwrap();
let value = MatPolynomialRingZq::identity(2,2, modulus);
assert!(value.is_symmetric());
Source

pub fn ntt(&self) -> MatNTTPolynomialRingZq

Returns the NTT representation of self.

§Examples
use qfall_math::integer_mod_q::{MatNTTPolynomialRingZq, MatPolynomialRingZq, ModulusPolynomialRingZq, PolyOverZq};
use crate::qfall_math::traits::SetCoefficient;

let n = 4;
let modulus = 7681;

let mut mod_poly = PolyOverZq::from(modulus);
mod_poly.set_coeff(0, 1).unwrap();
mod_poly.set_coeff(n, 1).unwrap();

let mut polynomial_modulus = ModulusPolynomialRingZq::from(&mod_poly);
polynomial_modulus.set_ntt_unchecked(1925);

let mat_poly_ring = MatPolynomialRingZq::sample_uniform(2, 3, &polynomial_modulus);

let mat_ntt_poly_ring = mat_poly_ring.ntt();
§Panics …
Source§

impl MatPolynomialRingZq

Source

pub fn sample_binomial( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<ModulusPolynomialRingZq>, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>

Outputs a MatPolynomialRingZq instance with entries chosen according to the binomial distribution parameterized by n and p.

Parameters:

  • num_rows: specifies the number of rows the new matrix should have
  • num_cols: specifies the number of columns the new matrix should have
  • modulus: specifies the ModulusPolynomialRingZq over which the ring of polynomials modulo modulus.get_q() is defined
  • n: specifies the number of trials
  • p: specifies the probability of success

Returns a new MatPolynomialRingZq instance with entries chosen according to the binomial distribution or a MathError if n < 0, p ∉ (0,1), n does not fit into an i64, or the dimensions of the matrix were chosen too small.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;
let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();

let sample = MatPolynomialRingZq::sample_binomial(2, 2, &modulus, 2, 0.5).unwrap();
§Errors and Failures
§Panics …
Source

pub fn sample_binomial_with_offset( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<ModulusPolynomialRingZq>, offset: impl Into<Z>, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>

Outputs a MatPolynomialRingZq instance with entries chosen according to the binomial distribution parameterized by n and p with given offset.

Parameters:

  • num_rows: specifies the number of rows the new matrix should have
  • num_cols: specifies the number of columns the new matrix should have
  • modulus: specifies the ModulusPolynomialRingZq over which the ring of polynomials modulo modulus.get_q() is defined
  • offset: specifies an offset applied to each sample collected from the binomial distribution
  • n: specifies the number of trials
  • p: specifies the probability of success

Returns a new MatPolynomialRingZq instance with entries chosen according to the binomial distribution or a MathError if n < 0, p ∉ (0,1), n does not fit into an i64, or the dimensions of the matrix were chosen too small.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;
let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();

let sample = MatPolynomialRingZq::sample_binomial_with_offset(2, 2, &modulus, -1, 2, 0.5).unwrap();
§Errors and Failures
§Panics …
Source§

impl MatPolynomialRingZq

Source

pub fn sample_discrete_gauss( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<ModulusPolynomialRingZq>, center: impl Into<Q>, s: impl Into<Q>, ) -> Result<MatPolynomialRingZq, MathError>

Initializes a new matrix with dimensions num_rows x num_columns and with each entry sampled independently according to the discrete Gaussian distribution, using PolynomialRingZq::sample_discrete_gauss.

Parameters:

  • num_rows: specifies the number of rows the new matrix should have
  • num_cols: specifies the number of columns the new matrix should have
  • modulus: specifies the Modulus for the matrix and the maximum degree any discrete Gaussian polynomial can have
  • n: specifies the range from which Z::sample_discrete_gauss samples
  • center: specifies the positions of the center with peak probability
  • s: specifies the Gaussian parameter, which is proportional to the standard deviation sigma * sqrt(2 * pi) = s

Returns a MatPolynomialRingZq with each entry sampled independently from the specified discrete Gaussian distribution or an error if s < 0.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;
let modulus = ModulusPolynomialRingZq::from_str("3  1 0 1 mod 17").unwrap();

let matrix = MatPolynomialRingZq::sample_discrete_gauss(3, 1, &modulus, 0, 1.25f32).unwrap();
§Errors and Failures
§Panics …
Source

pub fn sample_d( basis: &Self, k: impl Into<i64>, center: &[PolyOverQ], s: impl Into<Q>, ) -> Result<MatPolynomialRingZq, MathError>

SampleD samples a discrete Gaussian from the lattice with a provided basis.

We do not check whether basis is actually a basis. Hence, the callee is responsible for making sure that basis provides a suitable basis.

Parameters:

  • basis: specifies a basis for the lattice from which is sampled
  • k: the maximal length the polynomial can have
  • n: specifies the range from which Z::sample_discrete_gauss samples
  • center: specifies the positions of the center with peak probability
  • s: specifies the Gaussian parameter, which is proportional to the standard deviation sigma * sqrt(2 * pi) = s

Returns a vector of polynomials sampled according to the discrete Gaussian distribution or an error if the basis is not a row vector, s < 0, or the number of rows of the basis and center differ.

§Example
use qfall_math::{
    integer::{MatPolyOverZ, Z},
    integer_mod_q::{
        MatPolynomialRingZq,
        ModulusPolynomialRingZq,
    },
    rational::{PolyOverQ, Q},
};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[1  1, 3  0 0 1, 2  0 1]]").unwrap();
let basis = MatPolynomialRingZq::from((&poly_mat, &modulus));
let center = vec![PolyOverQ::default()];
let s = Q::from(8);

let sample = MatPolynomialRingZq::sample_d(&basis, 3, &center, s);
§Errors and Failures

This function implements SampleD according to:

  • [1] Gentry, Craig and Peikert, Chris and Vaikuntanathan, Vinod (2008). Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the fortieth annual ACM symposium on Theory of computing. https://dl.acm.org/doi/pdf/10.1145/1374376.1374407
§Panics …
  • if the polynomials have higher length than the provided upper bound k
Source§

impl MatPolynomialRingZq

Source

pub fn sample_uniform( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<ModulusPolynomialRingZq>, ) -> Self

Outputs a MatPolynomialRingZq instance with polynomials as entries, whose coefficients were chosen uniform at random in [0, modulus.get_q()).

The internally used uniform at random chosen bytes are generated by ThreadRng, which uses ChaCha12 and is considered cryptographically secure.

Parameters:

  • num_rows: specifies the number of rows the new matrix should have
  • num_cols: specifies the number of columns the new matrix should have
  • modulus: specifies the ModulusPolynomialRingZq over which the ring of polynomials modulo modulus.get_q() is defined

Returns a fresh MatPolynomialRingZq instance of length modulus.get_degree() - 1 with coefficients chosen uniform at random in [0, modulus.get_q()).

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;
let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();

let matrix = MatPolynomialRingZq::sample_uniform(2, 2, &modulus);
§Panics …
Source§

impl MatPolynomialRingZq

Source

pub fn reverse_columns(&mut self)

Swaps the i-th column with the n-i-th column for all i <= n/2 of the specified matrix with n columns.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;

let mut matrix = MatPolynomialRingZq::new(4, 3, ModulusPolynomialRingZq::from_str("3  1 0 1 mod 17").unwrap());
matrix.reverse_columns();
Source

pub fn reverse_rows(&mut self)

Swaps the i-th row with the n-i-th row for all i <= n/2 of the specified matrix with n rows.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;

let mut matrix = MatPolynomialRingZq::new(4, 3, ModulusPolynomialRingZq::from_str("3  1 0 1 mod 17").unwrap());
matrix.reverse_rows();
Source§

impl MatPolynomialRingZq

Source

pub fn sort_by_column<T: Ord>( &self, cond_func: fn(&Self) -> Result<T, MathError>, ) -> Result<Self, MathError>

Sorts the columns of the matrix based on some condition defined by cond_func in an ascending order.

This condition is usually a norm with the described input-output behaviour.

Parameters:

  • cond_func: computes values implementing Ord over the columns of the specified matrix. These values are then used to re-order / sort the rows of the matrix.

Returns an empty Ok if the action could be performed successfully. A MathError is returned if the execution of cond_func returned an error.

