MatZq

Struct MatZq 

Source
pub struct MatZq { /* private fields */ }
Expand description

MatZq is a matrix with entries of type Zq.

Attributes:

§Examples

§Matrix usage

use qfall_math::{
    integer::Z,
    integer_mod_q::MatZq,
    traits::{MatrixGetEntry, MatrixSetEntry},
};
use std::str::FromStr;

// instantiate new matrix
let id_mat = MatZq::from_str("[[1, 0],[0, 1]] mod 2").unwrap();

// clone object, set and get entry
let mut clone = id_mat.clone();
clone.set_entry(0, 0, 2);
let entry:Z = clone.get_entry(1, 1).unwrap();
assert_eq!(entry, Z::ONE);

// to_string incl. (de-)serialization
assert_eq!("[[1, 0],[0, 1]] mod 2", &id_mat.to_string());

§Vector usage

use qfall_math::{
    integer::Z,
    integer_mod_q::MatZq,
};
use std::str::FromStr;

let row_vec = MatZq::from_str("[[1, 1, 1]] mod 2").unwrap();
let col_vec = MatZq::from_str("[[1],[-1],[0]] mod 2").unwrap();

// check if matrix instance is vector
assert!(row_vec.is_row_vector());
assert!(col_vec.is_column_vector());

Implementations§

Source§

impl MatZq

Source

pub fn add_safe(&self, other: &Self) -> Result<MatZq, MathError>

Implements addition for two MatZq matrices.

Parameters:

  • other: specifies the value to add to self

Returns the sum of both matrices as a MatZq or an error if the matrix dimensions mismatch.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let a: MatZq = MatZq::from_str("[[1, 2, 3],[3, 4, 5]] mod 7").unwrap();
let b: MatZq = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();

let c: MatZq = a.add_safe(&b).unwrap();
§Errors and Failures
Source§

impl MatZq

Source

pub fn mul_safe(&self, other: &Self) -> Result<Self, MathError>

Implements multiplication for two MatZq values.

Parameters:

  • other: specifies the value to multiply with self

Returns the product of self and other as a MatZq or an error if the dimensions of self and other do not match for multiplication or the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let a = MatZq::from_str("[[2, 1],[1, 2]] mod 7").unwrap();
let b = MatZq::from_str("[[1, 0],[0, 1]] mod 7").unwrap();

let c: MatZq = a.mul_safe(&b).unwrap();
§Errors and Failures
Source§

impl MatZq

Source

pub fn mul_scalar_safe(&self, scalar: &Zq) -> Result<Self, MathError>

Implements multiplication for a MatZq matrix with a Zq.

Parameters:

  • scalar: specifies the scalar by which the matrix is multiplied

Returns the product of self and scalar as a MatZq or an error if the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::{MatZq, Zq};
use std::str::FromStr;

let mat_1 = MatZq::from_str("[[42, 17],[8, 6]] mod 61").unwrap();
let integer = Zq::from((2, 61));

let mat_2 = &mat_1.mul_scalar_safe(&integer).unwrap();
§Errors and Failures
Source§

impl MatZq

Source

pub fn sub_safe(&self, other: &Self) -> Result<MatZq, MathError>

Implements subtraction for two MatZq matrices.

Parameters:

  • other: specifies the value to subtract fromself

Returns the result of the subtraction as a MatZq or an error if the matrix dimensions or moduli mismatch.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let a: MatZq = MatZq::from_str("[[1, 2, 3],[3, 4, 5]] mod 7").unwrap();
let b: MatZq = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();

let c: MatZq = a.sub_safe(&b).unwrap();
§Errors and Failures
Source§

impl MatZq

Source

pub fn new( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<Modulus>, ) -> Self

Creates a new matrix with num_rows rows, num_cols columns, zeros as entries and modulus as the modulus.

Parameters:

  • num_rows: number of rows the new matrix should have
  • num_cols: number of columns the new matrix should have
  • modulus: the common modulus of the matrix entries

Returns a new MatZq instance of the provided dimensions.

§Examples
use qfall_math::integer_mod_q::MatZq;

let matrix = MatZq::new(5, 10, 7);
§Panics …
  • if the number of rows or columns is negative, 0, or does not fit into an i64.
  • if modulus is smaller than 2.
Source

pub fn identity( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<Modulus>, ) -> Self

Generate a num_rows times num_columns matrix with 1 on the diagonal and 0 anywhere else with a given modulus.

Parameters:

  • rum_rows: the number of rows of the identity matrix
  • num_columns: the number of columns of the identity matrix
  • modulus: the modulus of the matrix

Returns a matrix with 1 across the diagonal and 0 anywhere else.

§Examples
use qfall_math::integer_mod_q::MatZq;

let matrix = MatZq::identity(2, 3, 3);

let identity = MatZq::identity(10, 10, 3);
§Panics …
  • if the provided number of rows and columns or the modulus are not suited to create a matrix. For further information see MatZq::new.
Source§

impl MatZq

Source

pub fn from_utf8( message: &str, num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<Modulus>, ) -> Result<Self, MathError>

Create a MatZq from a String, i.e. its UTF8-Encoding. This function can only construct positive or zero integers, but not negative ones. If the number of bytes and number of entries does not line up, we pad the message with '0's. The inverse of this function is MatZq::to_utf8.

WARNING: This implementation requires the modulus to be larger than any single entry in the matrix. This function will denote the same number of bytes to every entry and sequentially move through your message to encode them. If a decimal presentation of these bytes is ever larger than the specified modulus, the function will return an error.

Parameters:

  • message: specifies the message that is transformed via its UTF8-Encoding to a new MatZq instance.
  • num_rows: number of rows the new matrix should have
  • num_cols: number of columns the new matrix should have
  • modulus: specifies the modulus of the matrix, it is required to be larger than any entry of the matrix

Returns a MatZq with corresponding entries to the message’s UTF8-Encoding or a ConversionError if the modulus isn’t larger than every single entry of the matrix after distributing the (potentially padded) UTF8-Bytes equally over the matrix.

§Examples
use qfall_math::integer_mod_q::MatZq;
let message = "hello!";
  
let matrix = MatZq::from_utf8(&message, 3, 2, 257).unwrap();
§Errors and Failures
  • Returns a MathError of type ConversionError if the modulus isn’t larger than the largest entry of the matrix after equally distributing the (potentially padded) UTF8-Conversion over the matrix.
§Panics …
  • if the provided number of rows and columns are not suited to create a matrix. For further information see MatZq::new.
Source§

impl MatZq

Source

pub fn get_representative_least_nonnegative_residue(&self) -> MatZ

Creates a MatZ where each entry is a representative of the equivalence class of each entry from a MatZq.

The values in the output matrix are in the range of [0, modulus). Use MatZq::get_representative_least_absolute_residue if they should be in the range [-modulus/2, modulus/2].

Returns the matrix as a MatZ.

§Examples
use qfall_math::integer::MatZ;
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let mat_zq = MatZq::from_str("[[1, 2],[3, -1]] mod 5").unwrap();

let mat_z = mat_zq.get_representative_least_nonnegative_residue();

assert_eq!(mat_z.to_string(), "[[1, 2],[3, 4]]");
Source

pub fn get_representative_least_absolute_residue(&self) -> MatZ

Creates a MatZ where each entry is a representative of the equivalence class of each entry from a MatZq with the representatives close to 0.

The values in the output matrix are in the range of [-modulus/2, modulus/2]. For even moduli, the positive representative is chosen for the element modulus / 2. Use MatZq::get_representative_least_nonnegative_residue if they should be in the range [0, modulus).

Returns an MatZ representation of the given matrix with representatives chosen close to 0.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let mat_zq_1 = MatZq::from_str("[[1,2],[3,4]] mod 5").unwrap();
let mat_zq_2 = MatZq::from_str("[[1,2],[3,4]] mod 4").unwrap();

let mat_z_1 = mat_zq_1.get_representative_least_absolute_residue();
let mat_z_2 = mat_zq_2.get_representative_least_absolute_residue();

assert_eq!(mat_z_1.to_string(), "[[1, 2],[-2, -1]]");
assert_eq!(mat_z_2.to_string(), "[[1, 2],[-1, 0]]");
Source

pub fn get_mod(&self) -> Modulus

Returns the modulus of the matrix as a Modulus.

§Examples
use qfall_math::integer_mod_q::MatZq;

let matrix = MatZq::new(5, 10, 7);
let entry = matrix.get_mod();
Source§

impl MatZq

Source

pub fn inverse(&self) -> Option<MatZq>

Returns the inverse of the matrix if it exists (is square and has a determinant co-prime to the modulus) and None otherwise.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let mut matrix = MatZq::from_str("[[1, 2],[3, 4]] mod 7").unwrap();

let matrix_invert = matrix.inverse().unwrap();

let id = &matrix_invert * &matrix;
assert_eq!("[[5, 1],[5, 3]] mod 7", matrix_invert.to_string());
assert!(id.is_identity());
Source

pub fn inverse_prime(&self) -> Option<MatZq>

Returns the inverse of the matrix if it exists (is square and has a determinant co-prime to the modulus) and None otherwise.

Note that the modulus is assumed to be prime, otherwise the function panics.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let mut matrix = MatZq::from_str("[[1, 2],[3, 4]] mod 7").unwrap();

let matrix_invert = matrix.inverse_prime().unwrap();

let id = &matrix_invert * &matrix;
assert_eq!("[[5, 1],[5, 3]] mod 7", matrix_invert.to_string());
assert!(id.is_identity());
§Panics …
  • if the modulus is not prime.
Source

pub fn gaussian_elimination_prime(self) -> MatZq

Returns the row echelon form of the matrix using gaussian elimination.

