Struct Line

Source
pub struct Line<T = f64>
where T: CoordNum,
{ pub start: Coord<T>, pub end: Coord<T>, }
Expand description

A line segment made up of exactly two Coords.

§Semantics

The interior and boundary are defined as with a LineString with the two end points.

Fields§

§start: Coord<T>§end: Coord<T>

Implementations§

Source§

impl<T> Line<T>
where T: CoordNum,

Source

pub fn new<C>(start: C, end: C) -> Line<T>
where C: Into<Coord<T>>,

Creates a new line segment.

§Examples
use geo_types::{coord, Line};

let line = Line::new(coord! { x: 0., y: 0. }, coord! { x: 1., y: 2. });

assert_eq!(line.start, coord! { x: 0., y: 0. });
assert_eq!(line.end, coord! { x: 1., y: 2. });
Source

pub fn delta(&self) -> Coord<T>

Calculate the difference in coordinates (Δx, Δy).

Source

pub fn dx(&self) -> T

Calculate the difference in ‘x’ components (Δx).

Equivalent to:

line.end.x - line.start.x
Source

pub fn dy(&self) -> T

Calculate the difference in ‘y’ components (Δy).

Equivalent to:

line.end.y - line.start.y
Source

pub fn slope(&self) -> T

Calculate the slope (Δy/Δx).

Equivalent to:

line.dy() / line.dx()

Note that:

Line::new(a, b).slope() == Line::new(b, a).slope()
Source

pub fn determinant(&self) -> T

Calculate the determinant of the line.

Equivalent to:

line.start.x * line.end.y - line.start.y * line.end.x

Note that:

Line::new(a, b).determinant() == -Line::new(b, a).determinant()
Source

pub fn start_point(&self) -> Point<T>

Source

pub fn end_point(&self) -> Point<T>

Source

pub fn points(&self) -> (Point<T>, Point<T>)

Trait Implementations§

Source§

impl<T> AbsDiffEq for Line<T>
where T: CoordNum + AbsDiffEq<Epsilon = T>,

Source§

fn abs_diff_eq( &self, other: &Line<T>, epsilon: <Line<T> as AbsDiffEq>::Epsilon, ) -> bool

Equality assertion with an absolute limit.

§Examples
use geo_types::{coord, Line};

let a = Line::new(coord! { x: 0., y: 0. }, coord! { x: 1., y: 1. });
let b = Line::new(coord! { x: 0., y: 0. }, coord! { x: 1.001, y: 1. });

approx::assert_abs_diff_eq!(a, b, epsilon=0.1);
Source§

type Epsilon = T

Used for specifying relative comparisons.
Source§

fn default_epsilon() -> <Line<T> as AbsDiffEq>::Epsilon

The default tolerance to use when testing values that are close together. Read more
Source§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of AbsDiffEq::abs_diff_eq.
Source§

impl<T> Area<T> for Line<T>
where T: CoordNum,

Source§

fn signed_area(&self) -> T

Source§

fn unsigned_area(&self) -> T

Source§

impl<T> BoundingRect<T> for Line<T>
where T: CoordNum,

Source§

type Output = Rect<T>

Source§

fn bounding_rect(&self) -> Self::Output

Return the bounding rectangle of a geometry Read more
Source§

impl<T> Centroid for Line<T>
where T: GeoFloat,

Source§

fn centroid(&self) -> Self::Output

The Centroid of a Line is its middle point

§Examples
use geo::Centroid;
use geo::{Line, point};

let line = Line::new(
    point!(x: 1.0f64, y: 3.0),
    point!(x: 2.0f64, y: 4.0),
);

assert_eq!(
    point!(x: 1.5, y: 3.5),
    line.centroid(),
);
Source§

type Output = Point<T>

Source§

impl<T> ChamberlainDuquetteArea<T> for Line<T>
where T: CoordFloat,

Source§

impl<T> Clone for Line<T>
where T: Clone + CoordNum,

Source§

fn clone(&self) -> Line<T>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<F: GeoFloat> ClosestPoint<F> for Line<F>

Source§

fn closest_point(&self, p: &Point<F>) -> Closest<F>

Find the closest point between self and p.
Source§

impl<T> Contains<Coord<T>> for Line<T>
where T: GeoNum,

Source§

fn contains(&self, coord: &Coord<T>) -> bool

Source§

impl<T> Contains<Geometry<T>> for Line<T>
where T: GeoFloat,

Source§

fn contains(&self, geometry: &Geometry<T>) -> bool

Source§

impl<T> Contains<GeometryCollection<T>> for Line<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &GeometryCollection<T>) -> bool