§Examples
§Use a build-in function as condition
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;
let mat = MatPolynomialRingZq::from_str("[[2  3 4, 1  2, 1  1]] / 3  1 2 3 mod 17").unwrap();
let cmp = MatPolynomialRingZq::from_str("[[1  1, 1  2, 2  3 4]] / 3  1 2 3 mod 17").unwrap();

let sorted = mat.sort_by_column(MatPolynomialRingZq::norm_eucl_sqrd).unwrap();

assert_eq!(cmp, sorted);
§Use a custom function as condition

This function needs to take a column vector as input and output a type implementing PartialOrd

use qfall_math::{integer_mod_q::MatPolynomialRingZq, integer::{PolyOverZ, Z}, error::MathError, traits::{MatrixDimensions, MatrixGetEntry}};
use crate::qfall_math::traits::GetCoefficient;
use std::str::FromStr;
let mat = MatPolynomialRingZq::from_str("[[2  0 4, 1  2, 1  1]] / 3  1 2 3 mod 17").unwrap();
let cmp = MatPolynomialRingZq::from_str("[[2  0 4, 1  1, 1  2]] / 3  1 2 3 mod 17").unwrap();

fn custom_cond_func(matrix: &MatPolynomialRingZq) -> Result<Z, MathError> {
    let mut sum = Z::ZERO;
    for entry in matrix.get_entries_rowwise() {
        sum += PolyOverZ::get_coeff(&entry, 0)?;
    }
    Ok(sum)
}

let sorted = mat.sort_by_column(custom_cond_func).unwrap();

assert_eq!(cmp, sorted);
§Errors and Failures
  • Returns a MathError of the same type as cond_func if the execution of cond_func fails.
Source

pub fn sort_by_row<T: Ord>( &self, cond_func: fn(&Self) -> Result<T, MathError>, ) -> Result<Self, MathError>

Sorts the rows of the matrix based on some condition defined by cond_func in an ascending order.

This condition is usually a norm with the described input-output behaviour.

Parameters:

  • cond_func: computes values implementing Ord over the columns of the specified matrix. These values are then used to re-order / sort the columns of the matrix.

Returns an empty Ok if the action could be performed successfully. A MathError is returned if the execution of cond_func returned an error.

§Examples
§Use a build-in function as condition
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;
let mat = MatPolynomialRingZq::from_str("[[2  3 4],[1  2],[1  1]] / 3  1 2 3 mod 17").unwrap();
let cmp = MatPolynomialRingZq::from_str("[[1  1],[1  2],[2  3 4]] / 3  1 2 3 mod 17").unwrap();

let sorted = mat.sort_by_row(MatPolynomialRingZq::norm_infty).unwrap();

assert_eq!(cmp, sorted);
§Use a custom function as condition

This function needs to take a row vector as input and output a type implementing PartialOrd

use qfall_math::{integer_mod_q::MatPolynomialRingZq, integer::{PolyOverZ, Z}, error::MathError, traits::{MatrixDimensions, MatrixGetEntry}};
use crate::qfall_math::traits::GetCoefficient;
use std::str::FromStr;
let mat = MatPolynomialRingZq::from_str("[[2  0 4],[1  2],[1  1]] / 3  1 2 3 mod 17").unwrap();
let cmp = MatPolynomialRingZq::from_str("[[2  0 4],[1  1],[1  2]] / 3  1 2 3 mod 17").unwrap();

fn custom_cond_func(matrix: &MatPolynomialRingZq) -> Result<Z, MathError> {
    let mut sum = Z::ZERO;
    for entry in matrix.get_entries_columnwise() {
        sum += PolyOverZ::get_coeff(&entry, 0)?;
    }
    Ok(sum)
}

let sorted = mat.sort_by_row(custom_cond_func).unwrap();

assert_eq!(cmp, sorted);
§Errors and Failures
  • Returns a MathError of the same type as cond_func if the execution of cond_func fails.
Source§

impl MatPolynomialRingZq

Source

pub fn tensor_product_safe(&self, other: &Self) -> Result<Self, MathError>

Computes the tensor product of self with other.

Parameters:

  • other: the value with which the tensor product is computed.

Returns the tensor product of self with other or an error if the moduli of the provided matrices mismatch.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;

let mat_1 = MatPolynomialRingZq::from_str("[[1  1, 2  1 1]] / 3  1 2 3 mod 17").unwrap();
let mat_2 = MatPolynomialRingZq::from_str("[[1  1, 1  2]] / 3  1 2 3 mod 17").unwrap();

let mat_ab = mat_1.tensor_product_safe(&mat_2).unwrap();
let mat_ba = mat_2.tensor_product_safe(&mat_1).unwrap();

let res_ab = "[[1  1, 1  2, 2  1 1, 2  2 2]] / 3  1 2 3 mod 17";
let res_ba = "[[1  1, 2  1 1, 1  2, 2  2 2]] / 3  1 2 3 mod 17";
assert_eq!(mat_ab, MatPolynomialRingZq::from_str(res_ab).unwrap());
assert_eq!(mat_ba, MatPolynomialRingZq::from_str(res_ba).unwrap());
§Errors and Failures
Source§

impl MatPolynomialRingZq

Source

pub fn pretty_string( &self, nr_printed_rows: u64, nr_printed_columns: u64, ) -> String

Outputs the matrix as a String, where the upper leftmost nr_printed_rows x nr_printed_columns submatrix is output entirely as well as the corresponding entries in the last column and row of the matrix.

Parameters:

  • nr_printed_rows: defines the number of rows of the upper leftmost matrix that are printed entirely
  • nr_printed_columns: defines the number of columns of the upper leftmost matrix that are printed entirely

Returns a String representing the abbreviated matrix.

§Example
use qfall_math::integer::MatZ;
let matrix = MatZ::identity(10, 10);

println!("Matrix: {}", matrix.pretty_string(2, 2));
// outputs the following:
// Matrix: [
//   [1, 0, , ..., 0],
//   [0, 1, , ..., 0],
//   [...],
//   [0, 0, , ..., 1]
// ]
Source§

impl MatPolynomialRingZq

Source

pub fn transpose(&self) -> Self

Returns the transposed form of the given matrix, i.e. rows get transformed to columns and vice versa.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[1  42],[2  1 2],[1  17]]").unwrap();
let poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));

let transpose = poly_ring_mat.transpose();
Source§

impl MatPolynomialRingZq

Source

pub unsafe fn get_fmpz_poly_mat_struct(&mut self) -> &mut fmpz_poly_mat_struct

Returns a mutable reference to the underlying fmpz_poly_mat_struct by calling get_fmpz_poly_mat_struct on matrix.

WARNING: The returned struct is part of flint_sys. Any changes to this object are unsafe and may introduce memory leaks. In case you are calling this function to a modulus struct, please be aware that most moduli are shared across multiple instances and all modifications of this struct will affect any other instance with a reference to this object.

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl MatPolynomialRingZq

Source

pub unsafe fn get_fq_ctx_struct(&mut self) -> &mut fq_ctx_struct

Returns a mutable reference to the underlying fq_ctx_struct by calling get_fq_ctx_struct on modulus.

WARNING: The returned struct is part of flint_sys. Any changes to this object are unsafe and may introduce memory leaks. In case you are calling this function to a modulus struct, please be aware that most moduli are shared across multiple instances and all modifications of this struct will affect any other instance with a reference to this object.

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl MatPolynomialRingZq

Source

pub unsafe fn set_fmpz_poly_mat_struct( &mut self, flint_struct: fmpz_poly_mat_struct, )

Sets the field fmpz_poly_mat_struct to flint_struct by calling set_fmpz_poly_mat_struct on matrix.

Parameters:

  • flint_struct: value to set the attribute to

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Ensure that the old struct does not share any memory with any other structs that might be used in the future. The memory of the old struct is freed using this function.

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl MatPolynomialRingZq

Source

pub unsafe fn set_fq_ctx_struct(&mut self, flint_struct: fq_ctx_struct)

Sets the field fq_ctx_struct to flint_struct by calling set_fq_ctx_struct on modulus.

Parameters:

  • flint_struct: value to set the attribute to

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Ensure that the old struct does not share any memory with any other structs that might be used in the future. The memory of the old struct is freed using this function.

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl MatPolynomialRingZq

Source

pub fn dot_product(&self, other: &Self) -> Result<PolynomialRingZq, MathError>

Returns the dot product of two vectors of type MatPolynomialRingZq. Note that the dimensions of the two vectors are irrelevant for the dot product.

