pub struct MultiLineString<T = f64>(pub Vec<LineString<T>>)
where
    T: CoordNum;
Expand description

A collection of LineStrings. Can be created from a Vec of LineStrings or from an Iterator which yields LineStrings. Iterating over this object yields the component LineStrings.

§Semantics

The boundary of a MultiLineString is obtained by applying the “mod 2” union rule: A Point is in the boundary of a MultiLineString if it is in the boundaries of an odd number of elements of the MultiLineString.

The interior of a MultiLineString is the union of the interior, and boundary of the constituent LineStrings, except for the boundary as defined above. In other words, it is the set difference of the boundary from the union of the interior and boundary of the constituents.

A MultiLineString is simple if and only if all of its elements are simple and the only intersections between any two elements occur at Points that are on the boundaries of both elements. A MultiLineString is closed if all of its elements are closed. The boundary of a closed MultiLineString is always empty.

Tuple Fields§

§0: Vec<LineString<T>>

Implementations§

source§

impl<T> MultiLineString<T>
where T: CoordNum,

source

pub fn new(value: Vec<LineString<T>>) -> MultiLineString<T>

Instantiate Self from the raw content value

source

pub fn is_closed(&self) -> bool

True if the MultiLineString is empty or if all of its LineStrings are closed - see LineString::is_closed.

§Examples
use geo_types::{MultiLineString, LineString, line_string};

let open_line_string: LineString<f32> = line_string![(x: 0., y: 0.), (x: 5., y: 0.)];
assert!(!MultiLineString::new(vec![open_line_string.clone()]).is_closed());

let closed_line_string: LineString<f32> = line_string![(x: 0., y: 0.), (x: 5., y: 0.), (x: 0., y: 0.)];
assert!(MultiLineString::new(vec![closed_line_string.clone()]).is_closed());

// MultiLineString is not closed if *any* of it's LineStrings are not closed
assert!(!MultiLineString::new(vec![open_line_string, closed_line_string]).is_closed());

// An empty MultiLineString is closed
assert!(MultiLineString::<f32>::new(vec![]).is_closed());
source§

impl<T> MultiLineString<T>
where T: CoordNum,

source

pub fn iter(&self) -> impl Iterator<Item = &LineString<T>>

source

pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut LineString<T>>

Trait Implementations§

source§

impl<T> AbsDiffEq for MultiLineString<T>
where T: AbsDiffEq<Epsilon = T> + CoordNum, <T as AbsDiffEq>::Epsilon: Copy,

source§

fn abs_diff_eq( &self, other: &MultiLineString<T>, epsilon: <MultiLineString<T> as AbsDiffEq>::Epsilon ) -> bool

Equality assertion with an absolute limit.

§Examples
use geo_types::{MultiLineString, line_string};

let a = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10., y: 10.)]]);
let b = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10.01, y: 10.)]]);

approx::abs_diff_eq!(a, b, epsilon=0.1);
approx::abs_diff_ne!(a, b, epsilon=0.001);
§

type Epsilon = T

Used for specifying relative comparisons.
source§

fn default_epsilon() -> <MultiLineString<T> as AbsDiffEq>::Epsilon

The default tolerance to use when testing values that are close together. Read more
§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of [AbsDiffEq::abs_diff_eq].
source§

impl<T> Area<T> for MultiLineString<T>
where T: CoordNum,

source§

fn signed_area(&self) -> T

source§

fn unsigned_area(&self) -> T

source§

impl<T> BoundingRect<T> for MultiLineString<T>
where T: CoordNum,

source§

fn bounding_rect(&self) -> Self::Output

Return the BoundingRect for a MultiLineString

§

type Output = Option<Rect<T>>

source§

impl<T> Centroid for MultiLineString<T>
where T: GeoFloat,

source§

fn centroid(&self) -> Self::Output

The Centroid of a MultiLineString is the mean of the centroids of all the constituent linestrings, weighted by the length of each linestring