Source§

impl<F> Contains<Line<F>> for MultiPolygon<F>
where F: GeoFloat,

Source§

fn contains(&self, rhs: &Line<F>) -> bool

Source§

impl<T> Contains<Line<T>> for Geometry<T>
where T: GeoFloat,

Source§

fn contains(&self, line: &Line<T>) -> bool

Source§

impl<T> Contains<Line<T>> for GeometryCollection<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Line<T>) -> bool

Source§

impl<T> Contains<Line<T>> for LineString<T>
where T: GeoNum,

Source§

fn contains(&self, line: &Line<T>) -> bool

Source§

impl<T> Contains<Line<T>> for MultiLineString<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Line<T>) -> bool

Source§

impl<T> Contains<Line<T>> for MultiPoint<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Line<T>) -> bool

Source§

impl<T> Contains<Line<T>> for Point<T>
where T: CoordNum,

Source§

fn contains(&self, line: &Line<T>) -> bool

Source§

impl<T> Contains<Line<T>> for Polygon<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Line<T>) -> bool

Source§

impl<T> Contains<Line<T>> for Rect<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Line<T>) -> bool

Source§

impl<T> Contains<Line<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Line<T>) -> bool

Source§

impl<T> Contains<LineString<T>> for Line<T>
where T: GeoNum,

Source§

fn contains(&self, linestring: &LineString<T>) -> bool

Source§

impl<T> Contains<MultiLineString<T>> for Line<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &MultiLineString<T>) -> bool

Source§

impl<T> Contains<MultiPoint<T>> for Line<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &MultiPoint<T>) -> bool

Source§

impl<T> Contains<MultiPolygon<T>> for Line<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &MultiPolygon<T>) -> bool

Source§

impl<T> Contains<Point<T>> for Line<T>
where T: GeoNum,

Source§

fn contains(&self, p: &Point<T>) -> bool

Source§

impl<T> Contains<Polygon<T>> for Line<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Polygon<T>) -> bool

Source§

impl<T> Contains<Rect<T>> for Line<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Rect<T>) -> bool

Source§

impl<T> Contains<Triangle<T>> for Line<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Triangle<T>) -> bool

Source§

impl<T> Contains for Line<T>
where T: GeoNum,

Source§

fn contains(&self, line: &Line<T>) -> bool

Source§

impl<T> CoordinatePosition for Line<T>
where T: GeoNum,

Source§

type Scalar = T

Source§

fn calculate_coordinate_position( &self, coord: &Coord<T>, is_inside: &mut bool, boundary_count: &mut usize, )

Source§

fn coordinate_position(&self, coord: &Coord<Self::Scalar>) -> CoordPos

Source§

impl<T: CoordNum> CoordsIter for Line<T>

Source§

fn coords_count(&self) -> usize

Return the number of coordinates in the Line.

Source§

type Iter<'a> = Chain<Once<Coord<T>>, Once<Coord<T>>> where T: 'a

Source§

type ExteriorIter<'a> = <Line<T> as CoordsIter>::Iter<'a> where T: 'a

Source§

type Scalar = T

Source§

fn coords_iter(&self) -> Self::Iter<'_>

Iterate over all exterior and (if any) interior coordinates of a geometry. Read more
Source§

fn exterior_coords_iter(&self) -> Self::ExteriorIter<'_>

Iterate over all exterior coordinates of a geometry. Read more
Source§

impl<T: GeoFloat> Cross for Line<T>

Source§

type Scalar = T

Scalar used the coordinates.
Source§

fn line(&self) -> LineOrPoint<Self::Scalar>

The geometry associated with this type. Use a Line with the start and end coordinates to represent a point.
Source§

impl<T> Debug for Line<T>
where T: CoordNum,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<F: CoordFloat + FromPrimitive> Densifiable<F> for Line<F>

Source§

type Output = LineString<F>

Source§

fn densify<MetricSpace>( &self, metric_space: &MetricSpace, max_segment_length: F, ) -> Self::Output
where MetricSpace: Distance<F, Point<F>, Point<F>> + InterpolatePoint<F>,