Parameters:

  • other: specifies the other vector the dot product is calculated over

Returns the resulting dot_product as a PolynomialRingZq or an error if the given MatPolynomialRingZq instances aren’t vectors or have different numbers of entries.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_vec_1 = MatPolyOverZ::from_str("[[4  -1 0 1 1],[2  1 2]]").unwrap();
let poly_ring_vec_1 = MatPolynomialRingZq::from((&poly_vec_1, &modulus));
let poly_vec_2 = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42]]").unwrap();
let poly_ring_vec_2 = MatPolynomialRingZq::from((&poly_vec_2, &modulus));

let dot_prod = poly_ring_vec_1.dot_product(&poly_ring_vec_2).unwrap();
§Errors and Failures
Source§

impl MatPolynomialRingZq

Source

pub fn is_row_vector(&self) -> bool

Returns true if the provided MatPolynomialRingZq has only one row, i.e. is a row vector. Otherwise, returns false.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat_1 = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42]]").unwrap();
let poly_mat_2 = MatPolyOverZ::from_str("[[4  -1 0 1 1],[2  1 2]]").unwrap();

let row_vec = MatPolynomialRingZq::from((&poly_mat_1, &modulus));
let col_vec = MatPolynomialRingZq::from((&poly_mat_2, &modulus));

assert!(row_vec.is_row_vector());
assert!(!col_vec.is_row_vector());
Source

pub fn is_column_vector(&self) -> bool

Returns true if the provided MatPolynomialRingZq has only one column, i.e. is a column vector. Otherwise, returns false.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat_1 = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42]]").unwrap();
let poly_mat_2 = MatPolyOverZ::from_str("[[4  -1 0 1 1],[2  1 2]]").unwrap();

let row_vec = MatPolynomialRingZq::from((&poly_mat_1, &modulus));
let col_vec = MatPolynomialRingZq::from((&poly_mat_2, &modulus));

assert!(col_vec.is_column_vector());
assert!(!row_vec.is_column_vector());
Source

pub fn is_vector(&self) -> bool

Returns true if the provided MatPolynomialRingZq has only one column or one row, i.e. is a vector. Otherwise, returns false.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat_1 = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42]]").unwrap();
let poly_mat_2 = MatPolyOverZ::from_str("[[4  -1 0 1 1],[2  1 2]]").unwrap();

let row_vec = MatPolynomialRingZq::from((&poly_mat_1, &modulus));
let col_vec = MatPolynomialRingZq::from((&poly_mat_2, &modulus));

assert!(row_vec.is_vector());
assert!(col_vec.is_vector());
Source

pub fn has_single_entry(&self) -> bool

Returns true if the provided MatPolynomialRingZq has only one entry, i.e. is a 1x1 matrix. Otherwise, returns false.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[1  42]]").unwrap();

let vec = MatPolynomialRingZq::from((&poly_mat, &modulus));

assert!(vec.has_single_entry());
Source§

impl MatPolynomialRingZq

Source

pub fn norm_eucl_sqrd(&self) -> Result<Z, MathError>

Returns the squared Euclidean norm or 2-norm of the given (row or column) vector or an error if the given MatPolynomialRingZq instance is not a (row or column) vector. The squared Euclidean norm for a polynomial vector is obtained by computing the sum of the squared Euclidean norms of the individual polynomials. The squared Euclidean norm for a polynomial is obtained by treating the coefficients of the polynomial as a vector and then applying the standard squared Euclidean norm.

Each length of an entry in this vector is defined as the shortest distance to the next zero representative modulo q.

§Examples
use qfall_math::integer::Z;
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;

let vec = MatPolynomialRingZq::from_str("[[1  1],[2  2 2],[1  3]] / 3  1 2 3 mod 11").unwrap();

let sqrd_2_norm = vec.norm_eucl_sqrd().unwrap();

assert_eq!(Z::from(18), sqrd_2_norm);
§Errors and Failures
Source

pub fn norm_eucl(&self) -> Result<Q, MathError>

Returns the Euclidean norm or 2-norm of the given (row or column) vector or an error if the given MatPolynomialRingZq instance is not a (row or column) vector.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;

let vec = MatPolynomialRingZq::from_str("[[1  2],[2  2 2],[1  2]] / 3  1 2 3 mod 11").unwrap();

let sqrd_2_norm = vec.norm_eucl().unwrap();

assert_eq!(4, sqrd_2_norm);
§Errors and Failures
Source

pub fn norm_infty(&self) -> Result<Z, MathError>

Returns the infinity norm or ∞-norm of the given (row or column) vector or an error if the given MatPolynomialRingZq instance is not a (row or column) vector. The infinity norm for a polynomial vector is obtained by computing the infinity norm on the vector consisting of the infinity norms of the individual polynomials. The infinity norm for a polynomial is obtained by treating the coefficients of the polynomial as a vector and then applying the standard infinity norm.

Each length of an entry in this vector is defined as the shortest distance to the next zero representative modulo q.

§Examples
use qfall_math::integer::Z;
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;

let vec = MatPolynomialRingZq::from_str("[[1  1],[2  2 4],[1  3]] / 3  1 2 3 mod 11").unwrap();

let infty_norm = vec.norm_infty().unwrap();

assert_eq!(Z::from(4), infty_norm);
§Errors and Failures

Trait Implementations§

Source§

impl Add<&MatPolyOverZ> for &MatPolynomialRingZq

Source§

fn add(self, other: &MatPolyOverZ) -> Self::Output

Implements the Add trait for a MatPolynomialRingZq matrix with a MatPolyOverZ matrix. Add is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the value to add with self

Returns the addition of self and other as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let mat_1 = MatPolynomialRingZq::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]] / 3  1 2 3 mod 17").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]]").unwrap();

let mat_3 = &mat_1 + &mat_2;
§Panics …
  • if the dimensions of self and other do not match for multiplication.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the + operator.
Source§

impl Add for &MatPolynomialRingZq

Source§

fn add(self, other: Self) -> Self::Output

Implements the Add trait for two MatPolynomialRingZq values. Add is implemented for any combination of MatPolynomialRingZq and borrowed MatPolynomialRingZq.

Parameters:

  • other: specifies the polynomial to add to self

Returns the sum of both polynomials as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat_1 = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat_1 = MatPolynomialRingZq::from((&poly_mat_1, &modulus));
let poly_mat_2 = MatPolyOverZ::from_str("[[3  3 0 1, 1  42],[0, 1  17]]").unwrap();
let poly_ring_mat_2 = MatPolynomialRingZq::from((&poly_mat_2, &modulus));

let poly_ring_mat_3: MatPolynomialRingZq = &poly_ring_mat_1 + &poly_ring_mat_2;
let poly_ring_mat_4: MatPolynomialRingZq = poly_ring_mat_1 + poly_ring_mat_2;
let poly_ring_mat_5: MatPolynomialRingZq = &poly_ring_mat_3 + poly_ring_mat_4;
let poly_ring_mat_6: MatPolynomialRingZq = poly_ring_mat_3 + &poly_ring_mat_5;
§Panics …
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the + operator.
Source§

impl AddAssign<&MatPolyOverZ> for MatPolynomialRingZq

Source§

fn add_assign(&mut self, other: &MatPolyOverZ)

Source§

impl AddAssign<&MatPolynomialRingZq> for MatPolynomialRingZq

Source§

fn add_assign(&mut self, other: &Self)

Computes the addition of self and other reusing the memory of self. AddAssign can be used on MatPolynomialRingZq in combination with MatPolynomialRingZq and MatPolyOverZ.

Parameters:

  • other: specifies the value to add to self
§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("3  1 0 1 mod 7").unwrap();
let mut a = MatPolynomialRingZq::identity(2, 2, &modulus);
let b = MatPolynomialRingZq::new(2, 2, &modulus);
let c = MatPolyOverZ::new(2, 2);

a += &b;
a += b;
a += &c;
a += c;
§Panics …
  • if the matrix dimensions mismatch.
  • if the moduli of the matrices mismatch.
Source§

impl AddAssign<MatPolyOverZ> for MatPolynomialRingZq

Source§

fn add_assign(&mut self, other: MatPolyOverZ)

Source§

impl AddAssign for MatPolynomialRingZq

Source§

impl Clone for MatPolynomialRingZq

Source§

fn clone(&self) -> MatPolynomialRingZq

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl CompareBase<&MatPolyOverZ> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<&MatPolynomialRingZq> for MatNTTPolynomialRingZq

Source§

fn compare_base(&self, other: &&MatPolynomialRingZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error( &self, other: &&MatPolynomialRingZq, ) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&MatPolynomialRingZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &&MatPolynomialRingZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error( &self, other: &&MatPolynomialRingZq, ) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&MatZ> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<&MatZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &&MatZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&MatZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&PolyOverZ> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<&PolyOverZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &&PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&PolynomialRingZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &&PolynomialRingZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error( &self, other: &&PolynomialRingZq, ) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&Zq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &&Zq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&Zq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl<Integer: Into<Z>> CompareBase<Integer> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<MatPolyOverZ> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<MatPolynomialRingZq> for MatNTTPolynomialRingZq

Source§

fn compare_base(&self, other: &MatPolynomialRingZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error( &self, other: &MatPolynomialRingZq, ) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<MatZ> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<MatZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &MatZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &MatZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<PolyOverZ> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<PolyOverZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<PolynomialRingZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &PolynomialRingZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &PolynomialRingZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<Zq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &Zq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &Zq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &MatPolynomialRingZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error( &self, other: &MatPolynomialRingZq, ) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl Concatenate for &MatPolynomialRingZq

Source§

fn concat_vertical(self, other: Self) -> Result<Self::Output, MathError>

Concatenates self with other vertically, i.e. other is added below.