§Examples
use geo::Centroid;
use geo::{MultiLineString, line_string, point};

let multi_line_string = MultiLineString::new(vec![
    // centroid: (2.5, 2.5)
    line_string![(x: 1.0f32, y: 1.0), (x: 2.0, y: 2.0), (x: 4.0, y: 4.0)],
    // centroid: (4.0, 4.0)
    line_string![(x: 1.0, y: 1.0), (x: 3.0, y: 3.0), (x: 7.0, y: 7.0)],
]);

assert_eq!(
    // ( 3.0 * (2.5, 2.5) + 6.0 * (4.0, 4.0) ) / 9.0
    Some(point!(x: 3.5, y: 3.5)),
    multi_line_string.centroid(),
);
§

type Output = Option<Point<T>>

source§

impl<T> ChaikinSmoothing<T> for MultiLineString<T>

source§

fn chaikin_smoothing(&self, n_iterations: usize) -> Self

create a new geometry with the Chaikin smoothing being applied n_iterations times.
source§

impl<T> ChamberlainDuquetteArea<T> for MultiLineString<T>
where T: CoordFloat,

source§

impl<T> Clone for MultiLineString<T>
where T: Clone + CoordNum,

source§

fn clone(&self) -> MultiLineString<T>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<F: GeoFloat> ClosestPoint<F> for MultiLineString<F>

source§

fn closest_point(&self, p: &Point<F>) -> Closest<F>

Find the closest point between self and p.
source§

impl<T> ConcaveHull for MultiLineString<T>
where T: GeoFloat + RTreeNum,

§

type Scalar = T

source§

fn concave_hull(&self, concavity: T) -> Polygon<T>

source§

impl<T> Contains<Geometry<T>> for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, geometry: &Geometry<T>) -> bool

source§

impl<T> Contains<GeometryCollection<T>> for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &GeometryCollection<T>) -> bool

source§

impl<T> Contains<Line<T>> for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &Line<T>) -> bool

source§

impl<T> Contains<LineString<T>> for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &LineString<T>) -> bool

source§

impl<F> Contains<MultiLineString<F>> for MultiPolygon<F>
where F: GeoFloat,

source§

fn contains(&self, rhs: &MultiLineString<F>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for Geometry<T>
where T: GeoFloat,

source§

fn contains(&self, multi_line_string: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for GeometryCollection<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for Line<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for LineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for MultiPoint<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for Point<T>
where T: CoordNum,

source§

fn contains(&self, multi_line_string: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for Polygon<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for Rect<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for Triangle<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPolygon<T>> for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiPolygon<T>) -> bool

source§

impl<T> Contains<Point<T>> for MultiLineString<T>
where T: CoordNum, LineString<T>: Contains<Point<T>>,

source§

fn contains(&self, rhs: &Point<T>) -> bool

source§

impl<T> Contains<Polygon<T>> for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &Polygon<T>) -> bool

source§

impl<T> Contains<Rect<T>> for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &Rect<T>) -> bool

source§

impl<T> Contains<Triangle<T>> for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &Triangle<T>) -> bool

source§

impl<T> Contains for MultiLineString<T>
where T: GeoFloat,

source§

fn contains(&self, target: &MultiLineString<T>) -> bool

source§

impl<T> CoordinatePosition for MultiLineString<T>
where T: GeoNum,

§

type Scalar = T

source§

fn calculate_coordinate_position( &self, coord: &Coord<T>, is_inside: &mut bool, boundary_count: &mut usize )

source§

fn coordinate_position(&self, coord: &Coord<Self::Scalar>) -> CoordPos

source§

impl<T: CoordNum> CoordsIter for MultiLineString<T>

source§

fn coords_count(&self) -> usize

Return the number of coordinates in the MultiLineString.