Source§

impl<T> DensifyHaversine<T> for Line<T>

Source§

type Output = LineString<T>

👎Deprecated since 0.29.0: Please use the Haversine.densify(&line) via the Densify trait instead.
Source§

fn densify_haversine(&self, max_distance: T) -> Self::Output

👎Deprecated since 0.29.0: Please use the Haversine.densify(&line) via the Densify trait instead.
Source§

impl<F> Distance<F, &Geometry<F>, &Line<F>> for Euclidean
where F: GeoFloat,

Source§

fn distance(&self, a: &Geometry<F>, b: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &GeometryCollection<F>, &Line<F>> for Euclidean

Source§

fn distance( &self, iter_geometry: &GeometryCollection<F>, to_geometry: &Line<F>, ) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &Line<F>, &Geometry<F>> for Euclidean

Source§

fn distance(&self, origin: &Line<F>, destination: &Geometry<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &Line<F>, &GeometryCollection<F>> for Euclidean
where F: GeoFloat,

Source§

fn distance(&self, a: &Line<F>, b: &GeometryCollection<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &Line<F>, &Line<F>> for Euclidean

Source§

fn distance(&self, line_a: &Line<F>, line_b: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &Line<F>, &LineString<F>> for Euclidean

Source§

fn distance(&self, line: &Line<F>, line_string: &LineString<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &Line<F>, &MultiLineString<F>> for Euclidean
where F: GeoFloat,

Source§

fn distance(&self, a: &Line<F>, b: &MultiLineString<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &Line<F>, &MultiPoint<F>> for Euclidean
where F: GeoFloat,

Source§

fn distance(&self, a: &Line<F>, b: &MultiPoint<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &Line<F>, &MultiPolygon<F>> for Euclidean
where F: GeoFloat,

Source§

fn distance(&self, a: &Line<F>, b: &MultiPolygon<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &Line<F>, &Point<F>> for Euclidean
where F: CoordFloat,

Source§

fn distance(&self, a: &Line<F>, b: &Point<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &Line<F>, &Polygon<F>> for Euclidean

Source§

fn distance(&self, line: &Line<F>, polygon: &Polygon<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &Line<F>, &Rect<F>> for Euclidean
where F: GeoFloat,

Source§

fn distance(&self, a: &Line<F>, b: &Rect<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &Line<F>, &Triangle<F>> for Euclidean
where F: GeoFloat,

Source§

fn distance(&self, a: &Line<F>, b: &Triangle<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &Line<F>, Coord<F>> for Euclidean
where F: CoordFloat,

Source§

fn distance(&self, a: &Line<F>, b: Coord<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &LineString<F>, &Line<F>> for Euclidean
where F: GeoFloat,

Source§

fn distance(&self, a: &LineString<F>, b: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &MultiLineString<F>, &Line<F>> for Euclidean

Source§

fn distance( &self, iter_geometry: &MultiLineString<F>, to_geometry: &Line<F>, ) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &MultiPoint<F>, &Line<F>> for Euclidean

Source§

fn distance(&self, iter_geometry: &MultiPoint<F>, to_geometry: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &MultiPolygon<F>, &Line<F>> for Euclidean

Source§

fn distance(&self, iter_geometry: &MultiPolygon<F>, to_geometry: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: CoordFloat> Distance<F, &Point<F>, &Line<F>> for Euclidean

Source§

fn distance(&self, origin: &Point<F>, destination: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F> Distance<F, &Polygon<F>, &Line<F>> for Euclidean
where F: GeoFloat,

Source§

fn distance(&self, a: &Polygon<F>, b: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &Rect<F>, &Line<F>> for Euclidean

Source§

fn distance(&self, polygonlike: &Rect<F>, geometry_b: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: GeoFloat> Distance<F, &Triangle<F>, &Line<F>> for Euclidean

Source§

fn distance(&self, polygonlike: &Triangle<F>, geometry_b: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<F: CoordFloat> Distance<F, Coord<F>, &Line<F>> for Euclidean

Source§

fn distance(&self, coord: Coord<F>, line: &Line<F>) -> F

Note that not all implementations support all geometry combinations, but at least Point to Point is supported. See specific implementations for details. Read more
Source§

impl<T> EuclideanDistance<T> for Line<T>

Line to Line distance

Source§

fn euclidean_distance(&self, other: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Coord<T>> for Line<T>
where T: GeoFloat,

Source§

fn euclidean_distance(&self, coord: &Coord<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead

Minimum distance from a Line to a Coord

Source§

impl<T> EuclideanDistance<T, Geometry<T>> for Line<T>

Source§

fn euclidean_distance(&self, geom: &Geometry<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, GeometryCollection<T>> for Line<T>

Source§

fn euclidean_distance(&self, target: &GeometryCollection<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Line<T>> for Coord<T>
where T: GeoFloat,