Note that the modulus is assumed to be prime, otherwise the function panics.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let mut matrix = MatZq::from_str("[[1, 2],[3, 4]] mod 7").unwrap();

let matrix_gauss = matrix.gaussian_elimination_prime();

assert_eq!("[[1, 0],[0, 1]] mod 7", matrix_gauss.to_string());
§Panics …
  • if the modulus is not prime.
Source§

impl MatZq

Source

pub fn norm_l_2_infty_sqrd(&self) -> Z

Outputs the squared l_{2, ∞}-norm, i.e. it computes the squared Euclidean norm of each column of the matrix and returns the largest one.

§Examples
use qfall_math::{integer_mod_q::MatZq, integer::Z};
use std::str::FromStr;

let mat = MatZq::from_str("[[2, 3],[2, 0]] mod 7").unwrap();

let eucl_norm = mat.norm_l_2_infty_sqrd();

// 3^2 + 0^2 = 9
assert_eq!(Z::from(9), eucl_norm);
Source

pub fn norm_l_2_infty(&self) -> Q

Outputs the l_{2, ∞}-norm, i.e. it computes the Euclidean norm of each column of the matrix and returns the largest one.

§Examples
use qfall_math::{integer_mod_q::MatZq, rational::Q};
use std::str::FromStr;

let mat = MatZq::from_str("[[2, 3],[2, 0],[3, 4],[3, 4]] mod 5").unwrap();

let eucl_norm = mat.norm_l_2_infty();

// sqrt(4 * 2^2) = 4
assert_eq!(Q::from(4), eucl_norm);
Source

pub fn norm_l_infty_infty(&self) -> Z

Outputs the l_{∞, ∞}-norm, i.e. it computes the ∞-norm of each column of the matrix and returns the largest one.

§Examples
use qfall_math::{integer_mod_q::MatZq, integer::Z};
use std::str::FromStr;

let mat = MatZq::from_str("[[2, 4],[2, 0]] mod 7").unwrap();

let eucl_norm = mat.norm_l_infty_infty();

// max{2, 3} = 3
assert_eq!(Z::from(3), eucl_norm);
Source§

impl MatZq

Source

pub fn is_identity(&self) -> bool

Checks if a MatZq is the identity matrix.

Returns true if every diagonal entry of the upper square matrix is 1 and all other entries are 0.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let value = MatZq::from_str("[[1, 0],[0, 1]] mod 17").unwrap();
assert!(value.is_identity());
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let value = MatZq::from_str("[[1, 0],[0, 1],[0, 0]] mod 17").unwrap();
assert!(value.is_identity());
Source

pub fn is_square(&self) -> bool

Checks if a MatZq is a square matrix.

Returns true if the number of rows and columns is identical.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let value = MatZq::from_str("[[4, 0],[0, 1]] mod 17").unwrap();
assert!(value.is_square());
Source

pub fn is_zero(&self) -> bool

Checks if every entry of a MatZq is 0.

Returns true if every entry is 0.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let value = MatZq::from_str("[[0, 0],[0, 0]] mod 17").unwrap();
assert!(value.is_zero());
Source

pub fn is_symmetric(&self) -> bool

Checks if a MatZq is symmetric.

Returns true if we have a_ij == a_ji for all i,j.

§Examples
use qfall_math::integer_mod_q::MatZq;

let value = MatZq::identity(2,2,3);
assert!(value.is_symmetric());
Source§

impl MatZq

Source

pub fn sample_binomial( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<Modulus>, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>

Outputs a MatZq instance with entries chosen according to the binomial distribution parameterized by n and p.

Parameters:

  • num_rows: specifies the number of rows the new matrix should have
  • num_cols: specifies the number of columns the new matrix should have
  • modulus: specifies the Modulus of the new MatZq instance
  • n: specifies the number of trials
  • p: specifies the probability of success

Returns a new MatZq instance with entries chosen according to the binomial distribution or a MathError if n < 0, p ∉ (0,1), n does not fit into an i64, or the dimensions of the matrix were chosen too small.

§Examples
use qfall_math::integer_mod_q::MatZq;

let sample = MatZq::sample_binomial(2, 2, 7, 2, 0.5).unwrap();
§Errors and Failures
§Panics …
  • if the provided number of rows and columns are not suited to create a matrix. For further information see MatZq::new.
  • if modulus is smaller than 2.
Source

pub fn sample_binomial_with_offset( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, offset: impl Into<Z>, modulus: impl Into<Modulus>, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>

Outputs a MatZq instance with entries chosen according to the binomial distribution parameterized by n and p with given offset.

Parameters:

  • num_rows: specifies the number of rows the new matrix should have
  • num_cols: specifies the number of columns the new matrix should have
  • offset: specifies an offset applied to each sample collected from the binomial distribution
  • modulus: specifies the Modulus of the new MatZq instance
  • n: specifies the number of trials
  • p: specifies the probability of success

Returns a new MatZq instance with entries chosen according to the binomial distribution or a MathError if n < 0, p ∉ (0,1), n does not fit into an i64, or the dimensions of the matrix were chosen too small.

§Examples
use qfall_math::integer_mod_q::MatZq;

let sample = MatZq::sample_binomial_with_offset(2, 2, -1, 7, 2, 0.5).unwrap();
§Errors and Failures
§Panics …
  • if the provided number of rows and columns are not suited to create a matrix. For further information see MatZq::new.
  • if modulus is smaller than 2.
Source§

impl MatZq

Source

pub fn sample_discrete_gauss( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<Modulus>, center: impl Into<Q>, s: impl Into<Q>, ) -> Result<MatZq, MathError>

Initializes a new matrix with dimensions num_rows x num_columns and with each entry sampled independently according to the discrete Gaussian distribution, using Z::sample_discrete_gauss.

Parameters:

  • num_rows: specifies the number of rows the new matrix should have
  • num_cols: specifies the number of columns the new matrix should have
  • center: specifies the positions of the center with peak probability
  • s: specifies the Gaussian parameter, which is proportional to the standard deviation sigma * sqrt(2 * pi) = s

Returns a matrix with each entry sampled independently from the specified discrete Gaussian distribution or an error if s < 0.

§Examples
use qfall_math::integer_mod_q::MatZq;

let sample = MatZq::sample_discrete_gauss(3, 1, 83, 0, 1.25f32).unwrap();
§Errors and Failures
§Panics …
  • if the provided number of rows and columns or the modulus are not suited to create a matrix. For further information see MatZq::new.
  • if the provided modulus < 2.
Source

pub fn sample_d( basis: &MatZq, center: &MatQ, s: impl Into<Q>, ) -> Result<Self, MathError>

SampleD samples a discrete Gaussian from the lattice with a provided basis.

We do not check whether basis is actually a basis. Hence, the callee is responsible for making sure that basis provides a suitable basis.

Parameters:

  • basis: specifies a basis for the lattice from which is sampled
  • center: specifies the positions of the center with peak probability
  • s: specifies the Gaussian parameter, which is proportional to the standard deviation sigma * sqrt(2 * pi) = s

Returns a lattice vector sampled according to the discrete Gaussian distribution or an error if s < 0, the number of rows of the basis and center differ, or if center is not a column vector.

§Examples
use qfall_math::{integer_mod_q::MatZq, rational::MatQ};
let basis = MatZq::identity(5, 5, 17);
let center = MatQ::new(5, 1);

let sample = MatZq::sample_d(&basis, &center, 1.25f32).unwrap();
§Errors and Failures

This function implements SampleD according to:

  • [1] Gentry, Craig and Peikert, Chris and Vaikuntanathan, Vinod (2008). Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the fortieth annual ACM symposium on Theory of computing. https://dl.acm.org/doi/pdf/10.1145/1374376.1374407
Source

pub fn sample_d_precomputed_gso( basis: &MatZq, basis_gso: &MatQ, center: &MatQ, s: impl Into<Q>, ) -> Result<Self, MathError>

SampleD samples a discrete Gaussian from the lattice with a provided basis.

We do not check whether basis is actually a basis or whether basis_gso is actually the gso of basis. Hence, the callee is responsible for making sure that basis provides a suitable basis and basis_gso is a corresponding GSO.

Parameters:

  • basis: specifies a basis for the lattice from which is sampled
  • basis_gso: specifies the precomputed gso for basis
  • center: specifies the positions of the center with peak probability
  • s: specifies the Gaussian parameter, which is proportional to the standard deviation sigma * sqrt(2 * pi) = s

Returns a lattice vector sampled according to the discrete Gaussian distribution or an error if s < 0, the number of rows of the basis and center differ, or if center is not a column vector.

§Examples
use qfall_math::{integer::MatZ, integer_mod_q::MatZq, rational::MatQ};
let basis = MatZq::identity(5, 5, 17);
let center = MatQ::new(5, 1);
let basis_gso = MatQ::from(&basis.get_representative_least_nonnegative_residue()).gso();

let sample = MatZq::sample_d_precomputed_gso(&basis, &basis_gso, &center, 1.25f32).unwrap();
§Errors and Failures
§Panics …
  • if the number of rows/columns of basis_gso and basis mismatch.

This function implements SampleD according to:

  • [1] Gentry, Craig and Peikert, Chris and Vaikuntanathan, Vinod (2008). Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the fortieth annual ACM symposium on Theory of computing. https://dl.acm.org/doi/pdf/10.1145/1374376.1374407
Source§

impl MatZq

Source

pub fn sample_uniform( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, modulus: impl Into<Z>, ) -> Self

Outputs a MatZq instance with entries chosen uniform at random in [0, modulus).

The internally used uniform at random chosen bytes are generated by ThreadRng, which uses ChaCha12 and is considered cryptographically secure.