§

type Iter<'a> = Flatten<MapCoordsIter<'a, T, Iter<'a, LineString<T>>, LineString<T>>> where T: 'a

§

type ExteriorIter<'a> = <MultiLineString<T> as CoordsIter>::Iter<'a> where T: 'a

§

type Scalar = T

source§

fn coords_iter(&self) -> Self::Iter<'_>

Iterate over all exterior and (if any) interior coordinates of a geometry. Read more
source§

fn exterior_coords_iter(&self) -> Self::ExteriorIter<'_>

Iterate over all exterior coordinates of a geometry. Read more
source§

impl<T> Debug for MultiLineString<T>
where T: Debug + CoordNum,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<T> Densify<T> for MultiLineString<T>

§

type Output = MultiLineString<T>

source§

fn densify(&self, max_distance: T) -> Self::Output

source§

impl<T> DensifyHaversine<T> for MultiLineString<T>

§

type Output = MultiLineString<T>

source§

fn densify_haversine(&self, max_distance: T) -> Self::Output

source§

impl<T> EuclideanDistance<T> for MultiLineString<T>

source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Geometry<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, geom: &Geometry<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, GeometryCollection<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, target: &GeometryCollection<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Line<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, target: &Line<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, LineString<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, target: &LineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for Geometry<T>

source§

fn euclidean_distance(&self, other: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for GeometryCollection<T>

source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for Line<T>

source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for LineString<T>

source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for MultiPoint<T>

source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for MultiPolygon<T>

source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for Point<T>

source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for Polygon<T>

source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for Rect<T>

source§

fn euclidean_distance(&self, other: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for Triangle<T>

source§

fn euclidean_distance(&self, other: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPolygon<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, target: &MultiPolygon<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Point<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, target: &Point<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Polygon<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, target: &Polygon<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Rect<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, other: &Rect<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Triangle<T>> for MultiLineString<T>

source§

fn euclidean_distance(&self, other: &Triangle<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanLength<T> for MultiLineString<T>
where T: CoordFloat + Sum,

source§

fn euclidean_length(&self) -> T

Calculation of the length of a Line Read more
source§

impl<T, ILS> From<ILS> for MultiLineString<T>
where T: CoordNum, ILS: Into<LineString<T>>,

source§

fn from(ls: ILS) -> MultiLineString<T>

Converts to this type from the input type.
source§

impl<T> From<MultiLineString<T>> for Geometry<T>
where T: CoordNum,

source§

fn from(x: MultiLineString<T>) -> Geometry<T>

Converts to this type from the input type.
source§

impl<T, ILS> FromIterator<ILS> for MultiLineString<T>
where T: CoordNum, ILS: Into<LineString<T>>,

source§

fn from_iter<I>(iter: I) -> MultiLineString<T>
where I: IntoIterator<Item = ILS>,

Creates a value from an iterator. Read more
source§

impl GeodesicArea<f64> for MultiLineString

source§

fn geodesic_perimeter(&self) -> f64

Determine the perimeter of a geometry on an ellipsoidal model of the earth. Read more
source§

fn geodesic_area_signed(&self) -> f64

Determine the area of a geometry on an ellipsoidal model of the earth. Read more
source§

fn geodesic_area_unsigned(&self) -> f64

Determine the area of a geometry on an ellipsoidal model of the earth. Supports very large geometries that cover a significant portion of the earth. Read more
source§

fn geodesic_perimeter_area_signed(&self) -> (f64, f64)

Determine the perimeter and area of a geometry on an ellipsoidal model of the earth, all in one operation. Read more
source§

fn geodesic_perimeter_area_unsigned(&self) -> (f64, f64)

Determine the perimeter and area of a geometry on an ellipsoidal model of the earth, all in one operation. Supports very large geometries that cover a significant portion of the earth. Read more
source§

impl GeodesicLength<f64> for MultiLineString

source§

fn geodesic_length(&self) -> f64

Determine the length of a geometry on an ellipsoidal model of the earth. Read more
source§

impl<C: CoordNum> HasDimensions for MultiLineString<C>

source§

fn is_empty(&self) -> bool

Some geometries, like a MultiPoint, can have zero coordinates - we call these empty. Read more
source§

fn dimensions(&self) -> Dimensions

The dimensions of some geometries are fixed, e.g. a Point always has 0 dimensions. However for others, the dimensionality depends on the specific geometry instance - for example typical Rects are 2-dimensional, but it’s possible to create degenerate Rects which have either 1 or 0 dimensions. Read more
source§