Parameters:

  • other: the other matrix to concatenate with self

Returns a vertical concatenation of the two matrices or a an error, if the matrices can not be concatenated vertically.

§Examples
use crate::qfall_math::traits::*;
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;

let modulus_str = "3  1 0 1 mod 17";
let modulus = ModulusPolynomialRingZq::from_str(modulus_str).unwrap();

let mat_1 = MatPolynomialRingZq::new(13, 5, &modulus);
let mat_2 = MatPolynomialRingZq::new(17, 5, &modulus);

let mat_vert = mat_1.concat_vertical(&mat_2).unwrap();
§Errors and Failures
Source§

fn concat_horizontal(self, other: Self) -> Result<Self::Output, MathError>

Concatenates self with other horizontally, i.e. other is added on the right.

Parameters:

  • other: the other matrix to concatenate with self

Returns a horizontal concatenation of the two matrices or a an error, if the matrices can not be concatenated horizontally.

§Examples
use crate::qfall_math::traits::*;
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;

let modulus_str = "3  1 17 1 mod 17";
let modulus = ModulusPolynomialRingZq::from_str(&modulus_str).unwrap();

let mat_1 = MatPolynomialRingZq::new(17, 5, &modulus);
let mat_2 = MatPolynomialRingZq::new(17, 7, &modulus);

let mat_vert = mat_1.concat_horizontal(&mat_2).unwrap();
§Errors and Failures
Source§

type Output = MatPolynomialRingZq

Source§

impl Debug for MatPolynomialRingZq

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'de> Deserialize<'de> for MatPolynomialRingZq

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Display for MatPolynomialRingZq

Source§

fn fmt(&self, __derive_more_f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl From<&MatPolynomialRingZq> for MatNTTPolynomialRingZq

Source§

fn from(matrix: &MatPolynomialRingZq) -> Self

Computes the NTT representation of matrix.

Parameters:

  • matrix: the matrix that’s going to be represented in NTT format.

Returns the NTT representation as a MatNTTPolynomialRingZq of matrix.

§Examples
use qfall_math::integer_mod_q::{MatNTTPolynomialRingZq, MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;
let mut modulus = ModulusPolynomialRingZq::from_str("5  1 0 0 0 1 mod 257").unwrap();
modulus.set_ntt_unchecked(64);

let mat_poly_ring = MatPolynomialRingZq::sample_uniform(2, 3, &modulus);

let mat_ntt_poly_ring = MatNTTPolynomialRingZq::from(&mat_poly_ring);
§Panics …
Source§

impl From<&MatPolynomialRingZq> for MatPolynomialRingZq

Source§

impl From<&MatPolynomialRingZq> for String

Source§

fn from(value: &MatPolynomialRingZq) -> Self

Converts a MatPolynomialRingZq into its String representation.

Parameters:

  • value: specifies the matrix that will be represented as a String

Returns a String of the form "[[poly_1, poly_2, poly_3],[poly_4, poly_5, poly_6]] / poly_7 mod q".

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;
let matrix = MatPolynomialRingZq::from_str("[[2  2 2, 1  2],[0, 1  3]] / 2  4 4 mod 3").unwrap();

let string: String = matrix.into();
Source§

impl<Matrix: Into<MatPolyOverZ>, Mod: Into<ModulusPolynomialRingZq>> From<(Matrix, Mod)> for MatPolynomialRingZq

Source§

fn from((matrix, modulus): (Matrix, Mod)) -> Self

Creates a polynomial ring matrix of type MatPolynomialRingZq from a value that implements Into<MatPolyOverZ> and a value that implements Into<ModulusPolynomialRingZq>.

Parameters:

  • matrix: the polynomial matrix defining each entry.
  • modulus: the modulus that is applied to each polynomial.

Returns a new MatPolynomialRingZq with the entries from matrix under the modulus modulus.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();

let poly_ring_mat = MatPolynomialRingZq::from((poly_mat, modulus));
Source§

impl From<MatNTTPolynomialRingZq> for MatPolynomialRingZq

Source§

fn from(matrix: MatNTTPolynomialRingZq) -> Self

Creates a polynomial ring matrix of type MatPolynomialRingZq from the corresponding MatNTTPolynomialRingZq.

Parameters:

  • matrix: the polynomial matrix defining each entry.

Returns a new MatPolynomialRingZq with the entries from matrix.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, MatNTTPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;
let mut modulus = ModulusPolynomialRingZq::from_str("5  1 0 0 0 1 mod 257").unwrap();
modulus.set_ntt_unchecked(64);
let ntt_mat = MatNTTPolynomialRingZq::sample_uniform(1, 1, &modulus);

let poly_ring_mat = MatPolynomialRingZq::from(ntt_mat);
§Panics …
Source§

impl From<MatPolynomialRingZq> for String

Source§

fn from(value: MatPolynomialRingZq) -> Self

Documentation can be found at String::from for &MatPolynomialRingZq.

Source§

impl FromCoefficientEmbedding<(&MatZq, &ModulusPolynomialRingZq, i64)> for MatPolynomialRingZq

Source§

fn from_coefficient_embedding( embedding: (&MatZq, &ModulusPolynomialRingZq, i64), ) -> Self

Computes a MatPolynomialRingZq from a coefficient embedding. Interprets the first degree + 1 many rows of the matrix as the coefficients of the first row of polynomials. The first one containing their coefficients of degree 0, and the last one their coefficients of degree degree. It inverts the operation of MatPolynomialRingZq::into_coefficient_embedding.

Parameters:

  • embedding: the coefficient matrix, the modulus, and the maximal degree of the polynomials (defines how the matrix is split)

Returns a row vector of polynomials that corresponds to the embedding.

§Examples
use std::str::FromStr;
use qfall_math::{
    integer_mod_q::{MatZq, MatPolynomialRingZq, ModulusPolynomialRingZq},
    traits::FromCoefficientEmbedding,
};

let matrix = MatZq::from_str("[[17, 1],[3, 2],[-5, 3],[1, 2]] mod 19").unwrap();
let modulus = ModulusPolynomialRingZq::from_str("4  1 2 3 4 mod 19").unwrap();
let mat = MatPolynomialRingZq::from_coefficient_embedding((&matrix, &modulus, 1));
let cmp_mat = MatPolynomialRingZq::from_str("[[2  17 3, 2  1 2],[2  -5 1, 2  3 2]] / 4  1 2 3 4 mod 19").unwrap();
assert_eq!(cmp_mat, mat);
§Panics …
  • if degree+1 does not divide the number of rows of the embedding.
  • if the moduli mismatch.
Source§

impl FromStr for MatPolynomialRingZq

Source§

fn from_str(string: &str) -> Result<Self, MathError>

Creates a MatPolynomialRingZq matrix from a String.

Warning: Each entry is parsed as a PolyOverZ object. If an entry string starts with a correctly formatted PolyOverZ object, the rest of this entry string is ignored. This means that the entry input string "4 0 1 2 3" is the same as "4 0 1 2 3 4 5 6 7".

Parameters:

  • string: the matrix of form: "[[poly_1, poly_2, poly_3],[poly_4, poly_5, poly_6]] / poly_7 mod 11" for a 2x3 matrix where the first three polynomials are in the first row, the second three are in the second row, and the seventh polynomial and 11 form the modulus.

Note that the strings for entries, the polynomial modulus and the integer modulus are trimmed, i.e. all whitespaces around all values are ignored.