Parameters:

  • num_rows: specifies the number of rows the new matrix should have
  • num_cols: specifies the number of columns the new matrix should have
  • modulus: specifies the modulus of the matrix and defines the interval over which is sampled

Returns a new MatZq instance with entries chosen uniformly at random in [0, modulus).

§Examples
use qfall_math::integer_mod_q::MatZq;

let matrix = MatZq::sample_uniform(3, 3, 17);
§Panics …
  • if the provided number of rows and columns or the modulus are not suited to create a matrix. For further information see MatZq::new.
Source§

impl MatZq

Source

pub fn reverse_columns(&mut self)

Swaps the i-th column with the n-i-th column for all i <= n/2 of the specified matrix with n columns.

§Examples
use qfall_math::integer_mod_q::MatZq;

let mut matrix = MatZq::new(4, 3, 5);
matrix.reverse_columns();
Source

pub fn reverse_rows(&mut self)

Swaps the i-th row with the n-i-th row for all i <= n/2 of the specified matrix with n rows.

§Examples
use qfall_math::integer_mod_q::MatZq;

let mut matrix = MatZq::new(4, 3, 5);
matrix.reverse_rows();
Source

pub fn change_modulus(&mut self, modulus: impl Into<Modulus>)

Changes the modulus of the given matrix to the new modulus. It takes the representation of each coefficient in [0, q) as the new matrix entries and reduces them by the new modulus automatically.

Parameters:

  • modulus: the new modulus of the matrix
§Examples
use qfall_math::integer_mod_q::{MatZq, Modulus};
use std::str::FromStr;

let mut mat = MatZq::from_str("[[1, 2]] mod 3").unwrap();
mat.change_modulus(2);
§Panics …
  • if modulus is smaller than 2.
Source§

impl MatZq

Source

pub fn solve_gaussian_elimination(&self, y: &MatZq) -> Option<MatZq>

Computes a solution for a system of linear equations under a certain modulus. It solves Ax = y for x with A being a MatZq value. If no solution is found, None is returned. The function uses Gaussian elimination together with Factor refinement to split the modulus and the Chinese remainder theorem and Hensel lifting to combine solutions under the split modulus. For Hensel lifting we use the method from [[1]].

Note that this function does not compute a solution whenever there is one. If the matrix has not full rank under a modulus that divides the given one, None may be returned even if the system may be solvable. If the number of columns exceeds the number of rows by a factor of 2, this is very unlikely to happen.

Parameters:

  • y: the syndrome for which a solution has to be computed.

Returns a solution for the linear system or None, if none could be computed.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let mat = MatZq::from_str("[[2, 2, 3],[2, 5, 7]] mod 8").unwrap();
let y = MatZq::from_str("[[3],[5]] mod 8").unwrap();
let x = mat.solve_gaussian_elimination(&y).unwrap();

assert_eq!(y, mat*x);
§Panics …
  • if the the number of rows of the matrix and the syndrome are different.
  • if the syndrome is not a column vector.
  • if the moduli mismatch.
§Reference
Source§

impl MatZq

Source

pub fn sort_by_column<T: Ord>( &self, cond_func: fn(&Self) -> Result<T, MathError>, ) -> Result<Self, MathError>

Sorts the columns of the matrix based on some condition defined by cond_func in an ascending order.

This condition is usually a norm with the described input-output behaviour.

Parameters:

  • cond_func: computes values implementing Ord over the columns of the specified matrix. These values are then used to re-order / sort the rows of the matrix.

Returns an empty Ok if the action could be performed successfully. A MathError is returned if the execution of cond_func returned an error.

§Examples
§Use a build-in function as condition
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;
let mat = MatZq::from_str("[[3, 2, 1]] mod 7").unwrap();
let cmp = MatZq::from_str("[[1, 2, 3]] mod 7").unwrap();

let sorted = mat.sort_by_column(MatZq::norm_eucl_sqrd).unwrap();

assert_eq!(cmp, sorted);
§Use a custom function as condition

This function needs to take a column vector as input and output a type implementing PartialOrd

use qfall_math::{integer_mod_q::MatZq, integer::Z, error::MathError, traits::{MatrixDimensions, MatrixGetEntry}};
use std::str::FromStr;
let mat = MatZq::from_str("[[3, 2, 1]] mod 7").unwrap();
let cmp = MatZq::from_str("[[1, 2, 3]] mod 7").unwrap();

fn custom_cond_func(matrix: &MatZq) -> Result<Z, MathError> {
    let mut sum = Z::ZERO;
    for entry in MatrixGetEntry::<Z>::get_entries_rowwise(matrix){
        sum += entry;
    }
    Ok(sum)
}

let sorted = mat.sort_by_column(custom_cond_func).unwrap();

assert_eq!(cmp, sorted);
§Errors and Failures
  • Returns a MathError of the same type as cond_func if the execution of cond_func fails.
Source

pub fn sort_by_row<T: Ord>( &self, cond_func: fn(&Self) -> Result<T, MathError>, ) -> Result<Self, MathError>

Sorts the rows of the matrix based on some condition defined by cond_func in an ascending order.

This condition is usually a norm with the described input-output behaviour.

Parameters:

  • cond_func: computes values implementing Ord over the columns of the specified matrix. These values are then used to re-order / sort the columns of the matrix.

Returns an empty Ok if the action could be performed successfully. A MathError is returned if the execution of cond_func returned an error.

§Examples
§Use a build-in function as condition
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;
let mat = MatZq::from_str("[[3],[2],[1]] mod 7").unwrap();
let cmp = MatZq::from_str("[[1],[2],[3]] mod 7").unwrap();

let sorted = mat.sort_by_row(MatZq::norm_infty).unwrap();

assert_eq!(cmp, sorted);
§Use a custom function as condition

This function needs to take a row vector as input and output a type implementing PartialOrd

use qfall_math::{integer_mod_q::MatZq, integer::Z, error::MathError, traits::{MatrixDimensions, MatrixGetEntry}};
use std::str::FromStr;
let mat = MatZq::from_str("[[3],[2],[1]] mod 7").unwrap();
let cmp = MatZq::from_str("[[1],[2],[3]] mod 7").unwrap();

fn custom_cond_func(matrix: &MatZq) -> Result<Z, MathError> {
    let mut sum = Z::ZERO;
    for entry in MatrixGetEntry::<Z>::get_entries_rowwise(matrix){
        sum += entry;
    }
    Ok(sum)
}

let sorted = mat.sort_by_row(custom_cond_func).unwrap();

assert_eq!(cmp, sorted);
§Errors and Failures
  • Returns a MathError of the same type as cond_func if the execution of cond_func fails.
Source§

impl MatZq

Source

pub fn tensor_product_safe(&self, other: &Self) -> Result<Self, MathError>

Computes the tensor product of self with other.

Parameters:

  • other: the value with which the tensor product is computed.

Returns the tensor product of self with other or an error if the moduli of the provided matrices mismatch.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let mat_1 = MatZq::from_str("[[1, 1],[2, 2]] mod 7").unwrap();
let mat_2 = MatZq::from_str("[[1, 2],[3, 4]] mod 7").unwrap();

let mat_ab = mat_1.tensor_product_safe(&mat_2).unwrap();
let mat_ba = mat_2.tensor_product_safe(&mat_1).unwrap();

let res_ab = "[[1, 2, 1, 2],[3, 4, 3, 4],[2, 4, 2, 4],[6, 1, 6, 1]] mod 7";
let res_ba = "[[1, 1, 2, 2],[2, 2, 4, 4],[3, 3, 4, 4],[6, 6, 1, 1]] mod 7";
assert_eq!(mat_ab, MatZq::from_str(res_ab).unwrap());
assert_eq!(mat_ba, MatZq::from_str(res_ba).unwrap());
§Errors and Failures
Source§

impl MatZq

Source

pub fn to_utf8(&self) -> Result<String, FromUtf8Error>

Enables conversion to a UTF8-Encoded String for MatZq values. Every entry is padded with 00s s.t. all entries contain the same number of bytes. Afterwards, they are appended row-by-row and converted. The inverse to this function is MatZq::from_utf8 for valid UTF8-Encodings.

Warning: Not every byte-sequence forms a valid UTF8-Encoding. In these cases, an error is returned. Please check the format of your message again. The matrix entries are evaluated row by row, i.e. in the order of the output of mat_zq.to_string().

Returns the corresponding UTF8-encoded String or a FromUtf8Error if the byte sequence contains an invalid UTF8-character.

§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let matrix = MatZ::from_str("[[104, 101, 108],[108, 111, 33]]").unwrap();

let message = matrix.to_utf8().unwrap();

assert_eq!("hello!", message);
§Errors and Failures
  • Returns a FromUtf8Error if the integer’s byte sequence contains invalid UTF8-characters.
Source§

impl MatZq

Source

pub fn pretty_string( &self, nr_printed_rows: u64, nr_printed_columns: u64, ) -> String

Outputs the matrix as a String, where the upper leftmost nr_printed_rows x nr_printed_columns submatrix is output entirely as well as the corresponding entries in the last column and row of the matrix.

Parameters:

  • nr_printed_rows: defines the number of rows of the upper leftmost matrix that are printed entirely
  • nr_printed_columns: defines the number of columns of the upper leftmost matrix that are printed entirely

Returns a String representing the abbreviated matrix.