Source§

fn euclidean_distance(&self, line: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead

Minimum distance from a Coord to a Line

Source§

impl<T> EuclideanDistance<T, Line<T>> for Geometry<T>

Source§

fn euclidean_distance(&self, other: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Line<T>> for GeometryCollection<T>

Source§

fn euclidean_distance(&self, target: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Line<T>> for LineString<T>

LineString to Line

Source§

fn euclidean_distance(&self, other: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Line<T>> for MultiLineString<T>

Source§

fn euclidean_distance(&self, target: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Line<T>> for MultiPoint<T>

Source§

fn euclidean_distance(&self, target: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Line<T>> for MultiPolygon<T>

Source§

fn euclidean_distance(&self, target: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Line<T>> for Point<T>
where T: GeoFloat,

Source§

fn euclidean_distance(&self, line: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead

Minimum distance from a Line to a Point

Source§

impl<T> EuclideanDistance<T, Line<T>> for Polygon<T>

Source§

fn euclidean_distance(&self, other: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Line<T>> for Rect<T>

Source§

fn euclidean_distance(&self, other: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Line<T>> for Triangle<T>

Source§

fn euclidean_distance(&self, other: &Line<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, LineString<T>> for Line<T>

Line to LineString

Source§

fn euclidean_distance(&self, other: &LineString<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for Line<T>

Source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for Line<T>

Source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, MultiPolygon<T>> for Line<T>

Source§

fn euclidean_distance(&self, target: &MultiPolygon<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Point<T>> for Line<T>
where T: GeoFloat,

Source§

fn euclidean_distance(&self, point: &Point<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead

Minimum distance from a Line to a Point

Source§

impl<T> EuclideanDistance<T, Polygon<T>> for Line<T>

Source§

fn euclidean_distance(&self, other: &Polygon<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Rect<T>> for Line<T>

Source§

fn euclidean_distance(&self, other: &Rect<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanDistance<T, Triangle<T>> for Line<T>

Source§

fn euclidean_distance(&self, other: &Triangle<T>) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.distance method from the Distance trait instead
Returns the distance between two geometries Read more
Source§

impl<T> EuclideanLength<T> for Line<T>
where T: CoordFloat,

Source§

fn euclidean_length(&self) -> T

👎Deprecated since 0.29.0: Please use the Euclidean.length(&line) via the Length trait instead.
Calculation of the length of a Line Read more
Source§

impl<'a, F: GeoFloat> From<&'a Line<F>> for PreparedGeometry<'a, &'a Line<F>, F>

Source§

fn from(geometry: &'a Line<F>) -> Self

Converts to this type from the input type.
Source§

impl<T> From<&Line<T>> for LineString<T>
where T: CoordNum,

Source§

fn from(line: &Line<T>) -> LineString<T>

Converts to this type from the input type.
Source§

impl<T> From<[(T, T); 2]> for Line<T>
where T: CoordNum,

Source§

fn from(coord: [(T, T); 2]) -> Line<T>

Converts to this type from the input type.
Source§

impl<F: GeoFloat> From<Line<F>> for PreparedGeometry<'static, Line<F>, F>

Source§

fn from(geometry: Line<F>) -> Self

Converts to this type from the input type.
Source§

impl<T> From<Line<T>> for Geometry<T>
where T: CoordNum,

Source§

fn from(x: Line<T>) -> Geometry<T>

Converts to this type from the input type.
Source§

impl<T: GeoNum> From<Line<T>> for LineOrPoint<T>

Convert from a Line ensuring end point ordering.

Source§

fn from(l: Line<T>) -> Self

Converts to this type from the input type.
Source§

impl<T> From<Line<T>> for LineString<T>
where T: CoordNum,

Source§

fn from(line: Line<T>) -> LineString<T>

Converts to this type from the input type.
Source§

impl GeodesicArea<f64> for Line

Source§

fn geodesic_perimeter(&self) -> f64

Determine the perimeter of a geometry on an ellipsoidal model of the earth. Read more
Source§

fn geodesic_area_signed(&self) -> f64

Determine the area of a geometry on an ellipsoidal model of the earth. Read more
Source§

fn geodesic_area_unsigned(&self) -> f64

Determine the area of a geometry on an ellipsoidal model of the earth. Supports very large geometries that cover a significant portion of the earth. Read more
Source§

fn geodesic_perimeter_area_signed(&self) -> (f64, f64)

Determine the perimeter and area of a geometry on an ellipsoidal model of the earth, all in one operation. Read more
Source§

fn geodesic_perimeter_area_unsigned(&self) -> (f64, f64)

Determine the perimeter and area of a geometry on an ellipsoidal model of the earth, all in one operation. Supports very large geometries that cover a significant portion of the earth. Read more
Source§

impl GeodesicLength<f64> for Line

Source§

fn geodesic_length(&self) -> f64

👎Deprecated since 0.29.0: Please use the Geodesic.length(&line) via the Length trait instead.