Returns a MatPolynomialRingZq or an error if the matrix is not formatted in a suitable way, the number of rows or columns is too large (must fit into i64), the number of entries in rows is unequal, or if an entry is not formatted correctly.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;

let matrix = MatPolynomialRingZq::from_str("[[2  2 2, 1  2],[0, 1  3]] / 2  3 3 mod 24").unwrap();
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;

let str_1 = "[[2  2 2, 1  2],[0, 1  3]] / 2  3 3 mod 24";
let matrix = MatPolynomialRingZq::from_str(str_1).unwrap();
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use std::str::FromStr;

let string = String::from("[[2  2 2, 1  2],[0, 1  3]] / 2  3 3 mod 24");
let matrix = MatPolynomialRingZq::from_str(&string).unwrap();
§Errors and Failures
  • Returns a MathError of type MathError::StringConversionError,
    • if the matrix is not formatted in a suitable way,
    • if the number of rows or columns is too large (must fit into i64),
    • if the number of entries in rows is unequal,
    • if the delimiter / and mod could not be found,
    • if the modulus is not formatted correctly, for further information see PolyOverZq::from_str, or
    • if an entry is not formatted correctly. For further information see PolyOverZ::from_str.
  • Returns a MathError of type InvalidModulus
    • if modulus is smaller than 2, or
    • if the modulus polynomial is 0.
§Panics …
  • if the provided number of rows and columns are not suited to create a matrix. For further information see MatPolyOverZ::new.
Source§

type Err = MathError

The associated error which can be returned from parsing.
Source§

impl IntoCoefficientEmbedding<(MatZq, ModulusPolynomialRingZq)> for &MatPolynomialRingZq

Source§

fn into_coefficient_embedding( self, size: impl Into<i64>, ) -> (MatZq, ModulusPolynomialRingZq)

Computes the coefficient embedding of a matrix of polynomials in a MatZq and a ModulusPolynomialRingZq. Each column vector of polynomials is embedded into size many row vectors of coefficients. The first one containing their coefficients of degree 0, and the last one their coefficients of degree size - 1. It inverts the operation of MatPolynomialRingZq::from_coefficient_embedding.

The representation of the polynomials in the embedding is in the range [0, modulus_polynomial).

Parameters:

  • size: determines the number of rows each polynomial is embedded in. It has to be larger than the degree of all polynomials.

Returns a coefficient embedding as a matrix if size is large enough.

§Examples
use std::str::FromStr;
use qfall_math::{
    integer_mod_q::{MatZq, MatPolynomialRingZq},
    traits::IntoCoefficientEmbedding,
};

let poly = MatPolynomialRingZq::from_str("[[1  1, 2  1 2],[1  -1, 2  -1 -2]] / 3  1 2 3 mod 17").unwrap();
let embedding = poly.into_coefficient_embedding(2);
let cmp_mat = MatZq::from_str("[[1, 1],[0, 2],[-1, -1],[0, -2]] mod 17").unwrap();
assert_eq!((cmp_mat, poly.get_mod()), embedding);
§Panics …
  • if size is not larger than the degree of the polynomial, i.e. not all coefficients can be embedded.
Source§

impl MatrixDimensions for MatPolynomialRingZq

Source§

fn get_num_rows(&self) -> i64

Returns the number of rows of the matrix as an i64.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use qfall_math::traits::*;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));

let rows = poly_ring_mat.get_num_rows();
Source§

fn get_num_columns(&self) -> i64

Returns the number of columns of the matrix as an i64.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use qfall_math::traits::*;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));

let rows = poly_ring_mat.get_num_columns();
Source§

impl MatrixGetEntry<PolyOverZ> for MatPolynomialRingZq

Source§

unsafe fn get_entry_unchecked(&self, row: i64, column: i64) -> PolyOverZ

Outputs the PolyOverZ value of a specific matrix entry without checking whether it’s part of the matrix.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located

Returns the PolyOverZ value of the matrix at the position of the given row and column.

§Safety

To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, PolyOverZ};
use qfall_math::traits::*;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 50").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));

let entry_1: PolyOverZ = unsafe { poly_ring_mat.get_entry_unchecked(1, 0) };
let entry_2: PolyOverZ = unsafe { poly_ring_mat.get_entry_unchecked(0, 1) };


assert_eq!(entry_1, PolyOverZ::from(0));
assert_eq!(entry_2, PolyOverZ::from(42));
Source§

fn get_entry( &self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, ) -> Result<T, MathError>

Returns the value of a specific matrix entry. Read more
Source§

fn get_entries(&self) -> Vec<Vec<T>>

Outputs a Vec<Vec<T>> containing all entries of the matrix s.t. any entry in row i and column j can be accessed via entries[i][j] if entries = matrix.get_entries. Read more
Source§

fn get_entries_rowwise(&self) -> Vec<T>

Outputs a Vec<T> containing all entries of the matrix in a row-wise order, i.e. a matrix [[2, 3, 4],[5, 6, 7]] can be accessed via this function in this order [2, 3, 4, 5, 6, 7]. Read more
Source§

fn get_entries_columnwise(&self) -> Vec<T>

Outputs a Vec<T> containing all entries of the matrix in a column-wise order, i.e. a matrix [[2, 3, 4],[5, 6, 7]] can be accessed via this function in this order [2, 5, 3, 6, 4, 7]. Read more
Source§

impl MatrixGetEntry<PolynomialRingZq> for MatPolynomialRingZq

Source§

unsafe fn get_entry_unchecked(&self, row: i64, column: i64) -> PolynomialRingZq

Outputs the PolynomialRingZq value of a specific matrix entry without checking whether it’s part of the matrix.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located

Returns the PolynomialRingZq value of the matrix at the position of the given row and column.

§Safety

To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq, PolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, PolyOverZ};
use qfall_math::traits::*;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 50").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));

let entry_1: PolynomialRingZq = unsafe { poly_ring_mat.get_entry_unchecked(0, 1) };
let entry_2: PolynomialRingZq = unsafe { poly_ring_mat.get_entry_unchecked(0, 1) };

let value_cmp = PolynomialRingZq::from((&PolyOverZ::from(42), &modulus));
assert_eq!(entry_1, value_cmp);
assert_eq!(entry_1, entry_2);
Source§

fn get_entry( &self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, ) -> Result<T, MathError>

Returns the value of a specific matrix entry. Read more
Source§

fn get_entries(&self) -> Vec<Vec<T>>

Outputs a Vec<Vec<T>> containing all entries of the matrix s.t. any entry in row i and column j can be accessed via entries[i][j] if entries = matrix.get_entries. Read more
Source§

fn get_entries_rowwise(&self) -> Vec<T>

Outputs a Vec<T> containing all entries of the matrix in a row-wise order, i.e. a matrix [[2, 3, 4],[5, 6, 7]] can be accessed via this function in this order [2, 3, 4, 5, 6, 7]. Read more
Source§

fn get_entries_columnwise(&self) -> Vec<T>

Outputs a Vec<T> containing all entries of the matrix in a column-wise order, i.e. a matrix [[2, 3, 4],[5, 6, 7]] can be accessed via this function in this order [2, 5, 3, 6, 4, 7]. Read more
Source§

impl MatrixGetSubmatrix for MatPolynomialRingZq

Source§

unsafe fn get_submatrix_unchecked( &self, row_1: i64, row_2: i64, col_1: i64, col_2: i64, ) -> Self

Returns a deep copy of the submatrix defined by the given parameters and does not check the provided dimensions. There is also a safe version of this function that checks the input.

Parameters: row_1: the starting row of the submatrix row_2: the ending row of the submatrix col_1: the starting column of the submatrix col_2: the ending column of the submatrix

Returns the submatrix from (row_1, col_1) to (row_2, col_2)(exclusively).

