qfall_math/integer_mod_q/mat_polynomial_ring_zq/norm.rs
1// Copyright © 2025 Niklas Siemer
2//
3// This file is part of qFALL-math.
4//
5// qFALL-math is free software: you can redistribute it and/or modify it under
6// the terms of the Mozilla Public License Version 2.0 as published by the
7// Mozilla Foundation. See <https://mozilla.org/en-US/MPL/2.0/>.
8
9//! This module includes functionality to compute several norms
10//! defined on matrices.
11
12use super::MatPolynomialRingZq;
13use crate::{
14 integer::Z,
15 rational::Q,
16 traits::{MatrixDimensions, MatrixGetSubmatrix},
17};
18
19impl MatPolynomialRingZq {
20 /// Outputs the squared l_{2, ∞}-norm, i.e. it computes the squared Euclidean
21 /// norm of each column of the matrix and returns the largest one.
22 ///
23 /// # Examples
24 /// ```
25 /// use qfall_math::{integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq}, integer::{Z, MatPolyOverZ}};
26 /// use std::str::FromStr;
27 ///
28 /// let modulus = ModulusPolynomialRingZq::from_str("4 1 0 0 1 mod 7").unwrap();
29 /// let mat = MatPolyOverZ::from_str("[[1 2, 1 3],[1 2, 0]]").unwrap();
30 /// let mat = MatPolynomialRingZq::from((&mat, &modulus));
31 ///
32 /// let eucl_norm = mat.norm_l_2_infty_sqrd();
33 ///
34 /// // 3^2 + 0^2 = 9
35 /// assert_eq!(Z::from(9), eucl_norm);
36 /// ```
37 pub fn norm_l_2_infty_sqrd(&self) -> Z {
38 let mut max_sqrd_norm = Z::ZERO;
39 for i in 0..self.get_num_columns() {
40 let column = unsafe { self.get_column_unchecked(i) };
41 let sqrd_norm = column.norm_eucl_sqrd().unwrap();
42 if sqrd_norm > max_sqrd_norm {
43 max_sqrd_norm = sqrd_norm;
44 }
45 }
46 max_sqrd_norm
47 }
48
49 /// Outputs the l_{2, ∞}-norm, i.e. it computes the Euclidean
50 /// norm of each column of the matrix and returns the largest one.
51 ///
52 /// # Examples
53 /// ```
54 /// use qfall_math::{integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq}, integer::{Z, MatPolyOverZ}};
55 /// use std::str::FromStr;
56 /// # use qfall_math::rational::Q;
57 ///
58 /// let modulus = ModulusPolynomialRingZq::from_str("4 1 0 0 1 mod 5").unwrap();
59 /// let mat = MatPolyOverZ::from_str("[[1 2, 1 3],[1 2, 1 0],[1 3, 1 4],[1 3, 1 4]]").unwrap();
60 /// let mat = MatPolynomialRingZq::from((&mat, &modulus));
61 ///
62 /// let eucl_norm = mat.norm_l_2_infty();
63 ///
64 /// // sqrt(4 * 2^2) = 4
65 /// assert_eq!(Q::from(4), eucl_norm);
66 /// ```
67 pub fn norm_l_2_infty(&self) -> Q {
68 self.norm_l_2_infty_sqrd().sqrt()
69 }
70
71 /// Outputs the l_{∞, ∞}-norm, i.e. it computes the ∞-norm
72 /// of each column of the matrix and returns the largest one.
73 ///
74 /// # Examples
75 /// ```
76 /// use qfall_math::{integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq}, integer::{Z, MatPolyOverZ}};
77 /// use std::str::FromStr;
78 ///
79 /// let modulus = ModulusPolynomialRingZq::from_str("4 1 0 0 1 mod 7").unwrap();
80 /// let mat = MatPolyOverZ::from_str("[[1 2, 1 4],[1 2, 0]]").unwrap();
81 /// let mat = MatPolynomialRingZq::from((&mat, &modulus));
82 ///
83 /// let eucl_norm = mat.norm_l_infty_infty();
84 ///
85 /// // max{2, 3} = 3
86 /// assert_eq!(Z::from(3), eucl_norm);
87 /// ```
88 pub fn norm_l_infty_infty(&self) -> Z {
89 let mut max_norm = Z::ZERO;
90 for i in 0..self.get_num_columns() {
91 let column = unsafe { self.get_column_unchecked(i) };
92 let norm = column.norm_infty().unwrap();
93 if norm > max_norm {
94 max_norm = norm;
95 }
96 }
97 max_norm
98 }
99}
100
101#[cfg(test)]
102mod test_matrix_norms {
103 use super::{MatPolynomialRingZq, Q, Z};
104 use crate::{integer::MatPolyOverZ, integer_mod_q::ModulusPolynomialRingZq};
105 use std::str::FromStr;
106
107 /// Ensures that the squared l_{2, ∞}-norm is correctly computed.
108 #[test]
109 fn norm_sqrd_l_2_infty() {
110 let modulus = ModulusPolynomialRingZq::from_str("4 1 0 0 1 mod 9").unwrap();
111 let mat = MatPolyOverZ::from_str(
112 "[[1 3, 1 -2, 1 5],[1 -5, 1 -6, 2 1 1],[1 -4, 0, 0],[1 2, 0, 3 1 1 1]]",
113 )
114 .unwrap();
115 let mat = MatPolynomialRingZq::from((&mat, &modulus));
116
117 let sqrd_norm = mat.norm_l_2_infty_sqrd();
118
119 assert_eq!(Z::from(45), sqrd_norm);
120 }
121
122 /// Ensures that the l_{2, ∞}-norm is correctly computed.
123 #[test]
124 fn norm_l_2_infty() {
125 let modulus = ModulusPolynomialRingZq::from_str("4 1 0 0 1 mod 5").unwrap();
126 let mat =
127 MatPolyOverZ::from_str("[[1 -2, 4 -2 0 0 1],[1 -2, 1 -3],[1 -2, 0],[1 2, 0]]")
128 .unwrap();
129 let mat = MatPolynomialRingZq::from((&mat, &modulus));
130
131 let norm = mat.norm_l_2_infty();
132
133 assert_eq!(Q::from(4), norm);
134 }
135
136 /// Ensures that the l_{∞, ∞}-norm is correctly computed.
137 #[test]
138 fn norm_l_infty_infty() {
139 let modulus = ModulusPolynomialRingZq::from_str("4 1 0 0 1 mod 8").unwrap();
140 let mat = MatPolyOverZ::from_str("[[2 -2 1, 1 3],[1 2, 1 -5],[1 -2, 0]]").unwrap();
141 let mat = MatPolynomialRingZq::from((&mat, &modulus));
142
143 let infty_norm = mat.norm_l_infty_infty();
144
145 assert_eq!(Z::from(3), infty_norm);
146 }
147}