§Example
use qfall_math::integer::MatZ;
let matrix = MatZ::identity(10, 10);

println!("Matrix: {}", matrix.pretty_string(2, 2));
// outputs the following:
// Matrix: [
//   [1, 0, , ..., 0],
//   [0, 1, , ..., 0],
//   [...],
//   [0, 0, , ..., 1]
// ]
Source§

impl MatZq

Source

pub fn trace(&self) -> Result<Zq, MathError>

Returns the trace of a matrix and an error, if the matrix is not square.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let matrix = MatZq::from_str("[[1, 2],[3, 4]] mod 5").unwrap();
let trace = matrix.trace().unwrap();
§Errors and Failures
Source§

impl MatZq

Source

pub fn transpose(&self) -> Self

Returns the transposed form of the given matrix, i.e. rows get transformed to columns and vice versa.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let mat = MatZq::from_str("[[2, 1],[2, 1],[2, 1]] mod 4").unwrap();
let cmp = MatZq::from_str("[[2, 2, 2],[1, 1, 1]] mod 4").unwrap();

assert_eq!(mat.transpose(), cmp);
Source§

impl MatZq

Source

pub unsafe fn get_fmpz_mod_mat_struct(&mut self) -> &mut fmpz_mod_mat_struct

Returns a mutable reference to the field matrix of type fmpz_mod_mat_struct.

WARNING: The returned struct is part of flint_sys. Any changes to this object are unsafe and may introduce memory leaks.

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl MatZq

Source

pub unsafe fn get_fmpz_mod_ctx(&mut self) -> &mut fmpz_mod_ctx

Returns a mutable reference to the underlying fmpz_mod_ctx by calling get_fmpz_mod_ctx on modulus.

WARNING: The returned struct is part of flint_sys. Any changes to this object are unsafe and may introduce memory leaks. In case you are calling this function to a modulus struct, please be aware that most moduli are shared across multiple instances and all modifications of this struct will affect any other instance with a reference to this object.

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl MatZq

Source

pub unsafe fn set_fmpz_mod_mat_struct( &mut self, flint_struct: fmpz_mod_mat_struct, )

Sets the field matrix of type fmpz_mod_mat_struct to flint_struct.

Parameters:

  • flint_struct: value to set the attribute to

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Ensure that the old struct does not share any memory with any other structs that might be used in the future. The memory of the old struct is freed using this function.

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl MatZq

Source

pub unsafe fn set_fmpz_mod_ctx(&mut self, flint_struct: fmpz_mod_ctx)

Sets the field fmpz_mod_ctx to flint_struct by calling set_fmpz_mod_ctx on modulus.

Parameters:

  • flint_struct: value to set the attribute to

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Ensure that the old struct does not share any memory with any other structs that might be used in the future. The memory of the old struct is freed using this function.

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl MatZq

Source

pub fn dot_product(&self, other: &Self) -> Result<Zq, MathError>

Returns the dot product of two vectors of type MatZq. Note that the dimensions of the two vectors are irrelevant for the dot product.

Parameters:

  • other: specifies the other vector the dot product is calculated over

Returns the resulting dot product as a Zq or an error if the given MatZq instances aren’t vectors, have different numbers of entries, or mismatching moduli.

§Examples
use qfall_math::integer_mod_q::{MatZq, Zq};
use std::str::FromStr;

let vec_1 = MatZq::from_str("[[1],[2],[3]] mod 5").unwrap();
let vec_2 = MatZq::from_str("[[1, 3, 2]] mod 5").unwrap();

let dot_prod = vec_1.dot_product(&vec_2).unwrap();

// 1*1 + 2*3 + 3*2 = 3 mod 5
assert_eq!(Zq::from((3, 5)), dot_prod);
§Errors and Failures
Source§

impl MatZq

Source

pub fn is_row_vector(&self) -> bool

Returns true if the provided MatZq has only one row, i.e. is a row vector. Otherwise, returns false.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let col_vec = MatZq::from_str("[[1],[2],[3]] mod 4").unwrap();
let row_vec = MatZq::from_str("[[1, 2, 3]] mod 4").unwrap();

assert!(row_vec.is_row_vector());
assert!(!col_vec.is_row_vector());
Source

pub fn is_column_vector(&self) -> bool

Returns true if the provided MatZq has only one column, i.e. is a column vector. Otherwise, returns false.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let col_vec = MatZq::from_str("[[1],[2],[3]] mod 4").unwrap();
let row_vec = MatZq::from_str("[[1, 2, 3]] mod 4").unwrap();

assert!(col_vec.is_column_vector());
assert!(!row_vec.is_column_vector());
Source

pub fn is_vector(&self) -> bool

Returns true if the provided MatZq has only one column or one row, i.e. is a vector. Otherwise, returns false.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let col_vec = MatZq::from_str("[[1],[2],[3]] mod 4").unwrap();
let row_vec = MatZq::from_str("[[1, 2, 3]] mod 4").unwrap();

assert!(col_vec.is_vector());
assert!(row_vec.is_vector());
Source

pub fn has_single_entry(&self) -> bool

Returns true if the provided MatZq has only one entry, i.e. is a 1x1 matrix. Otherwise, returns false.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let vec = MatZq::from_str("[[1]] mod 2").unwrap();

assert!(vec.has_single_entry());
Source§

impl MatZq

Source

pub fn norm_eucl_sqrd(&self) -> Result<Z, MathError>

Returns the squared Euclidean norm or squared 2-norm of the given (row or column) vector or an error if the given matrix is not a vector.

Each length of an entry is defined as the shortest distance to the next zero instance in the ring.

§Examples
use qfall_math::{
    integer::Z,
    integer_mod_q::MatZq,
};
use std::str::FromStr;

let vec = MatZq::from_str("[[1],[2],[3]] mod 4").unwrap();

let sqrd_2_norm = vec.norm_eucl_sqrd().unwrap();

// 1*1 + 2*2 + 1*1 = 6
assert_eq!(Z::from(6), sqrd_2_norm);
§Errors and Failures
Source

pub fn norm_eucl(&self) -> Result<Q, MathError>

Returns the Euclidean norm or 2-norm of the given (row or column) vector or an error if the given matrix is not a vector.

Each length of an entry is defined as the shortest distance to the next zero instance in the ring.

§Examples
use qfall_math::{
    rational::Q,
    integer_mod_q::MatZq,
};
use std::str::FromStr;

let vec = MatZq::from_str("[[2],[2],[2],[2]] mod 4").unwrap();

let eucl_norm = vec.norm_eucl().unwrap();

// sqrt(4 * 2^2) = 4
assert_eq!(Q::from(4), eucl_norm);
§Errors and Failures
Source

pub fn norm_infty(&self) -> Result<Z, MathError>

Returns the infinity norm or ∞-norm of the given (row or column) vector or an error if the given matrix is not a vector.

Each length of an entry is defined as the shortest distance to the next zero instance in the ring.

§Examples
use qfall_math::{
    integer::Z,
    integer_mod_q::MatZq,
};
use std::str::FromStr;

let vec = MatZq::from_str("[[1],[2],[3]] mod 3").unwrap();

let infty_norm = vec.norm_infty().unwrap();

// max{1, 1, 0} = 1
assert_eq!(Z::ONE, infty_norm);
§Errors and Failures

Trait Implementations§

Source§

impl Add<&MatZ> for &MatZq

Source§

fn add(self, other: &MatZ) -> Self::Output

Implements the Add trait for a MatZ and a MatZq matrix. Add is implemented for any combination of MatZ and MatZq and vice versa.

Parameters:

  • other: specifies the value to add to self

Returns the sum of both numbers as a MatZq.

§Examples
use qfall_math::{integer::MatZ, integer_mod_q::MatZq};
use std::str::FromStr;

let a = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();

let c = &a + &b;
let d = a.clone() + b.clone();
let e = &b + &a;
let f = b + a;
§Panics …
  • if the dimensions of both matrices mismatch.
Source§

type Output = MatZq

The resulting type after applying the + operator.
Source§

impl Add for &MatZq

Source§

fn add(self, other: Self) -> Self::Output

Implements the Add trait for two MatZq values. Add is implemented for any combination of MatZq and borrowed MatZq.

Parameters:

  • other: specifies the value to add to self

Returns the sum of both numbers as a MatZq.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let a: MatZq = MatZq::from_str("[[1, 2, 3],[3, 4, 5]] mod 7").unwrap();
let b: MatZq = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();

let c: MatZq = &a + &b;
let d: MatZq = a + b;
let e: MatZq = &c + d;
let f: MatZq = c + &e;
§Panics …
  • if the dimensions of both matrices mismatch.
  • if the moduli mismatch.
Source§

type Output = MatZq

The resulting type after applying the + operator.
Source§

impl AddAssign<&MatZ> for MatZq

Source§

fn add_assign(&mut self, other: &MatZ)

Documentation at MatZq::add_assign.

Source§

impl AddAssign<&MatZq> for MatZq

Source§

fn add_assign(&mut self, other: &Self)

Computes the addition of self and other reusing the memory of self. AddAssign can be used on MatZq in combination with MatZq and MatZ.

Parameters:

  • other: specifies the value to add to self
§Examples
use qfall_math::{integer_mod_q::MatZq, integer::MatZ};
let mut a = MatZq::identity(2, 2, 7);
let b = MatZq::new(2, 2, 7);
let c = MatZ::new(2, 2);

a += &b;
a += b;
a += &c;
a += c;
§Panics …
  • if the matrix dimensions mismatch.
  • if the moduli of the matrices mismatch.
Source§

impl AddAssign<MatZ> for MatZq

Source§

fn add_assign(&mut self, other: MatZ)

Documentation at MatZq::add_assign.

Source§

impl AddAssign for MatZq

Source§

fn add_assign(&mut self, other: MatZq)

Documentation at MatZq::add_assign.