§Examples
use qfall_math::{integer::MatPolyOverZ, traits::MatrixGetSubmatrix};
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();();
let mat = MatPolyOverZ::identity(3, 3);
let poly_ring_mat = MatPolynomialRingZq::from((&mat, &modulus));

let sub_mat_1 = poly_ring_mat.get_submatrix(0, 2, 1, 1).unwrap();
let sub_mat_2 = poly_ring_mat.get_submatrix(0, -1, 1, -2).unwrap();
let sub_mat_3 = unsafe{poly_ring_mat.get_submatrix_unchecked(0, 3, 1, 2)};

let e_2 = MatPolyOverZ::from_str("[[0],[1  1],[0]]").unwrap();
let e_2 = MatPolynomialRingZq::from((&e_2, &modulus));
assert_eq!(e_2, sub_mat_1);
assert_eq!(e_2, sub_mat_2);
assert_eq!(e_2, sub_mat_3);
§Safety

To use this function safely, make sure that the selected submatrix is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

Source§

fn get_row( &self, row: impl TryInto<i64> + Display + Clone, ) -> Result<Self, MathError>

Outputs the row vector of the specified row. Read more
Source§

unsafe fn get_row_unchecked(&self, row: i64) -> Self

Outputs the row vector of the specified row. Read more
Source§

fn get_column( &self, column: impl TryInto<i64> + Display + Clone, ) -> Result<Self, MathError>

Outputs the column vector of the specified column. Read more
Source§

unsafe fn get_column_unchecked(&self, column: i64) -> Self

Outputs the column vector of the specified column. Read more
Source§

fn get_submatrix( &self, row_1: impl TryInto<i64> + Display, row_2: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, col_2: impl TryInto<i64> + Display, ) -> Result<Self, MathError>

Returns a deep copy of the submatrix defined by the given parameters. All entries starting from (row_1, col_1) to (row_2, col_2)(inclusively) are collected in a new matrix. Note that row_1 >= row_2 and col_1 >= col_2 must hold after converting negative indices. Otherwise the function will panic. Read more
Source§

fn get_rows(&self) -> Vec<Self>

Outputs a Vec containing all rows of the matrix in order. Use this function for simple iteration over the rows of the matrix. Read more
Source§

fn get_columns(&self) -> Vec<Self>

Outputs a Vec containing all columns of the matrix in order. Use this function for simple iteration over the columns of the matrix. Read more
Source§

impl MatrixSetEntry<&PolyOverZ> for MatPolynomialRingZq

Source§

fn set_entry( &mut self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, value: &PolyOverZ, ) -> Result<(), MathError>

Sets the value of a specific matrix entry according to a given value of type PolyOverZ.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located
  • value: specifies the value to which the entry is set

Negative indices can be used to index from the back, e.g., -1 for the last element.

Returns an empty Ok if the action could be performed successfully. Otherwise, a MathError is returned if the specified entry is not part of the matrix.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, PolyOverZ};
use crate::qfall_math::traits::*;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[0, 1  42],[0, 2  1 2]]").unwrap();
let mut poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));
let value = PolyOverZ::default();

poly_ring_mat.set_entry(0, 1, &value).unwrap();
poly_ring_mat.set_entry(-1, -1, &value).unwrap();

let mat_cmp = MatPolynomialRingZq::from((&MatPolyOverZ::new(2, 2), &modulus));
assert_eq!(poly_ring_mat, mat_cmp);
§Errors and Failures
Source§

unsafe fn set_entry_unchecked( &mut self, row: i64, column: i64, value: &PolyOverZ, )

Sets the value of a specific matrix entry according to a given value of type PolyOverZ without checking whether the coordinate is part of the matrix, if the moduli match or if the entry is reduced.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located
  • value: specifies the value to which the entry is set
§Safety

To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, PolyOverZ};
use crate::qfall_math::traits::*;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[0, 1  42],[0, 2  1 2]]").unwrap();
let mut poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));
let value = PolyOverZ::default();

unsafe {
    poly_ring_mat.set_entry_unchecked(0, 1, &value);
    poly_ring_mat.set_entry_unchecked(1, 1, &value);
}

let mat_cmp = MatPolynomialRingZq::from((&MatPolyOverZ::new(2, 2), &modulus));
assert_eq!(poly_ring_mat, mat_cmp);
Source§

impl MatrixSetEntry<&PolynomialRingZq> for MatPolynomialRingZq

Source§

unsafe fn set_entry_unchecked( &mut self, row: i64, column: i64, value: &PolynomialRingZq, )

Sets the value of a specific matrix entry according to a given value of type PolynomialRingZq without checking whether the coordinate is part of the matrix or if the moduli match.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located
  • value: specifies the value to which the entry is set
§Safety

To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq, PolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, PolyOverZ};
use crate::qfall_math::traits::*;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat = MatPolyOverZ::from_str("[[0, 1  42],[0, 2  1 2]]").unwrap();
let mut poly_ring_mat = MatPolynomialRingZq::from((&poly_mat, &modulus));
let value = PolynomialRingZq::from((&PolyOverZ::default(), &modulus));

unsafe {
    poly_ring_mat.set_entry_unchecked(0, 1, &value);
    poly_ring_mat.set_entry_unchecked(1, 1, &value);
}

let mat_cmp = MatPolynomialRingZq::from((&MatPolyOverZ::new(2, 2), &modulus));
assert_eq!(poly_ring_mat, mat_cmp);
Source§

fn set_entry( &mut self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, value: T, ) -> Result<(), MathError>

Sets the value of a specific matrix entry according to a given value. Read more
Source§

impl MatrixSetEntry<PolyOverZ> for MatPolynomialRingZq

Source§

fn set_entry( &mut self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, value: PolyOverZ, ) -> Result<(), MathError>

Documentation can be found at MatPolynomialRingZq::set_entry for &PolyOverZ.

Source§

unsafe fn set_entry_unchecked( &mut self, row: i64, column: i64, value: PolyOverZ, )

Documentation can be found at MatPolynomialRingZq::set_entry for &PolyOverZ.

Source§

impl MatrixSetEntry<PolynomialRingZq> for MatPolynomialRingZq

Source§

fn set_entry( &mut self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, value: PolynomialRingZq, ) -> Result<(), MathError>

Documentation can be found at MatPolynomialRingZq::set_entry for &PolynomialRingZq.

Source§

unsafe fn set_entry_unchecked( &mut self, row: i64, column: i64, value: PolynomialRingZq, )

Documentation can be found at MatPolynomialRingZq::set_entry for &PolynomialRingZq.

Source§

impl MatrixSetSubmatrix for MatPolynomialRingZq

Source§

unsafe fn set_submatrix_unchecked( &mut self, row_self_start: i64, col_self_start: i64, row_self_end: i64, col_self_end: i64, other: &Self, row_other_start: i64, col_other_start: i64, row_other_end: i64, col_other_end: i64, )

Sets the matrix entries in self to entries defined in other. The entries in self starting from (row_self_start, col_self_start) up to (row_self_end, col_self_end)are set to be the entries from the submatrix from other defined by (row_other_start, col_other_start) to (row_other_end, col_other_end) (exclusively).

Parameters: row_self_start: the starting row of the matrix in which to set a submatrix col_self_start: the starting column of the matrix in which to set a submatrix other: the matrix from where to take the submatrix to set row_other_start: the starting row of the specified submatrix col_other_start: the starting column of the specified submatrix row_other_end: the ending row of the specified submatrix col_other_end:the ending column of the specified submatrix

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::MatPolyOverZ;
use qfall_math::traits::MatrixSetSubmatrix;
use std::str::FromStr;

let mat = MatPolyOverZ::identity(3, 3);
let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let mut mat = MatPolynomialRingZq::from((&mat, &modulus));

mat.set_submatrix(0, 1, &mat.clone(), 0, 0, 1, 1).unwrap();
// [[1,1,0],[0,0,1],[0,0,1]]
let mat_cmp = MatPolyOverZ::from_str("[[1  1, 1  1, 0],[0, 0, 1  1],[0, 0, 1  1]]").unwrap();
assert_eq!(mat, MatPolynomialRingZq::from((&mat_cmp, &modulus)));

unsafe{ mat.set_submatrix_unchecked(2, 0, 3, 2, &mat.clone(), 0, 0, 1, 2) };
let mat_cmp = MatPolyOverZ::from_str("[[1  1, 1  1, 0],[0, 0, 1  1],[1  1, 1  1, 1  1]]").unwrap();
assert_eq!(mat, MatPolynomialRingZq::from((&mat_cmp, &modulus)));
§Safety

To use this function safely, make sure that the selected submatrices are part of the matrices, the submatrices are of the same dimensions and the base types are the same. If not, memory leaks, unexpected panics, etc. might occur.