fn boundary_dimensions(&self) -> Dimensions

The dimensions of the Geometry’s boundary, as used by OGC-SFA. Read more
source§

impl<T> Hash for MultiLineString<T>
where T: Hash + CoordNum,

source§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<T> HaversineClosestPoint<T> for MultiLineString<T>

source§

fn haversine_closest_point(&self, from: &Point<T>) -> Closest<T>

source§

impl<T> HaversineLength<T> for MultiLineString<T>

source§

fn haversine_length(&self) -> T

Determine the length of a geometry using the haversine formula. Read more
source§

impl<T> InteriorPoint for MultiLineString<T>
where T: GeoFloat,

source§

fn interior_point(&self) -> Self::Output

The interior point of a MultiLineString is, of the interior points of all the constituent LineStrings, the one closest to the centroid of the MultiLineString

§

type Output = Option<Point<T>>

source§

impl<T, G> Intersects<G> for MultiLineString<T>
where T: CoordNum, LineString<T>: Intersects<G>, G: BoundingRect<T>,

source§

fn intersects(&self, rhs: &G) -> bool

source§

impl<T> Intersects<MultiLineString<T>> for Line<T>

source§

fn intersects(&self, rhs: &MultiLineString<T>) -> bool

source§

impl<T> Intersects<MultiLineString<T>> for Point<T>

source§

fn intersects(&self, rhs: &MultiLineString<T>) -> bool

source§

impl<T> Intersects<MultiLineString<T>> for Polygon<T>

source§

fn intersects(&self, rhs: &MultiLineString<T>) -> bool

source§

impl<T> Intersects<MultiLineString<T>> for Rect<T>

source§

fn intersects(&self, rhs: &MultiLineString<T>) -> bool

source§

impl<T> Intersects<MultiLineString<T>> for Triangle<T>

source§

fn intersects(&self, rhs: &MultiLineString<T>) -> bool

source§

impl<'a, T> IntoIterator for &'a MultiLineString<T>
where T: CoordNum,

§

type Item = &'a LineString<T>

The type of the elements being iterated over.
§

type IntoIter = Iter<'a, LineString<T>>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> <&'a MultiLineString<T> as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
source§

impl<'a, T> IntoIterator for &'a mut MultiLineString<T>
where T: CoordNum,

§

type Item = &'a mut LineString<T>

The type of the elements being iterated over.
§

type IntoIter = IterMut<'a, LineString<T>>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> <&'a mut MultiLineString<T> as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
source§

impl<T> IntoIterator for MultiLineString<T>
where T: CoordNum,

§

type Item = LineString<T>

The type of the elements being iterated over.
§

type IntoIter = IntoIter<LineString<T>>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> <MultiLineString<T> as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
source§

impl<'a, T: CoordNum + 'a> LinesIter<'a> for MultiLineString<T>

§

type Scalar = T

§

type Iter = Flatten<MapLinesIter<'a, Iter<'a, LineString<<MultiLineString<T> as LinesIter<'a>>::Scalar>>, LineString<<MultiLineString<T> as LinesIter<'a>>::Scalar>>>

source§

fn lines_iter(&'a self) -> Self::Iter

Iterate over all exterior and (if any) interior lines of a geometry. Read more
source§

impl<T: CoordNum, NT: CoordNum> MapCoords<T, NT> for MultiLineString<T>

§

type Output = MultiLineString<NT>

source§

fn map_coords( &self, func: impl Fn(Coord<T>) -> Coord<NT> + Copy ) -> Self::Output

Apply a function to all the coordinates in a geometric object, returning a new object. Read more
source§

fn try_map_coords<E>( &self, func: impl Fn(Coord<T>) -> Result<Coord<NT>, E> + Copy ) -> Result<Self::Output, E>

Map a fallible function over all the coordinates in a geometry, returning a Result Read more
source§

impl<T: CoordNum> MapCoordsInPlace<T> for MultiLineString<T>

source§

fn map_coords_in_place(&mut self, func: impl Fn(Coord<T>) -> Coord<T> + Copy)