Source§

impl Clone for MatZq

Source§

fn clone(&self) -> Self

Clones the given element and returns a deep clone of the MatZq element.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let str_1 = "[[1, 2, 3],[4, 5, 6]] mod 4";
let a = MatZq::from_str(str_1).unwrap();
let b = a.clone();
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl CompareBase<&MatZ> for MatZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<&MatZq> for MatNTTPolynomialRingZq

Source§

fn compare_base(&self, other: &&MatZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&MatZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&MatZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &&MatZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&MatZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&MatZq> for MatZq

Source§

fn compare_base(&self, other: &&MatZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&MatZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&Zq> for MatZq

Source§

fn compare_base(&self, other: &&Zq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&Zq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl<Integer: Into<Z>> CompareBase<Integer> for MatZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<MatZ> for MatZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<MatZq> for MatNTTPolynomialRingZq

Source§

fn compare_base(&self, other: &MatZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &MatZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<MatZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &MatZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &MatZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<Zq> for MatZq

Source§

fn compare_base(&self, other: &Zq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &Zq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase for MatZq

Source§

fn compare_base(&self, other: &MatZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &MatZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl Concatenate for &MatZq

Source§

fn concat_vertical(self, other: Self) -> Result<Self::Output, MathError>

Concatenates self with other vertically, i.e. other is added below.

Parameters:

  • other: the other matrix to concatenate with self

Returns a vertical concatenation of the two matrices or a an error, if the matrices can not be concatenated vertically.

§Examples
use qfall_math::traits::*;
use qfall_math::integer_mod_q::MatZq;

let mat_1 = MatZq::new(13, 5, 19);
let mat_2 = MatZq::new(17, 5, 19);

let mat_vert = mat_1.concat_vertical(&mat_2).unwrap();
§Errors and Failures
Source§

fn concat_horizontal(self, other: Self) -> Result<Self::Output, MathError>

Concatenates self with other horizontally, i.e. other is added on the right.

Parameters:

  • other: the other matrix to concatenate with self

Returns a horizontal concatenation of the two matrices or a an error, if the matrices can not be concatenated horizontally.

§Examples
use qfall_math::traits::*;
use qfall_math::integer_mod_q::MatZq;

let mat_1 = MatZq::new(17, 5, 19);
let mat_2 = MatZq::new(17, 6, 19);

let mat_vert = mat_1.concat_horizontal(&mat_2).unwrap();
§Errors and Failures
Source§

type Output = MatZq

Source§

impl Debug for MatZq

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'de> Deserialize<'de> for MatZq

Source§

fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: Deserializer<'de>,

Implements the deserialize option. This allows to create a MatZq from a given Json-object.

Source§

impl Display for MatZq

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Allows to convert a matrix of type MatZq into a String.

Returns the Matrix in form of a String. For matrix [[1, 2, 3],[4, 5, 6]] mod 4 the String looks like this [[1, 2, 3],[0, 1, 2]] mod 4.

§Examples
use qfall_math::integer_mod_q::MatZq;
use core::fmt;
use std::str::FromStr;

let matrix = MatZq::from_str("[[1, 2, 3],[4, 5, 6]] mod 4").unwrap();
println!("{matrix}");
use qfall_math::integer_mod_q::MatZq;
use core::fmt;
use std::str::FromStr;

let matrix = MatZq::from_str("[[1, 2, 3],[4, 5, 6]] mod 4").unwrap();
let matrix_string = matrix.to_string();
Source§

impl Drop for MatZq

Source§

fn drop(&mut self)

Drops the given MatZq value and frees the allocated memory.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let str_1 = "[[1, 2, 3],[4, 5, 6]] mod 4";
{
    let a = MatZq::from_str(str_1).unwrap();
} // as a's scope ends here, it get's dropped
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let str_1 = "[[1, 2, 3],[4, 5, 6]] mod 4";
let a = MatZq::from_str(str_1).unwrap();
drop(a); // explicitly drops a's value
Source§

impl From<&MatZq> for MatZq

Source§

fn from(value: &MatZq) -> Self

Alias for MatZq::clone.

Source§

impl From<&MatZq> for String

Source§

fn from(value: &MatZq) -> Self

Converts a MatZq into its String representation.

Parameters:

  • value: specifies the matrix that will be represented as a String

Returns a String of the form "[[row_0],[row_1],...[row_n]] mod q".

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;
let matrix = MatZq::from_str("[[6, 1],[5, 2]] mod 4").unwrap();

let string: String = matrix.into();
Source§

impl<Mod: Into<Modulus>> From<(&MatZ, Mod)> for MatZq

Source§

fn from((matrix, modulus): (&MatZ, Mod)) -> Self

Creates a MatZq from a MatZ and a value that implements Into<Modulus>.

Parameters:

  • matrix: the matrix from which the entries are taken
  • modulus: the modulus of the matrix

Returns a MatZq.

§Examples
use qfall_math::integer::MatZ;
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let m = MatZ::from_str("[[1, 2],[3, -1]]").unwrap();

let a = MatZq::from((&m, 17));
Source§

impl<Mod: Into<Modulus>> From<(MatZ, Mod)> for MatZq

Source§

fn from((matrix, modulus): (MatZ, Mod)) -> Self

Creates a MatZq from a MatZ and a value that implements Into<Modulus>.

Parameters:

  • matrix: the matrix from which the entries are taken
  • modulus: the modulus of the matrix

Returns a new MatZq matrix with entries from the MatZ instance modulo modulus.

§Examples
use qfall_math::integer::MatZ;
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let m = MatZ::from_str("[[1, 2],[3, -1]]").unwrap();

let a = MatZq::from((m, 17));
Source§

impl From<MatZq> for String

Source§

fn from(value: MatZq) -> Self

Documentation can be found at String::from for &MatZq.

Source§

impl FromCoefficientEmbedding<&MatZq> for ModulusPolynomialRingZq

Source§

fn from_coefficient_embedding(embedding: &MatZq) -> Self

Computes a polynomial from a vector. The first i-th entry of the column vector is taken as the coefficient of the polynomial. It inverts the operation of ModulusPolynomialRingZq::into_coefficient_embedding.

Parameters:

  • embedding: the column vector that encodes the embedding

Returns a polynomial that corresponds to the embedding.

§Examples
use std::str::FromStr;
use qfall_math::{
    integer_mod_q::{MatZq, ModulusPolynomialRingZq},
    traits::FromCoefficientEmbedding,
};

let vector = MatZq::from_str("[[17],[3],[-5]] mod 19").unwrap();
let poly = ModulusPolynomialRingZq::from_coefficient_embedding(&vector);
let cmp_poly = ModulusPolynomialRingZq::from_str("3  17 3 -5 mod 19").unwrap();
assert_eq!(cmp_poly, poly);
§Panics …
  • if the provided embedding is not a column vector.
Source§

impl FromCoefficientEmbedding<&MatZq> for PolyOverZq

Source§

fn from_coefficient_embedding(embedding: &MatZq) -> Self

Computes a polynomial from a vector. The first i-th entry of the column vector is taken as the coefficient of the polynomial. It inverts the operation of PolyOverZq::into_coefficient_embedding.

Parameters:

  • embedding: the column vector that encodes the embedding

Returns a polynomial that corresponds to the embedding.

§Examples
use std::str::FromStr;
use qfall_math::{
    integer_mod_q::{MatZq, PolyOverZq},
    traits::FromCoefficientEmbedding,
};

let vector = MatZq::from_str("[[17],[3],[-5]] mod 19").unwrap();
let poly = PolyOverZq::from_coefficient_embedding(&vector);
let cmp_poly = PolyOverZq::from_str("3  17 3 -5 mod 19").unwrap();
assert_eq!(cmp_poly, poly);
§Panics …
  • if the provided embedding is not a column vector.
Source§

impl FromStr for MatZq

Source§

fn from_str(string: &str) -> Result<Self, MathError>

Creates a MatZq matrix with entries in Zq from a String.

Parameters:

  • string: the matrix of form: "[[1, 2, 3],[4, 5, 6]] mod 4" for a 2x3 matrix with entries 1, 2, 3 in the first row, 4, 5, 6 in the second row and 4 as modulus.

Note that the strings for entries and the modulus are trimmed, i.e. all whitespaces around all values are ignored.

Returns a MatZq or an error if the matrix is not formatted in a suitable way, the number of rows or columns is too large (must fit into i64), the number of entries in rows is unequal or if the modulus or an entry is not formatted correctly.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let matrix = MatZq::from_str("[[1, 2, 3],[4, 5, 6]] mod 4").unwrap();
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let str_1 = "[[1, 2, 3],[4, 5, 6]] mod 4";
let matrix = MatZq::from_str(str_1).unwrap();
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let string = String::from("[[1, 2, 3],[4, 5, 6]] mod 4");
let matrix = MatZq::from_str(&string).unwrap();
§Errors and Failures
  • Returns a MathError of type StringConversionError
    • if the matrix is not formatted in a suitable way,
    • if the number of rows or columns is too large (must fit into i64),
    • if the number of entries in rows is unequal,
    • if the delimiter mod could not be found, or
    • if the modulus or an entry is not formatted correctly. For further information see Z::from_str.
§Panics …
  • if the provided number of rows and columns or the modulus are not suited to create a matrix. For further information see MatZq::new.
  • if the modulus is smaller than 2.
Source§

type Err = MathError

The associated error which can be returned from parsing.
Source§

impl IntoCoefficientEmbedding<MatZq> for &ModulusPolynomialRingZq

Source§

fn into_coefficient_embedding(self, size: impl Into<i64>) -> MatZq

Computes the coefficient embedding of the polynomial in a MatZq as a column vector, where the i-th entry of the vector corresponds to the i-th coefficient. It inverts the operation of ModulusPolynomialRingZq::from_coefficient_embedding.