Source§

fn set_row( &mut self, row_0: impl TryInto<i64> + Display, other: &Self, row_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Sets a row of the given matrix to the provided row of other. Read more
Source§

unsafe fn set_row_unchecked(&mut self, row_0: i64, other: &Self, row_1: i64)

Sets a row of the given matrix to the provided row of other. Read more
Source§

fn set_column( &mut self, col_0: impl TryInto<i64> + Display, other: &Self, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Sets a column of the given matrix to the provided column of other. Read more
Source§

unsafe fn set_column_unchecked(&mut self, col_0: i64, other: &Self, col_1: i64)

Sets a column of the given matrix to the provided column of other. Read more
Source§

fn set_submatrix( &mut self, row_self_start: impl TryInto<i64> + Display, col_self_start: impl TryInto<i64> + Display, other: &Self, row_other_start: impl TryInto<i64> + Display, col_other_start: impl TryInto<i64> + Display, row_other_end: impl TryInto<i64> + Display, col_other_end: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Sets the matrix entries in self to entries defined in other. The entries in self starting from (row_self_start, col_self_start) are set to be the entries from the submatrix from other defined by (row_other_start, col_other_start) to (row_other_end, col_other_end) (inclusively). The original matrix must have sufficiently many entries to contain the defined submatrix. Read more
Source§

impl MatrixSwaps for MatPolynomialRingZq

Source§

fn swap_entries( &mut self, row_0: impl TryInto<i64> + Display, col_0: impl TryInto<i64> + Display, row_1: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Swaps two entries of the specified matrix.

Parameters:

  • row_0: specifies the row, in which the first entry is located
  • col_0: specifies the column, in which the first entry is located
  • row_1: specifies the row, in which the second entry is located
  • col_1: specifies the column, in which the second entry is located

Negative indices can be used to index from the back, e.g., -1 for the last element.

Returns an empty Ok if the action could be performed successfully. Otherwise, a MathError is returned if one of the specified entries is not part of the matrix.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::traits::MatrixSwaps;
use std::str::FromStr;

let mut matrix = MatPolynomialRingZq::new(4, 3, ModulusPolynomialRingZq::from_str("3  1 0 1 mod 17").unwrap());
matrix.swap_entries(0, 0, 2, 1);
§Errors and Failures
Source§

fn swap_columns( &mut self, col_0: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Swaps two columns of the specified matrix.

Parameters:

  • col_0: specifies the first column which is swapped with the second one
  • col_1: specifies the second column which is swapped with the first one

Negative indices can be used to index from the back, e.g., -1 for the last element.

Returns an empty Ok if the action could be performed successfully. Otherwise, a MathError is returned if one of the specified columns is not part of the matrix.

§Examples
use qfall_math::traits::MatrixSwaps;
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use std::str::FromStr;

let mut matrix = MatPolynomialRingZq::new(4, 3, ModulusPolynomialRingZq::from_str("3  1 0 1 mod 17").unwrap());
matrix.swap_columns(0, 2);
§Errors and Failures
Source§

fn swap_rows( &mut self, row_0: impl TryInto<i64> + Display, row_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Swaps two rows of the specified matrix.

Parameters:

  • row_0: specifies the first row which is swapped with the second one
  • row_1: specifies the second row which is swapped with the first one

Negative indices can be used to index from the back, e.g., -1 for the last element.

Returns an empty Ok if the action could be performed successfully. Otherwise, a MathError is returned if one of the specified rows is not part of the matrix.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::traits::MatrixSwaps;
use std::str::FromStr;

let mut matrix = MatPolynomialRingZq::new(4, 3, ModulusPolynomialRingZq::from_str("3  1 0 1 mod 17").unwrap());
matrix.swap_rows(0, 2);
§Errors and Failures
Source§

impl Mul<&MatPolyOverZ> for &MatPolynomialRingZq

Source§

fn mul(self, other: &MatPolyOverZ) -> Self::Output

Implements the Mul trait for a MatPolynomialRingZq matrix with a MatPolyOverZ matrix. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the value to multiply with self

Returns the product of self and other as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let mat_1 = MatPolynomialRingZq::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]] / 3  1 2 3 mod 17").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]]").unwrap();

let mat_3 = &mat_1 * &mat_2;
§Panics …
  • if the dimensions of self and other do not match for multiplication.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the * operator.
Source§

impl Mul<&MatPolynomialRingZq> for &MatPolyOverZ

Source§

fn mul(self, other: &MatPolynomialRingZq) -> Self::Output

Implements the Mul trait for a MatPolyOverZ matrix with a MatPolynomialRingZq matrix. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the value to multiply with self

Returns the product of self and other as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let mat_1 = MatPolyOverZ::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]]").unwrap();
let mat_2 = MatPolynomialRingZq::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]] / 3  1 2 3 mod 17").unwrap();

let mat_3 = &mat_1 * &mat_2;
§Panics …
  • if the dimensions of self and other do not match for multiplication.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the * operator.
Source§

impl Mul<&PolyOverZ> for &MatPolynomialRingZq

Source§

fn mul(self, scalar: &PolyOverZ) -> Self::Output

Implements the Mul trait for a MatPolynomialRingZq matrix with a PolyOverZ. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • scalar: Specifies the scalar by which the matrix is multiplied.

Returns the product of self and scalar as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq, PolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, PolyOverZ, Z};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat1 = MatPolynomialRingZq::from((&poly_mat1, &modulus));
let poly = PolyOverZ::from_str("3  1 0 1").unwrap();

let poly_ring_mat2 = &poly_ring_mat1 * &poly;
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the * operator.
Source§

impl Mul<&PolyOverZq> for &MatPolynomialRingZq

Source§

fn mul(self, scalar: &PolyOverZq) -> Self::Output

Implements the Mul trait for a MatPolynomialRingZq matrix with a PolyOverZq. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • scalar: Specifies the scalar by which the matrix is multiplied.

Returns the product of self and scalar as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq, PolynomialRingZq, PolyOverZq};
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat1 = MatPolynomialRingZq::from((&poly_mat1, &modulus));
let poly = PolyOverZq::from_str("3  1 0 1 mod 17").unwrap();

let poly_ring_mat2 = &poly_ring_mat1 * &poly;
§Panics …
  • if the moduli mismatch.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the * operator.
Source§

impl Mul<&PolynomialRingZq> for &MatPolynomialRingZq

Source§

fn mul(self, scalar: &PolynomialRingZq) -> Self::Output

Implements the Mul trait for a MatPolynomialRingZq matrix with a PolynomialRingZq. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • scalar: Specifies the scalar by which the matrix is multiplied.

Returns the product of self and scalar as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq, PolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, PolyOverZ, Z};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat1 = MatPolynomialRingZq::from((&poly_mat1, &modulus));
let poly = PolyOverZ::from_str("3  1 0 1").unwrap();
let poly_ring = PolynomialRingZq::from((&poly, &modulus));

let poly_ring_mat2 = &poly_ring_mat1 * &poly_ring;
§Panics …
  • if the moduli mismatch.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the * operator.
Source§

impl Mul<&Z> for &MatPolynomialRingZq

Source§

fn mul(self, scalar: &Z) -> Self::Output

Implements the Mul trait for a MatPolynomialRingZq matrix with a Z integer. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • scalar: Specifies the scalar by which the matrix is multiplied.

Returns the product of self and scalar as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat1 = MatPolynomialRingZq::from((&poly_mat1, &modulus));
let integer = Z::from(3);

let poly_ring_mat2 = &poly_ring_mat1 * &integer;
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the * operator.
Source§

impl Mul<&Zq> for &MatPolynomialRingZq

Source§

fn mul(self, scalar: &Zq) -> Self::Output

Implements the Mul trait for a MatPolynomialRingZq matrix with a Zq integer. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • scalar: Specifies the scalar by which the matrix is multiplied.

Returns the product of self and scalar as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq, Zq};
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat1 = MatPolynomialRingZq::from((&poly_mat1, &modulus));
let integer = Zq::from((3, 17));

let poly_ring_mat2 = &poly_ring_mat1 * &integer;
§Panics …
  • if the moduli mismatch.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the * operator.
Source§

impl Mul for &MatPolynomialRingZq

Source§

fn mul(self, other: Self) -> Self::Output

Implements the Mul trait for two MatPolynomialRingZq values. Mul is implemented for any combination of owned and borrowed MatPolynomialRingZq.