The units of the returned value is meters.

Source§

impl<C: CoordNum> HasDimensions for Line<C>

Source§

fn is_empty(&self) -> bool

Some geometries, like a MultiPoint, can have zero coordinates - we call these empty. Read more
Source§

fn dimensions(&self) -> Dimensions

The dimensions of some geometries are fixed, e.g. a Point always has 0 dimensions. However for others, the dimensionality depends on the specific geometry instance - for example typical Rects are 2-dimensional, but it’s possible to create degenerate Rects which have either 1 or 0 dimensions. Read more
Source§

fn boundary_dimensions(&self) -> Dimensions

The dimensions of the Geometry’s boundary, as used by OGC-SFA. Read more
Source§

impl<T> Hash for Line<T>
where T: Hash + CoordNum,

Source§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<T> HaversineClosestPoint<T> for Line<T>

Source§

fn haversine_closest_point(&self, from: &Point<T>) -> Closest<T>

Source§

impl<T> HaversineLength<T> for Line<T>

Source§

fn haversine_length(&self) -> T

👎Deprecated since 0.29.0: Please use the Haversine.length(&line) via the Length trait instead.
Determine the length of a geometry using the haversine formula. Read more
Source§

impl<T> InteriorPoint for Line<T>
where T: GeoFloat,

Source§

type Output = Point<T>

Source§

fn interior_point(&self) -> Self::Output

Calculates a representative point inside the Geometry Read more
Source§

impl<F: CoordFloat> InterpolatableLine<F> for Line<F>

Source§

type Output = Point<F>

Source§

fn point_at_ratio_from_start<MetricSpace: InterpolatePoint<F> + Length<F>>( &self, metric_space: &MetricSpace, ratio: F, ) -> Self::Output

Returns a new point part way down the line. Read more
Source§

fn point_at_ratio_from_end<MetricSpace: InterpolatePoint<F> + Length<F>>( &self, metric_space: &MetricSpace, ratio: F, ) -> Self::Output

Returns a new point part way down the line, starting from the end of the line. Read more
Source§

fn point_at_distance_from_start<MetricSpace: InterpolatePoint<F> + Length<F>>( &self, metric_space: &MetricSpace, distance: F, ) -> Self::Output

Returns a new point distance from the start of the line. Read more
Source§

fn point_at_distance_from_end<MetricSpace: InterpolatePoint<F> + Length<F>>( &self, metric_space: &MetricSpace, distance: F, ) -> Self::Output

Returns a new point distance from the end of the line. Read more
Source§

impl<T> Intersects<Coord<T>> for Line<T>
where T: GeoNum,

Source§

fn intersects(&self, rhs: &Coord<T>) -> bool

Source§

impl<T> Intersects<Geometry<T>> for Line<T>
where Geometry<T>: Intersects<Line<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Geometry<T>) -> bool

Source§

impl<T> Intersects<GeometryCollection<T>> for Line<T>

Source§

impl<T> Intersects<Line<T>> for Coord<T>
where Line<T>: Intersects<Coord<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Line<T>) -> bool

Source§

impl<T> Intersects<Line<T>> for Polygon<T>
where T: GeoNum,

Source§

fn intersects(&self, line: &Line<T>) -> bool

Source§

impl<T> Intersects<Line<T>> for Rect<T>
where T: GeoNum,

Source§

fn intersects(&self, rhs: &Line<T>) -> bool

Source§

impl<T> Intersects<Line<T>> for Triangle<T>
where Line<T>: Intersects<Triangle<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Line<T>) -> bool

Source§

impl<T> Intersects<LineString<T>> for Line<T>
where LineString<T>: Intersects<Line<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &LineString<T>) -> bool

Source§

impl<T> Intersects<MultiLineString<T>> for Line<T>

Source§

fn intersects(&self, rhs: &MultiLineString<T>) -> bool

Source§

impl<T> Intersects<MultiPoint<T>> for Line<T>
where MultiPoint<T>: Intersects<Line<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &MultiPoint<T>) -> bool