Apply a function to all the coordinates in a geometric object, in place Read more
source§

fn try_map_coords_in_place<E>( &mut self, func: impl Fn(Coord<T>) -> Result<Coord<T>, E> ) -> Result<(), E>

Map a fallible function over all the coordinates in a geometry, in place, returning a Result. Read more
source§

impl<T> PartialEq for MultiLineString<T>
where T: PartialEq + CoordNum,

source§

fn eq(&self, other: &MultiLineString<T>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<F: GeoFloat> Relate<F, GeometryCollection<F>> for MultiLineString<F>

source§

impl<F: GeoFloat> Relate<F, Line<F>> for MultiLineString<F>

source§

fn relate(&self, other: &Line<F>) -> IntersectionMatrix

source§

impl<F: GeoFloat> Relate<F, LineString<F>> for MultiLineString<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for GeometryCollection<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for Line<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for LineString<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for MultiLineString<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for MultiPoint<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for MultiPolygon<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for Point<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for Polygon<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for Rect<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for Triangle<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for MultiLineString<F>

source§

impl<F: GeoFloat> Relate<F, MultiPolygon<F>> for MultiLineString<F>

source§

impl<F: GeoFloat> Relate<F, Point<F>> for MultiLineString<F>

source§

fn relate(&self, other: &Point<F>) -> IntersectionMatrix

source§

impl<F: GeoFloat> Relate<F, Polygon<F>> for MultiLineString<F>

source§

fn relate(&self, other: &Polygon<F>) -> IntersectionMatrix

source§

impl<F: GeoFloat> Relate<F, Rect<F>> for MultiLineString<F>

source§

fn relate(&self, other: &Rect<F>) -> IntersectionMatrix

source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for MultiLineString<F>

source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

source§

impl<T> RelativeEq for MultiLineString<T>
where T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,

source§

fn relative_eq( &self, other: &MultiLineString<T>, epsilon: <MultiLineString<T> as AbsDiffEq>::Epsilon, max_relative: <MultiLineString<T> as AbsDiffEq>::Epsilon ) -> bool

Equality assertion within a relative limit.

§Examples
use geo_types::{MultiLineString, line_string};

let a = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10., y: 10.)]]);
let b = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10.01, y: 10.)]]);

approx::assert_relative_eq!(a, b, max_relative=0.1);
approx::assert_relative_ne!(a, b, max_relative=0.0001);
source§

fn default_max_relative() -> <MultiLineString<T> as AbsDiffEq>::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

The inverse of [RelativeEq::relative_eq].
source§

impl<T> RemoveRepeatedPoints<T> for MultiLineString<T>

source§

fn remove_repeated_points(&self) -> Self

Create a MultiLineString with consecutive repeated points removed.

source§

fn remove_repeated_points_mut(&mut self)

Remove consecutive repeated points from a MultiLineString inplace.

source§

impl<T> RhumbLength<T> for MultiLineString<T>

source§

fn rhumb_length(&self) -> T

Determine the length of a geometry assuming each segment is a rhumb line. Read more
source§

impl<T> Simplify<T> for MultiLineString<T>
where T: GeoFloat,

source§

fn simplify(&self, epsilon: &T) -> Self

Returns the simplified representation of a geometry, using the Ramer–Douglas–Peucker algorithm Read more
source§

impl<T> SimplifyVw<T> for MultiLineString<T>
where T: CoordFloat,

source§

fn simplify_vw(&self, epsilon: &T) -> MultiLineString<T>

Returns the simplified representation of a geometry, using the Visvalingam-Whyatt algorithm Read more
source§

impl<T> SimplifyVwPreserve<T> for MultiLineString<T>
where T: GeoFloat + RTreeNum,

source§

fn simplify_vw_preserve(&self, epsilon: &T) -> MultiLineString<T>

Returns the simplified representation of a geometry, using a topology-preserving variant of the Visvalingam-Whyatt algorithm. Read more
source§

impl<T> TryFrom<Geometry<T>> for MultiLineString<T>
where T: CoordNum,

Convert a Geometry enum into its inner type.