Parameters:

  • size: determines the number of rows of the embedding. It has to be larger than the degree of the polynomial.

Returns a coefficient embedding as a column vector if size is large enough.

§Examples
use std::str::FromStr;
use qfall_math::{
    integer_mod_q::{MatZq, ModulusPolynomialRingZq},
    traits::IntoCoefficientEmbedding,
};

let poly = ModulusPolynomialRingZq::from_str("3  17 3 -5 mod 19").unwrap();
let vector = poly.into_coefficient_embedding(4);
let cmp_vector = MatZq::from_str("[[17],[3],[-5],[0]] mod 19").unwrap();
assert_eq!(cmp_vector, vector);
§Panics …
  • if size is not larger than the degree of the polynomial, i.e. not all coefficients can be embedded.
Source§

impl IntoCoefficientEmbedding<MatZq> for &PolyOverZq

Source§

fn into_coefficient_embedding(self, size: impl Into<i64>) -> MatZq

Computes the coefficient embedding of the polynomial in a MatZq as a column vector, where the i-th entry of the vector corresponds to the i-th coefficient. It inverts the operation of PolyOverZq::from_coefficient_embedding.

Parameters:

  • size: determines the number of rows of the embedding. It has to be larger than the degree of the polynomial.

Returns a coefficient embedding as a column vector if size is large enough.

§Examples
use std::str::FromStr;
use qfall_math::{
    integer_mod_q::{MatZq, PolyOverZq},
    traits::IntoCoefficientEmbedding,
};

let poly = PolyOverZq::from_str("3  17 3 -5 mod 19").unwrap();
let vector = poly.into_coefficient_embedding(4);
let cmp_vector = MatZq::from_str("[[17],[3],[-5],[0]] mod 19").unwrap();
assert_eq!(cmp_vector, vector);
§Panics …
  • if size is not larger than the degree of the polynomial, i.e. not all coefficients can be embedded.
Source§

impl MatrixDimensions for MatZq

Source§

fn get_num_rows(&self) -> i64

Returns the number of rows of the matrix as a i64.

§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::traits::*;

let matrix = MatZq::new(5, 6, 7);
let rows = matrix.get_num_rows();
Source§

fn get_num_columns(&self) -> i64

Returns the number of columns of the matrix as a i64.

§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::traits::*;

let matrix = MatZq::new(5, 6, 7);
let rows = matrix.get_num_columns();
Source§

impl MatrixGetEntry<Z> for MatZq

Source§

unsafe fn get_entry_unchecked(&self, row: i64, column: i64) -> Z

Outputs the Z value of a specific matrix entry without checking whether it’s part of the matrix.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located

Returns the Z value of the matrix at the position of the given row and column.

§Safety

To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::traits::MatrixGetEntry;
use qfall_math::integer::Z;
use std::str::FromStr;

let matrix = MatZq::from_str("[[1, 2, 3],[4, 5, 6],[7, 8, 9]] mod 10").unwrap();

let entry_1 :Z = unsafe { matrix.get_entry_unchecked(0, 2) };
let entry_2 :Z = unsafe { matrix.get_entry_unchecked(2, 1) };
let entry_3 :Z = unsafe { matrix.get_entry_unchecked(2, 1) };

assert_eq!(3, entry_1);
assert_eq!(8, entry_2);
assert_eq!(8, entry_3);
Source§

fn get_entry( &self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, ) -> Result<T, MathError>

Returns the value of a specific matrix entry. Read more
Source§

fn get_entries(&self) -> Vec<Vec<T>>

Outputs a Vec<Vec<T>> containing all entries of the matrix s.t. any entry in row i and column j can be accessed via entries[i][j] if entries = matrix.get_entries. Read more
Source§

fn get_entries_rowwise(&self) -> Vec<T>

Outputs a Vec<T> containing all entries of the matrix in a row-wise order, i.e. a matrix [[2, 3, 4],[5, 6, 7]] can be accessed via this function in this order [2, 3, 4, 5, 6, 7]. Read more
Source§

fn get_entries_columnwise(&self) -> Vec<T>

Outputs a Vec<T> containing all entries of the matrix in a column-wise order, i.e. a matrix [[2, 3, 4],[5, 6, 7]] can be accessed via this function in this order [2, 5, 3, 6, 4, 7]. Read more
Source§

impl MatrixGetEntry<Zq> for MatZq

Source§

unsafe fn get_entry_unchecked(&self, row: i64, column: i64) -> Zq

Outputs the Zq value of a specific matrix entry without checking whether it’s part of the matrix.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located

Returns the Zq value of the matrix at the position of the given row and column.

§Safety

To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

§Examples
use qfall_math::integer_mod_q::{MatZq, Zq};
use qfall_math::traits::MatrixGetEntry;
use std::str::FromStr;

let matrix = MatZq::from_str("[[1, 2, 3],[4, 5, 6],[7, 8, 9]] mod 10").unwrap();

assert_eq!(Zq::from((3, 10)), unsafe { matrix.get_entry_unchecked(0, 2) } );
assert_eq!(Zq::from((8, 10)), unsafe { matrix.get_entry_unchecked(2, 1) } );
assert_eq!(Zq::from((8, 10)), unsafe { matrix.get_entry_unchecked(2, 1) } );
Source§

fn get_entry( &self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, ) -> Result<T, MathError>

Returns the value of a specific matrix entry. Read more
Source§

fn get_entries(&self) -> Vec<Vec<T>>

Outputs a Vec<Vec<T>> containing all entries of the matrix s.t. any entry in row i and column j can be accessed via entries[i][j] if entries = matrix.get_entries. Read more
Source§

fn get_entries_rowwise(&self) -> Vec<T>

Outputs a Vec<T> containing all entries of the matrix in a row-wise order, i.e. a matrix [[2, 3, 4],[5, 6, 7]] can be accessed via this function in this order [2, 3, 4, 5, 6, 7]. Read more
Source§

fn get_entries_columnwise(&self) -> Vec<T>

Outputs a Vec<T> containing all entries of the matrix in a column-wise order, i.e. a matrix [[2, 3, 4],[5, 6, 7]] can be accessed via this function in this order [2, 5, 3, 6, 4, 7]. Read more
Source§

impl MatrixGetSubmatrix for MatZq

Source§

unsafe fn get_submatrix_unchecked( &self, row_1: i64, row_2: i64, col_1: i64, col_2: i64, ) -> Self

Returns a deep copy of the submatrix defined by the given parameters and does not check the provided dimensions. There is also a safe version of this function that checks the input.

Parameters: row_1: the starting row of the submatrix row_2: the ending row of the submatrix col_1: the starting column of the submatrix col_2: the ending column of the submatrix

Returns the submatrix from (row_1, col_1) to (row_2, col_2)(exclusively).

§Examples
use qfall_math::{integer_mod_q::MatZq, traits::MatrixGetSubmatrix};
use std::str::FromStr;

let mat = MatZq::identity(3, 3, 17);

let sub_mat_1 = mat.get_submatrix(0, 2, 1, 1).unwrap();
let sub_mat_2 = mat.get_submatrix(0, -1, 1, -2).unwrap();
let sub_mat_3 = unsafe{mat.get_submatrix_unchecked(0, 3, 1, 2)};

let e_2 = MatZq::from_str("[[0],[1],[0]] mod 17").unwrap();
assert_eq!(e_2, sub_mat_1);
assert_eq!(e_2, sub_mat_2);
assert_eq!(e_2, sub_mat_3);
§Safety

To use this function safely, make sure that the selected submatrix is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

Source§

fn get_row( &self, row: impl TryInto<i64> + Display + Clone, ) -> Result<Self, MathError>

Outputs the row vector of the specified row. Read more
Source§

unsafe fn get_row_unchecked(&self, row: i64) -> Self

Outputs the row vector of the specified row. Read more
Source§

fn get_column( &self, column: impl TryInto<i64> + Display + Clone, ) -> Result<Self, MathError>

Outputs the column vector of the specified column. Read more
Source§

unsafe fn get_column_unchecked(&self, column: i64) -> Self

Outputs the column vector of the specified column. Read more
Source§

fn get_submatrix( &self, row_1: impl TryInto<i64> + Display, row_2: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, col_2: impl TryInto<i64> + Display, ) -> Result<Self, MathError>

Returns a deep copy of the submatrix defined by the given parameters. All entries starting from (row_1, col_1) to (row_2, col_2)(inclusively) are collected in a new matrix. Note that row_1 >= row_2 and col_1 >= col_2 must hold after converting negative indices. Otherwise the function will panic. Read more
Source§

fn get_rows(&self) -> Vec<Self>

Outputs a Vec containing all rows of the matrix in order. Use this function for simple iteration over the rows of the matrix. Read more
Source§

fn get_columns(&self) -> Vec<Self>

Outputs a Vec containing all columns of the matrix in order. Use this function for simple iteration over the columns of the matrix. Read more
Source§

impl MatrixSetEntry<&Zq> for MatZq

Source§

unsafe fn set_entry_unchecked(&mut self, row: i64, column: i64, value: &Zq)

Sets the value of a specific matrix entry according to a given value of type Zq without checking whether the coordinate is part of the matrix, if the moduli match or the entry is reduced.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located
  • value: specifies the value to which the entry is set
§Safety

To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

§Examples
use qfall_math::integer_mod_q::{MatZq, Zq};
use qfall_math::traits::*;

let mut matrix = MatZq::new(3, 3, 10);
let value = Zq::from((5, 10));

unsafe {
    matrix.set_entry_unchecked(0, 1, &value);
    matrix.set_entry_unchecked(2, 2, Zq::from((19, 10)));
}

assert_eq!("[[0, 5, 0],[0, 0, 0],[0, 0, 9]] mod 10", matrix.to_string());
Source§

fn set_entry( &mut self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, value: T, ) -> Result<(), MathError>

Sets the value of a specific matrix entry according to a given value. Read more
Source§

impl<Integer: Into<Z>> MatrixSetEntry<Integer> for MatZq

Source§

fn set_entry( &mut self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, value: Integer, ) -> Result<(), MathError>

Sets the value of a specific matrix entry according to a given value that implements Into<Z>.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located
  • value: specifies the value to which the entry is set

Negative indices can be used to index from the back, e.g., -1 for the last element.