Source§

impl<T> Intersects<MultiPolygon<T>> for Line<T>

Source§

fn intersects(&self, rhs: &MultiPolygon<T>) -> bool

Source§

impl<T> Intersects<Point<T>> for Line<T>
where Point<T>: Intersects<Line<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Point<T>) -> bool

Source§

impl<T> Intersects<Polygon<T>> for Line<T>
where Polygon<T>: Intersects<Line<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Polygon<T>) -> bool

Source§

impl<T> Intersects<Rect<T>> for Line<T>
where Rect<T>: Intersects<Line<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Rect<T>) -> bool

Source§

impl<T> Intersects<Triangle<T>> for Line<T>
where T: GeoNum,

Source§

fn intersects(&self, rhs: &Triangle<T>) -> bool

Source§

impl<T> Intersects for Line<T>
where T: GeoNum,

Source§

fn intersects(&self, line: &Line<T>) -> bool

Source§

impl<F: CoordFloat> LengthMeasurable<F> for Line<F>

Source§

fn length(&self, metric_space: &impl Distance<F, Point<F>, Point<F>>) -> F

Source§

impl<T> LineInterpolatePoint<T> for Line<T>
where T: CoordFloat,

Source§

type Output = Option<Point<T>>

👎Deprecated since 0.30.0: use line_string.point_at_ratio_from_start(&Euclidean, fraction) instead
Source§

fn line_interpolate_point(&self, fraction: T) -> Self::Output

👎Deprecated since 0.30.0: use line_string.point_at_ratio_from_start(&Euclidean, fraction) instead
Source§

impl<T> LineLocatePoint<T, Point<T>> for Line<T>
where T: CoordFloat,

Source§

type Output = Option<T>

Source§

type Rhs = Point<T>

Source§

fn line_locate_point(&self, p: &Self::Rhs) -> Self::Output

Source§

impl<'a, T: CoordNum + 'a> LinesIter<'a> for Line<T>

Source§

type Scalar = T

Source§

type Iter = Copied<Once<&'a Line<<Line<T> as LinesIter<'a>>::Scalar>>>

Source§

fn lines_iter(&'a self) -> Self::Iter

Iterate over all exterior and (if any) interior lines of a geometry. Read more
Source§

impl<T: CoordNum, NT: CoordNum> MapCoords<T, NT> for Line<T>

Source§

type Output = Line<NT>

Source§

fn map_coords( &self, func: impl Fn(Coord<T>) -> Coord<NT> + Copy, ) -> Self::Output

Apply a function to all the coordinates in a geometric object, returning a new object. Read more
Source§

fn try_map_coords<E>( &self, func: impl Fn(Coord<T>) -> Result<Coord<NT>, E> + Copy, ) -> Result<Self::Output, E>

Map a fallible function over all the coordinates in a geometry, returning a Result Read more
Source§

impl<T: CoordNum> MapCoordsInPlace<T> for Line<T>

Source§

fn map_coords_in_place(&mut self, func: impl Fn(Coord<T>) -> Coord<T>)

Apply a function to all the coordinates in a geometric object, in place Read more
Source§

fn try_map_coords_in_place<E>( &mut self, func: impl Fn(Coord<T>) -> Result<Coord<T>, E>, ) -> Result<(), E>

Map a fallible function over all the coordinates in a geometry, in place, returning a Result. Read more
Source§

impl<T> PartialEq for Line<T>
where T: PartialEq + CoordNum,

Source§

fn eq(&self, other: &Line<T>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<T> PointDistance for Line<T>
where T: Float + RTreeNum,

Source§

fn distance_2(&self, point: &Point<T>) -> T

Returns the squared distance between an object and a point. Read more
Source§

fn contains_point(&self, point: &<Self::Envelope as Envelope>::Point) -> bool

Returns true if a point is contained within this object. Read more
Source§

fn distance_2_if_less_or_equal( &self, point: &<Self::Envelope as Envelope>::Point, max_distance_2: <<Self::Envelope as Envelope>::Point as Point>::Scalar, ) -> Option<<<Self::Envelope as Envelope>::Point as Point>::Scalar>