Fails if the enum case does not match the type you are trying to convert it to.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from( geom: Geometry<T> ) -> Result<MultiLineString<T>, <MultiLineString<T> as TryFrom<Geometry<T>>>::Error>

Performs the conversion.
source§

impl<T> VincentyLength<T> for MultiLineString<T>

source§

fn vincenty_length(&self) -> Result<T, FailedToConvergeError>

Determine the length of a geometry using Vincenty’s formulae. Read more
source§

impl<T> Eq for MultiLineString<T>
where T: Eq + CoordNum,

source§

impl<T> StructuralPartialEq for MultiLineString<T>
where T: CoordNum,

Auto Trait Implementations§

§

impl<T> RefUnwindSafe for MultiLineString<T>
where T: RefUnwindSafe,

§

impl<T> Send for MultiLineString<T>
where T: Send,

§

impl<T> Sync for MultiLineString<T>
where T: Sync,

§

impl<T> Unpin for MultiLineString<T>
where T: Unpin,

§

impl<T> UnwindSafe for MultiLineString<T>
where T: UnwindSafe,

Blanket Implementations§

source§

impl<T, M> AffineOps<T> for M
where T: CoordNum, M: MapCoordsInPlace<T> + MapCoords<T, T, Output = M>,

source§

fn affine_transform(&self, transform: &AffineTransform<T>) -> M

Apply transform immutably, outputting a new geometry.
source§

fn affine_transform_mut(&mut self, transform: &AffineTransform<T>)

Apply transform to mutate self.
source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<G, T, U> Convert<T, U> for G
where T: CoordNum, U: CoordNum + From<T>, G: MapCoords<T, U>,

§

type Output = <G as MapCoords<T, U>>::Output

source§

fn convert(&self) -> <G as Convert<T, U>>::Output

source§

impl<'a, T, G> ConvexHull<'a, T> for G
where T: GeoNum, G: CoordsIter<Scalar = T>,

§

type Scalar = T

source§

fn convex_hull(&'a self) -> Polygon<T>

§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
source§

impl<'a, T, G> Extremes<'a, T> for G
where G: CoordsIter<Scalar = T>, T: CoordNum,

source§

fn extremes(&'a self) -> Option<Outcome<T>>

source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, G> HausdorffDistance<T> for G
where T: GeoFloat, G: CoordsIter<Scalar = T>,

source§

fn hausdorff_distance<Rhs>(&self, rhs: &Rhs) -> T
where Rhs: CoordsIter<Scalar = T>,

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, G> MinimumRotatedRect<T> for G
where T: CoordFloat + GeoFloat + GeoNum, G: CoordsIter<Scalar = T>,

source§

impl<G, IP, IR, T> Rotate<T> for G
where T: CoordFloat, IP: Into<Option<Point<T>>>, IR: Into<Option<Rect<T>>>, G: Clone + Centroid<Output = IP> + BoundingRect<T, Output = IR> + AffineOps<T>,

source§

fn rotate_around_centroid(&self, degrees: T) -> G

Rotate a geometry around its centroid by an angle, in degrees Read more
source§

fn rotate_around_centroid_mut(&mut self, degrees: T)

Mutable version of Self::rotate_around_centroid
source§

fn rotate_around_center(&self, degrees: T) -> G

Rotate a geometry around the center of its bounding box by an angle, in degrees. Read more
source§

fn rotate_around_center_mut(&mut self, degrees: T)

Mutable version of Self::rotate_around_center
source§

fn rotate_around_point(&self, degrees: T, point: Point<T>) -> G

Rotate a Geometry around an arbitrary point by an angle, given in degrees Read more
source§

fn rotate_around_point_mut(&mut self, degrees: T, point: Point<T>)

Mutable version of Self::rotate_around_point
source§

impl<T, IR, G> Scale<T> for G
where T: CoordFloat, IR: Into<Option<Rect<T>>>, G: Clone + AffineOps<T> + BoundingRect<T, Output = IR>,

source§

fn scale(&self, scale_factor: T) -> G

Scale a geometry from it’s bounding box center. Read more
source§

fn scale_mut(&mut self, scale_factor: T)