Returns an empty Ok if the action could be performed successfully. Otherwise, a MathError is returned if the specified entry is not part of the matrix.

§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::traits::*;

let mut matrix = MatZq::new(3, 3, 10);

matrix.set_entry(0, 1, 5).unwrap();
matrix.set_entry(-1, 2, 19).unwrap();

assert_eq!("[[0, 5, 0],[0, 0, 0],[0, 0, 9]] mod 10", matrix.to_string());
§Errors and Failures
Source§

unsafe fn set_entry_unchecked(&mut self, row: i64, column: i64, value: Integer)

Sets the value of a specific matrix entry according to a given value that implements Into<Z> without checking whether the coordinate is part of the matrix, if the moduli match or the entry is reduced.

Parameters:

  • row: specifies the row in which the entry is located
  • column: specifies the column in which the entry is located
  • value: specifies the value to which the entry is set
§Safety

To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.

§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::traits::*;

let mut matrix = MatZq::new(3, 3, 10);

unsafe {
    matrix.set_entry_unchecked(0, 1, 5);
    matrix.set_entry_unchecked(2, 2, 19);
}

assert_eq!("[[0, 5, 0],[0, 0, 0],[0, 0, 19]] mod 10", matrix.to_string());
Source§

impl MatrixSetEntry<Zq> for MatZq

Source§

fn set_entry( &mut self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, value: Zq, ) -> Result<(), MathError>

Documentation can be found at MatZq::set_entry for &Zq.

Source§

unsafe fn set_entry_unchecked(&mut self, row: i64, column: i64, value: Zq)

Documentation can be found at MatZq::set_entry for &Zq.

Source§

impl MatrixSetSubmatrix for MatZq

Source§

unsafe fn set_submatrix_unchecked( &mut self, row_self_start: i64, col_self_start: i64, row_self_end: i64, col_self_end: i64, other: &Self, row_other_start: i64, col_other_start: i64, row_other_end: i64, col_other_end: i64, )

Sets the matrix entries in self to entries defined in other. The entries in self starting from (row_self_start, col_self_start) up to (row_self_end, col_self_end)are set to be the entries from the submatrix from other defined by (row_other_start, col_other_start) to (row_other_end, col_other_end) (exclusively).

Parameters: row_self_start: the starting row of the matrix in which to set a submatrix col_self_start: the starting column of the matrix in which to set a submatrix other: the matrix from where to take the submatrix to set row_other_start: the starting row of the specified submatrix col_other_start: the starting column of the specified submatrix row_other_end: the ending row of the specified submatrix col_other_end:the ending column of the specified submatrix

§Examples
use qfall_math::integer_mod_q::{MatZq, Modulus};
use qfall_math::integer::MatZ;
use qfall_math::traits::MatrixSetSubmatrix;
use std::str::FromStr;

let mat = MatZ::identity(3, 3);
let modulus = Modulus::from(17);
let mut mat = MatZq::from((&mat, &modulus));

mat.set_submatrix(0, 1, &mat.clone(), 0, 0, 1, 1).unwrap();
// [[1,1,0],[0,0,1],[0,0,1]]
let mat_cmp = MatZ::from_str("[[1, 1, 0],[0, 0, 1],[0, 0, 1]]").unwrap();
assert_eq!(mat, MatZq::from((&mat_cmp, &modulus)));

unsafe{ mat.set_submatrix_unchecked(2, 0, 3, 2, &mat.clone(), 0, 0, 1, 2) };
let mat_cmp = MatZ::from_str("[[1, 1, 0],[0, 0, 1],[1, 1, 1]]").unwrap();
assert_eq!(mat, MatZq::from((&mat_cmp, &modulus)));
§Safety

To use this function safely, make sure that the selected submatrices are part of the matrices, the submatrices are of the same dimensions and the base types are the same. If not, memory leaks, unexpected panics, etc. might occur.

Source§

fn set_row( &mut self, row_0: impl TryInto<i64> + Display, other: &Self, row_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Sets a row of the given matrix to the provided row of other. Read more
Source§

unsafe fn set_row_unchecked(&mut self, row_0: i64, other: &Self, row_1: i64)

Sets a row of the given matrix to the provided row of other. Read more
Source§

fn set_column( &mut self, col_0: impl TryInto<i64> + Display, other: &Self, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Sets a column of the given matrix to the provided column of other. Read more
Source§

unsafe fn set_column_unchecked(&mut self, col_0: i64, other: &Self, col_1: i64)

Sets a column of the given matrix to the provided column of other. Read more
Source§

fn set_submatrix( &mut self, row_self_start: impl TryInto<i64> + Display, col_self_start: impl TryInto<i64> + Display, other: &Self, row_other_start: impl TryInto<i64> + Display, col_other_start: impl TryInto<i64> + Display, row_other_end: impl TryInto<i64> + Display, col_other_end: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Sets the matrix entries in self to entries defined in other. The entries in self starting from (row_self_start, col_self_start) are set to be the entries from the submatrix from other defined by (row_other_start, col_other_start) to (row_other_end, col_other_end) (inclusively). The original matrix must have sufficiently many entries to contain the defined submatrix. Read more
Source§

impl MatrixSwaps for MatZq

Source§

fn swap_entries( &mut self, row_0: impl TryInto<i64> + Display, col_0: impl TryInto<i64> + Display, row_1: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Swaps two entries of the specified matrix.

Parameters:

  • row_0: specifies the row, in which the first entry is located
  • col_0: specifies the column, in which the first entry is located
  • row_1: specifies the row, in which the second entry is located
  • col_1: specifies the column, in which the second entry is located

Negative indices can be used to index from the back, e.g., -1 for the last element.

Returns an empty Ok if the action could be performed successfully. Otherwise, a MathError is returned if one of the specified entries is not part of the matrix.

§Examples
use qfall_math::{integer_mod_q::MatZq, traits::MatrixSwaps};

let mut matrix = MatZq::new(4, 3, 5);
matrix.swap_entries(0, 0, 2, 1);
§Errors and Failures
Source§

fn swap_columns( &mut self, col_0: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Swaps two columns of the specified matrix.

Parameters:

  • col_0: specifies the first column which is swapped with the second one
  • col_1: specifies the second column which is swapped with the first one

Negative indices can be used to index from the back, e.g., -1 for the last element.

Returns an empty Ok if the action could be performed successfully. Otherwise, a MathError is returned if one of the specified columns is not part of the matrix.

§Examples
use qfall_math::{integer_mod_q::MatZq, traits::MatrixSwaps};

let mut matrix = MatZq::new(4, 3, 5);
matrix.swap_columns(0, 2);
§Errors and Failures
Source§

fn swap_rows( &mut self, row_0: impl TryInto<i64> + Display, row_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>

Swaps two rows of the specified matrix.

Parameters:

  • row_0: specifies the first row which is swapped with the second one
  • row_1: specifies the second row which is swapped with the first one

Negative indices can be used to index from the back, e.g., -1 for the last element.

Returns an empty Ok if the action could be performed successfully. Otherwise, a MathError is returned if one of the specified rows is not part of the matrix.

§Examples
use qfall_math::{integer_mod_q::MatZq, traits::MatrixSwaps};

let mut matrix = MatZq::new(4, 3, 5);
matrix.swap_rows(0, 2);
§Errors and Failures
Source§

impl Mul<&MatZ> for &MatZq

Source§

fn mul(self, other: &MatZ) -> Self::Output

Implements the Mul trait for MatZq and MatZ. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the value to multiply with self

Returns the product of self and other as a MatZq.

§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::integer::MatZ;
use std::str::FromStr;

let a = MatZq::from_str("[[2, 1],[1, 2]] mod 3").unwrap();
let b = MatZ::identity(2, 2);

let c = &a * &b;
let d = a * b;
let e = d * &MatZ::identity(2, 2);
let f = &e * MatZ::identity(2, 2);
§Panics …
  • if the dimensions of self and other do not match for multiplication.
Source§

type Output = MatZq

The resulting type after applying the * operator.
Source§

impl Mul<&MatZq> for &MatZ

Source§

fn mul(self, other: &MatZq) -> Self::Output

Implements the Mul trait for MatZ and MatZq. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the value to multiply with self

Returns the product of self and other as a MatZq.

§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::integer::MatZ;
use std::str::FromStr;

let a = MatZ::identity(2, 2);
let b = MatZq::from_str("[[2, 1],[1, 2]] mod 3").unwrap();

let c = &a * &b;
let d = a * b;
let e = &MatZ::identity(2, 2) * d;
let f = MatZ::identity(2, 2) * &e;
§Panics …
  • if the dimensions of self and other do not match for multiplication.
Source§

type Output = MatZq

The resulting type after applying the * operator.
Source§

impl Mul<&Z> for &MatZq

Source§

fn mul(self, scalar: &Z) -> Self::Output

Implements the Mul trait for a MatZq matrix with a Z integer. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • scalar: specifies the scalar by which the matrix is multiplied

Returns the product of self and scalar as a MatZq.