Returns the squared distance to this object, or None if the distance is larger than a given maximum value. Read more
Source§

impl<T> RTreeObject for Line<T>
where T: Float + RTreeNum,

Source§

type Envelope = AABB<Point<T>>

The object’s envelope type. Usually, AABB will be the right choice. This type also defines the object’s dimensionality.
Source§

fn envelope(&self) -> <Line<T> as RTreeObject>::Envelope

Returns the object’s envelope. Read more
Source§

impl<F: GeoFloat> Relate<F> for Line<F>

Source§

fn geometry_graph(&self, arg_index: usize) -> GeometryGraph<'_, F>

Returns a noded topology graph for the geometry. Read more
Source§

fn relate(&self, other: &impl Relate<F>) -> IntersectionMatrix
where Self: Sized,

Source§

impl<T> RelativeEq for Line<T>
where T: CoordNum + RelativeEq<Epsilon = T>,

Source§

fn relative_eq( &self, other: &Line<T>, epsilon: <Line<T> as AbsDiffEq>::Epsilon, max_relative: <Line<T> as AbsDiffEq>::Epsilon, ) -> bool

Equality assertion within a relative limit.

§Examples
use geo_types::{coord, Line};

let a = Line::new(coord! { x: 0., y: 0. }, coord! { x: 1., y: 1. });
let b = Line::new(coord! { x: 0., y: 0. }, coord! { x: 1.001, y: 1. });

approx::assert_relative_eq!(a, b, max_relative=0.1);
Source§

fn default_max_relative() -> <Line<T> as AbsDiffEq>::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
Source§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool

The inverse of RelativeEq::relative_eq.
Source§

impl<T: CoordNum> RemoveRepeatedPoints<T> for Line<T>

Source§

fn remove_repeated_points(&self) -> Self

Create a new geometry with (consecutive) repeated points removed.
Source§

fn remove_repeated_points_mut(&mut self)

Remove (consecutive) repeated points inplace.
Source§

impl<T> RhumbLength<T> for Line<T>

Source§

fn rhumb_length(&self) -> T

👎Deprecated since 0.29.0: Please use the Rhumb.length(&line) via the Length trait instead.
Determine the length of a geometry assuming each segment is a rhumb line. Read more
Source§

impl<T> TryFrom<Geometry<T>> for Line<T>
where T: CoordNum,

Convert a Geometry enum into its inner type.

Fails if the enum case does not match the type you are trying to convert it to.

Source§

type Error = Error

The type returned in the event of a conversion error.
Source§

fn try_from( geom: Geometry<T>, ) -> Result<Line<T>, <Line<T> as TryFrom<Geometry<T>>>::Error>

Performs the conversion.
Source§

impl<T> UlpsEq for Line<T>
where T: CoordNum + UlpsEq<Epsilon = T>,

Source§

fn default_max_ulps() -> u32

The default ULPs to tolerate when testing values that are far-apart. Read more
Source§

fn ulps_eq( &self, other: &Line<T>, epsilon: <Line<T> as AbsDiffEq>::Epsilon, max_ulps: u32, ) -> bool

A test for equality that uses units in the last place (ULP) if the values are far apart.
Source§

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of UlpsEq::ulps_eq.
Source§

impl<F: GeoFloat> Validation for Line<F>

Source§

type Error = InvalidLine

Source§

fn visit_validation<T>( &self, handle_validation_error: Box<dyn FnMut(Self::Error) -> Result<(), T> + '_>, ) -> Result<(), T>

Visit the validation of the geometry. Read more
Source§

fn is_valid(&self) -> bool

Check if the geometry is valid.
Source§

fn validation_errors(&self) -> Vec<Self::Error>

Return the reason(s) of invalidity of the geometry. Read more
Source§

fn check_validation(&self) -> Result<(), Self::Error>

Return the first reason of invalidity of the geometry.
Source§

impl<T> VincentyLength<T> for Line<T>

Source§

fn vincenty_length(&self) -> Result<T, FailedToConvergeError>

The units of the returned value is meters.

Source§

impl<T> Copy for Line<T>
where T: Copy + CoordNum,

Source§

impl<T> Eq for Line<T>
where T: Eq + CoordNum,

Source§

impl<T> StructuralPartialEq for Line<T>
where T: CoordNum,

Auto Trait Implementations§

§

impl<T> Freeze for Line<T>
where T: Freeze,

§

impl<T> RefUnwindSafe for Line<T>
where T: RefUnwindSafe,

§

impl<T> Send for Line<T>
where T: Send,

§

impl<T> Sync for Line<T>
where T: Sync,

§

impl<T> Unpin for Line<T>
where T: Unpin,

§

impl<T> UnwindSafe for Line<T>
where T: UnwindSafe,

Blanket Implementations§

Source§

impl<T, M> AffineOps<T> for M
where T: CoordNum, M: MapCoordsInPlace<T> + MapCoords<T, T, Output = M>,