Mutable version of scale
source§

fn scale_xy(&self, x_factor: T, y_factor: T) -> G

Scale a geometry from it’s bounding box center, using different values for x_factor and y_factor to distort the geometry’s aspect ratio. Read more
source§

fn scale_xy_mut(&mut self, x_factor: T, y_factor: T)

Mutable version of scale_xy.
source§

fn scale_around_point( &self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>> ) -> G

Scale a geometry around a point of origin. Read more
source§

fn scale_around_point_mut( &mut self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>> )

Mutable version of scale_around_point.
source§

impl<T, IR, G> Skew<T> for G
where T: CoordFloat, IR: Into<Option<Rect<T>>>, G: Clone + AffineOps<T> + BoundingRect<T, Output = IR>,

source§

fn skew(&self, degrees: T) -> G

An affine transformation which skews a geometry, sheared by a uniform angle along the x and y dimensions. Read more
source§

fn skew_mut(&mut self, degrees: T)

Mutable version of skew.
source§

fn skew_xy(&self, degrees_x: T, degrees_y: T) -> G

An affine transformation which skews a geometry, sheared by an angle along the x and y dimensions. Read more
source§

fn skew_xy_mut(&mut self, degrees_x: T, degrees_y: T)

Mutable version of skew_xy.
source§

fn skew_around_point(&self, xs: T, ys: T, origin: impl Into<Coord<T>>) -> G

An affine transformation which skews a geometry around a point of origin, sheared by an angle along the x and y dimensions. Read more
source§

fn skew_around_point_mut(&mut self, xs: T, ys: T, origin: impl Into<Coord<T>>)

Mutable version of skew_around_point.
source§

impl<T, G> ToDegrees<T> for G
where T: CoordFloat, G: MapCoords<T, T, Output = G> + MapCoordsInPlace<T>,

source§

fn to_degrees(&self) -> Self

source§

fn to_degrees_in_place(&mut self)

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, G> ToRadians<T> for G
where T: CoordFloat, G: MapCoords<T, T, Output = G> + MapCoordsInPlace<T>,

source§

fn to_radians(&self) -> Self

source§

fn to_radians_in_place(&mut self)

source§

impl<T, G> Translate<T> for G
where T: CoordNum, G: AffineOps<T>,

source§

fn translate(&self, x_offset: T, y_offset: T) -> G

Translate a Geometry along its axes by the given offsets Read more
source§

fn translate_mut(&mut self, x_offset: T, y_offset: T)

Translate a Geometry along its axes, but in place.
source§

impl<'a, T, G> TriangulateSpade<'a, T> for G
where T: SpadeTriangulationFloat, G: TriangulationRequirementTrait<'a, T>,

source§

fn unconstrained_triangulation(&'a self) -> TriangulationResult<Triangles<T>>

returns a triangulation that’s solely based on the points of the geometric object Read more
source§

fn constrained_outer_triangulation( &'a self, config: SpadeTriangulationConfig<T> ) -> TriangulationResult<Triangles<T>>

returns triangulation that’s based on the points of the geometric object and also incorporates the lines of the input geometry Read more
source§

fn constrained_triangulation( &'a self, config: SpadeTriangulationConfig<T> ) -> TriangulationResult<Triangles<T>>

returns triangulation that’s based on the points of the geometric object and also incorporates the lines of the input geometry Read more
source§

impl<G, T, U> TryConvert<T, U> for G
where T: CoordNum, U: CoordNum + TryFrom<T>, G: MapCoords<T, U>,

§

type Output = Result<<G as MapCoords<T, U>>::Output, <U as TryFrom<T>>::Error>

source§

fn try_convert(&self) -> <G as TryConvert<T, U>>::Output

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<G1, G2> Within<G2> for G1
where G2: Contains<G1>,

source§

fn is_within(&self, b: &G2) -> bool