§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::integer::Z;
use std::str::FromStr;

let mat_1 = MatZq::from_str("[[42, 17],[8, 6]] mod 61").unwrap();
let integer = Z::from(3);

let mat_2 = &mat_1 * &integer;
Source§

type Output = MatZq

The resulting type after applying the * operator.
Source§

impl Mul<&Zq> for &MatZq

Source§

fn mul(self, scalar: &Zq) -> Self::Output

Implements the Mul trait for a MatZq matrix with a Zq. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • scalar: specifies the scalar by which the matrix is multiplied

Returns the product of self and scalar as a MatZq.

§Examples
use qfall_math::integer_mod_q::{MatZq, Zq};
use std::str::FromStr;

let mat_1 = MatZq::from_str("[[42, 17],[8, 6]] mod 61").unwrap();
let integer = Zq::from((2, 61));

let mat_2 = &mat_1 * &integer;
§Panics …
  • if the moduli mismatch.
Source§

type Output = MatZq

The resulting type after applying the * operator.
Source§

impl Mul for &MatZq

Source§

fn mul(self, other: Self) -> Self::Output

Implements the Mul trait for two MatZq values. Mul is implemented for any combination of MatZq and borrowed MatZq.

Parameters:

  • other: specifies the value to multiply with self

Returns the product of self and other as a MatZq.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let a = MatZq::from_str("[[2, 1],[1, 2]] mod 3").unwrap();
let b = MatZq::from_str("[[1, 0],[0, 1]] mod 3").unwrap();

let c = &a * &b;
let d = a * b;
let e = &c * d;
let f = c * &e;
§Panics …
  • if the dimensions of self and other do not match for multiplication.
  • if the moduli mismatch.
Source§

type Output = MatZq

The resulting type after applying the * operator.
Source§

impl MulAssign<&Z> for MatZq

Source§

fn mul_assign(&mut self, scalar: &Z)

Computes the scalar multiplication of self and scalar reusing the memory of self.

Parameters:

  • scalar: specifies the value to multiply to self

Returns the scalar of the matrix as a MatZq.

§Examples
use qfall_math::integer::Z;
use qfall_math::integer_mod_q::{MatZq, Zq};
use std::str::FromStr;

let mut a = MatZq::from_str("[[2, 1],[1, 2]] mod 61").unwrap();
let b = Z::from(2);
let c = Zq::from((17, 61));

a *= &b;
a *= b;
a *= 2;
a *= -2;
a *= &c;
a *= c;
Source§

impl MulAssign<&Zq> for MatZq

Source§

fn mul_assign(&mut self, scalar: &Zq)

Documentation at MatZq::mul_assign

§Panics …
  • if the moduli are different.
Source§

impl MulAssign<Z> for MatZq

Source§

fn mul_assign(&mut self, other: Z)

Documentation at MatZq::mul_assign.

Source§

impl MulAssign<Zq> for MatZq

Source§

fn mul_assign(&mut self, other: Zq)

Documentation at MatZq::mul_assign.

Source§

impl MulAssign<i16> for MatZq

Source§

fn mul_assign(&mut self, other: i16)

Documentation at MatZq::mul_assign.

Source§

impl MulAssign<i32> for MatZq

Source§

fn mul_assign(&mut self, other: i32)

Documentation at MatZq::mul_assign.

Source§

impl MulAssign<i64> for MatZq

Source§

fn mul_assign(&mut self, other: i64)

Documentation at MatZq::mul_assign.

Source§

impl MulAssign<i8> for MatZq

Source§

fn mul_assign(&mut self, other: i8)

Documentation at MatZq::mul_assign.

Source§

impl MulAssign<u16> for MatZq

Source§

fn mul_assign(&mut self, other: u16)

Documentation at MatZq::mul_assign.

Source§

impl MulAssign<u32> for MatZq

Source§

fn mul_assign(&mut self, other: u32)

Documentation at MatZq::mul_assign.

Source§

impl MulAssign<u64> for MatZq

Source§

fn mul_assign(&mut self, other: u64)

Documentation at MatZq::mul_assign.

Source§

impl MulAssign<u8> for MatZq

Source§

fn mul_assign(&mut self, other: u8)

Documentation at MatZq::mul_assign.

Source§

impl PartialEq for MatZq

Source§

fn eq(&self, other: &Self) -> bool

Checks if two MatZq instances are equal. Used by the == and != operators. The values in the matrix as well as the modulus have to be equal.

Parameters:

  • other: the other value that is compare against self

Returns true if the elements are equal, otherwise false.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let a = MatZq::from_str("[[1, 2],[3, 4]] mod 4").unwrap();
let b = MatZq::from_str("[[1, 2],[2, 4]] mod 4").unwrap();

// These are all equivalent and return false.
let compared: bool = (a == b);
let compared: bool = (&a == &b);
let compared: bool = (a.eq(&b));
let compared: bool = (MatZq::eq(&a, &b));
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Serialize for MatZq

Source§

fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer,

Implements the serialize option. This allows to create a Json-object from a given MatZq.

Source§

impl Sub<&MatZ> for &MatZq

Source§

fn sub(self, other: &MatZ) -> Self::Output

Implements the Sub trait for a MatZq and a MatZ matrix. Sub is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the matrix to subtract from self.

Returns the subtraction of self and other as a MatZq.

§Examples
use qfall_math::{integer::MatZ, integer_mod_q::MatZq};
use std::str::FromStr;

let a = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();

let c = &b - &a;
let d = b.clone() - a.clone();
let e = &b - &a;
let f = b - a;
§Panics …
  • if the dimensions of both matrices mismatch.
Source§

type Output = MatZq

The resulting type after applying the - operator.
Source§

impl Sub<&MatZq> for &MatZ

Source§

fn sub(self, other: &MatZq) -> Self::Output

Implements the Sub trait for a MatZ and a MatZq matrix. Sub is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the matrix to subtract from self.

Returns the subtraction of self and other as a MatZq.

§Examples
use qfall_math::{integer::MatZ, integer_mod_q::MatZq};
use std::str::FromStr;

let a = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();

let c = &a - &b;
let d = a.clone() - b.clone();
let e = &a - &b;
let f = a - b;
§Panics …
  • if the dimensions of both matrices mismatch.
Source§

type Output = MatZq

The resulting type after applying the - operator.
Source§

impl Sub for &MatZq

Source§

fn sub(self, other: Self) -> Self::Output

Implements the Sub trait for two MatZq values. Sub is implemented for any combination of MatZq and borrowed MatZq.

Parameters:

  • other: specifies the value to subtract fromself

Returns the result of the subtraction as a MatZq.

§Examples
use qfall_math::integer_mod_q::MatZq;
use std::str::FromStr;

let a: MatZq = MatZq::from_str("[[1, 2, 3],[3, 4, 5]] mod 7").unwrap();
let b: MatZq = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();

let c: MatZq = &a - &b;
let d: MatZq = a - b;
let e: MatZq = &c - d;
let f: MatZq = c - &e;
§Panics …
  • if the dimensions of both matrices mismatch.
  • if the moduli mismatch.
Source§

type Output = MatZq

The resulting type after applying the - operator.
Source§

impl SubAssign<&MatZ> for MatZq

Source§

fn sub_assign(&mut self, other: &MatZ)

Documentation at MatZq::sub_assign.

Source§

impl SubAssign<&MatZq> for MatZq

Source§

fn sub_assign(&mut self, other: &Self)

Computes the subtraction of self and other reusing the memory of self. SubAssign can be used on MatZq in combination with MatZq and MatZ.

Parameters:

  • other: specifies the value to subtract from self
§Examples
use qfall_math::{integer_mod_q::MatZq, integer::MatZ};
let mut a = MatZq::identity(2, 2, 7);
let b = MatZq::new(2, 2, 7);
let c = MatZ::new(2, 2);

a -= &b;
a -= b;
a -= &c;
a -= c;
§Panics …
  • if the matrix dimensions mismatch.
  • if the moduli of the matrices mismatch.
Source§

impl SubAssign<MatZ> for MatZq

Source§

fn sub_assign(&mut self, other: MatZ)

Documentation at MatZq::sub_assign.

Source§

impl SubAssign for MatZq

Source§

fn sub_assign(&mut self, other: MatZq)

Documentation at MatZq::sub_assign.

Source§

impl Tensor for MatZq

Source§

fn tensor_product(&self, other: &Self) -> Self

Computes the tensor product of self with other.

Parameters:

  • other: the value with which the tensor product is computed.

Returns the tensor product of self with other and panics if the moduli of the provided matrices mismatch.

§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::traits::Tensor;
use std::str::FromStr;

let mat_1 = MatZq::from_str("[[1, 1],[2, 2]] mod 7").unwrap();
let mat_2 = MatZq::from_str("[[1, 2],[3, 4]] mod 7").unwrap();

let mat_ab = mat_1.tensor_product(&mat_2);
let mat_ba = mat_2.tensor_product(&mat_1);

let res_ab = "[[1, 2, 1, 2],[3, 4, 3, 4],[2, 4, 2, 4],[6, 1, 6, 1]] mod 7";
let res_ba = "[[1, 1, 2, 2],[2, 2, 4, 4],[3, 3, 4, 4],[6, 6, 1, 1]] mod 7";
assert_eq!(mat_ab, MatZq::from_str(res_ab).unwrap());
assert_eq!(mat_ba, MatZq::from_str(res_ba).unwrap());
§Panics …
Source§

impl Eq for MatZq

Auto Trait Implementations§

§

impl Freeze for MatZq

§

impl RefUnwindSafe for MatZq

§

impl !Send for MatZq

§

impl !Sync for MatZq

§

impl Unpin for MatZq

§

impl UnwindSafe for MatZq

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,