Parameters:

  • other: specifies the value to multiply with self

Returns the product of self and other as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat_1 = MatPolyOverZ::from_str("[[4  -1 0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat_1 = MatPolynomialRingZq::from((&poly_mat_1, &modulus));
let poly_mat_2 = MatPolyOverZ::from_str("[[3  3 0 1, 1  42],[0, 1  17]]").unwrap();
let poly_ring_mat_2 = MatPolynomialRingZq::from((&poly_mat_2, &modulus));

let poly_ring_mat_3: MatPolynomialRingZq = &poly_ring_mat_1 * &poly_ring_mat_2;
let poly_ring_mat_4: MatPolynomialRingZq = poly_ring_mat_1 * poly_ring_mat_2;
let poly_ring_mat_5: MatPolynomialRingZq = &poly_ring_mat_3 * poly_ring_mat_4;
let poly_ring_mat_6: MatPolynomialRingZq = poly_ring_mat_3 * &poly_ring_mat_5;
§Panics …
  • if the dimensions of self and other do not match for multiplication.
  • if the moduli mismatch.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the * operator.
Source§

impl MulAssign<&PolyOverZq> for MatPolynomialRingZq

Source§

fn mul_assign(&mut self, scalar: &PolyOverZq)

Documentation at MatPolynomialRingZq::mul_assign. Performs underlying scalar multiplication as PolyOverZ and then applies the reduction.

§Panics …
  • if the moduli are different.
Source§

impl MulAssign<&PolynomialRingZq> for MatPolynomialRingZq

Source§

fn mul_assign(&mut self, scalar: &PolynomialRingZq)

Computes the scalar multiplication of self and scalar reusing the memory of self.

Parameters:

  • scalar: specifies the value to multiply to self

Returns the scalar of the matrix as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq,ModulusPolynomialRingZq,PolynomialRingZq,Zq};
use qfall_math::integer::{MatZ,PolyOverZ,Z,MatPolyOverZ};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str(&format!("4  1 0 0 1 mod {}", u64::MAX - 1)).unwrap();
let poly_mat1 = MatPolyOverZ::from_str(&format!("[[1  1],[1  {}],[1  4]]", i64::MAX)).unwrap();

let mut poly_ring_mat = MatPolynomialRingZq::from((&poly_mat1, &modulus));

let poly_z = PolyOverZ::from_str("2  3 1").unwrap();
let polynomial_ring_zq = PolynomialRingZq::from((&poly_z, &modulus));

poly_ring_mat *= &polynomial_ring_zq;
poly_ring_mat *= &poly_z;
poly_ring_mat *= 2;
poly_ring_mat *= -2;
poly_ring_mat *= &Z::from(5);
poly_ring_mat *= &Zq::from((5, u64::MAX -1));
§Panics …
  • if the moduli are different.
Source§

impl MulAssign<&Zq> for MatPolynomialRingZq

Source§

fn mul_assign(&mut self, scalar: &Zq)

Documentation at MatPolynomialRingZq::mul_assign.

§Panics …
  • if the moduli are different.
Source§

impl MulAssign<PolyOverZq> for MatPolynomialRingZq

Source§

fn mul_assign(&mut self, other: PolyOverZq)

Source§

impl MulAssign<PolynomialRingZq> for MatPolynomialRingZq

Source§

impl<T> MulAssign<T> for MatPolynomialRingZq

Source§

fn mul_assign(&mut self, scalar: T)

Documentation at MatPolynomialRingZq::mul_assign. Performs underlying scalar multiplication as PolyOverZ and then applies the reduction.

Source§

impl MulAssign<Zq> for MatPolynomialRingZq

Source§

fn mul_assign(&mut self, other: Zq)

Source§

impl PartialEq for MatPolynomialRingZq

Source§

fn eq(&self, other: &MatPolynomialRingZq) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Serialize for MatPolynomialRingZq

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl Sub<&MatPolyOverZ> for &MatPolynomialRingZq

Source§

fn sub(self, other: &MatPolyOverZ) -> Self::Output

Implements the Sub trait for a MatPolynomialRingZq matrix with a MatPolyOverZ matrix. Sub is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the value to subtract from self

Returns the subtraction of self by other as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let mat_1 = MatPolynomialRingZq::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]] / 3  1 2 3 mod 17").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]]").unwrap();

let mat_3 = &mat_1 - &mat_2;
§Panics …
  • if the dimensions of self and other do not match for multiplication.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the - operator.
Source§

impl Sub<&MatPolynomialRingZq> for &MatPolyOverZ

Source§

fn sub(self, other: &MatPolynomialRingZq) -> Self::Output

Implements the Sub trait for a MatPolyOverZ matrix with a MatPolynomialRingZq matrix. Sub is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the value to subtract from self

Returns the subtraction of self by other as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let mat_1 = MatPolyOverZ::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]]").unwrap();
let mat_2 = MatPolynomialRingZq::from_str("[[2  1 42, 1  17],[1  8, 2  5 6]] / 3  1 2 3 mod 17").unwrap();

let mat_3 = &mat_1 - &mat_2;
§Panics …
  • if the dimensions of self and other do not match for multiplication.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the - operator.
Source§

impl Sub for &MatPolynomialRingZq

Source§

fn sub(self, other: Self) -> Self::Output

Implements the Sub trait for two MatPolynomialRingZq values. Sub is implemented for any combination of MatPolynomialRingZq and borrowed MatPolynomialRingZq.

Parameters:

  • other: specifies the value to subtract fromself

Returns the result of the subtraction as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat_1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  3],[0, 2  1 2]]").unwrap();
let poly_ring_mat_1 = MatPolynomialRingZq::from((&poly_mat_1, &modulus));
let poly_mat_2 = MatPolyOverZ::from_str("[[3  3 0 1, 1  7],[0, 1  16]]").unwrap();
let poly_ring_mat_2 = MatPolynomialRingZq::from((&poly_mat_2, &modulus));

let poly_ring_mat_3: MatPolynomialRingZq = &poly_ring_mat_1 - &poly_ring_mat_2;
let poly_ring_mat_4: MatPolynomialRingZq = poly_ring_mat_1 - poly_ring_mat_2;
let poly_ring_mat_5: MatPolynomialRingZq = &poly_ring_mat_3 - poly_ring_mat_4;
let poly_ring_mat_6: MatPolynomialRingZq = poly_ring_mat_3 - &poly_ring_mat_5;
§Panics …
  • if the dimensions of both matrices mismatch.
  • if the moduli of both matrices mismatch.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the - operator.
Source§

impl SubAssign<&MatPolyOverZ> for MatPolynomialRingZq

Source§

fn sub_assign(&mut self, other: &MatPolyOverZ)

Source§

impl SubAssign<&MatPolynomialRingZq> for MatPolynomialRingZq

Source§

fn sub_assign(&mut self, other: &Self)

Computes the subtraction of self and other reusing the memory of self. SubAssign can be used on MatPolynomialRingZq in combination with MatPolynomialRingZq and MatPolyOverZ.

Parameters:

  • other: specifies the value to subtract from self
§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("3  1 0 1 mod 7").unwrap();
let mut a = MatPolynomialRingZq::identity(2, 2, &modulus);
let b = MatPolynomialRingZq::new(2, 2, &modulus);
let c = MatPolyOverZ::new(2, 2);

a -= &b;
a -= b;
a -= &c;
a -= c;
§Panics …
  • if the matrix dimensions mismatch.
  • if the moduli of the matrices mismatch.
Source§

impl SubAssign<MatPolyOverZ> for MatPolynomialRingZq

Source§

fn sub_assign(&mut self, other: MatPolyOverZ)

Source§

impl SubAssign for MatPolynomialRingZq

Source§

impl Tensor for MatPolynomialRingZq

Source§

fn tensor_product(&self, other: &Self) -> Self

Computes the tensor product of self with other.

Parameters:

  • other: the value with which the tensor product is computed.

Returns the tensor product of self with other.

§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::traits::Tensor;
use std::str::FromStr;

let mat_1 = MatPolynomialRingZq::from_str("[[1  1, 2  1 1]] / 3  1 2 3 mod 17").unwrap();
let mat_2 = MatPolynomialRingZq::from_str("[[1  1, 1  2]] / 3  1 2 3 mod 17").unwrap();

let mat_ab = mat_1.tensor_product(&mat_2);
let mat_ba = mat_2.tensor_product(&mat_1);

let res_ab = "[[1  1, 1  2, 2  1 1, 2  2 2]] / 3  1 2 3 mod 17";
let res_ba = "[[1  1, 2  1 1, 1  2, 2  2 2]] / 3  1 2 3 mod 17";
assert_eq!(mat_ab, MatPolynomialRingZq::from_str(res_ab).unwrap());
assert_eq!(mat_ba, MatPolynomialRingZq::from_str(res_ba).unwrap());
§Panics …
Source§

impl Eq for MatPolynomialRingZq

Source§

impl StructuralPartialEq for MatPolynomialRingZq

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,