Source§

fn affine_transform(&self, transform: &AffineTransform<T>) -> M

Apply transform immutably, outputting a new geometry.
Source§

fn affine_transform_mut(&mut self, transform: &AffineTransform<T>)

Apply transform to mutate self.
Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<G, T, U> Convert<T, U> for G
where T: CoordNum, U: CoordNum + From<T>, G: MapCoords<T, U>,

Source§

type Output = <G as MapCoords<T, U>>::Output

Source§

fn convert(&self) -> <G as Convert<T, U>>::Output

Source§

impl<'a, T, G> ConvexHull<'a, T> for G
where T: GeoNum, G: CoordsIter<Scalar = T>,

Source§

type Scalar = T

Source§

fn convex_hull(&'a self) -> Polygon<T>

Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
Source§

impl<'a, T, G> Extremes<'a, T> for G
where G: CoordsIter<Scalar = T>, T: CoordNum,

Source§

fn extremes(&'a self) -> Option<Outcome<T>>

Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, G> HausdorffDistance<T> for G
where T: GeoFloat, G: CoordsIter<Scalar = T>,

Source§

fn hausdorff_distance<Rhs>(&self, rhs: &Rhs) -> T
where Rhs: CoordsIter<Scalar = T>,

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T, G> MinimumRotatedRect<T> for G
where T: CoordFloat + GeoFloat + GeoNum, G: CoordsIter<Scalar = T>,

Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<G, IP, IR, T> Rotate<T> for G
where T: CoordFloat, IP: Into<Option<Point<T>>>, IR: Into<Option<Rect<T>>>, G: Clone + Centroid<Output = IP> + BoundingRect<T, Output = IR> + AffineOps<T>,

Source§

fn rotate_around_centroid(&self, degrees: T) -> G

Rotate a geometry around its centroid by an angle, in degrees Read more
Source§

fn rotate_around_centroid_mut(&mut self, degrees: T)

Mutable version of Self::rotate_around_centroid
Source§

fn rotate_around_center(&self, degrees: T) -> G

Rotate a geometry around the center of its bounding box by an angle, in degrees. Read more
Source§

fn rotate_around_center_mut(&mut self, degrees: T)

Mutable version of Self::rotate_around_center
Source§

fn rotate_around_point(&self, degrees: T, point: Point<T>) -> G

Rotate a Geometry around an arbitrary point by an angle, given in degrees Read more
Source§

fn rotate_around_point_mut(&mut self, degrees: T, point: Point<T>)

Mutable version of Self::rotate_around_point
Source§

impl<T, IR, G> Scale<T> for G
where T: CoordFloat, IR: Into<Option<Rect<T>>>, G: Clone + AffineOps<T> + BoundingRect<T, Output = IR>,

Source§

fn scale(&self, scale_factor: T) -> G

Scale a geometry from it’s bounding box center. Read more
Source§

fn scale_mut(&mut self, scale_factor: T)

Mutable version of scale
Source§

fn scale_xy(&self, x_factor: T, y_factor: T) -> G

Scale a geometry from it’s bounding box center, using different values for x_factor and y_factor to distort the geometry’s aspect ratio. Read more
Source§

fn scale_xy_mut(&mut self, x_factor: T, y_factor: T)

Mutable version of scale_xy.
Source§

fn scale_around_point( &self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>>, ) -> G

Scale a geometry around a point of origin. Read more
Source§

fn scale_around_point_mut( &mut self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>>, )

Mutable version of scale_around_point.
Source§

impl<T, IR, G> Skew<T> for G
where T: CoordFloat, IR: Into<Option<Rect<T>>>, G: Clone + AffineOps<T> + BoundingRect<T, Output = IR>,

Source§

fn skew(&self, degrees: T) -> G

An affine transformation which skews a geometry, sheared by a uniform angle along the x and y dimensions. Read more
Source§

fn skew_mut(&mut self, degrees: T)

Mutable version of skew.
Source§

fn skew_xy(&self, degrees_x: T, degrees_y: T) -> G

An affine transformation which skews a geometry, sheared by an angle along the x and y dimensions. Read more
Source§

fn skew_xy_mut(&mut self, degrees_x: T, degrees_y: T)

Mutable version of skew_xy.
Source§

fn skew_around_point(&self, xs: T, ys: T, origin: impl Into<Coord<T>>) -> G

An affine transformation which skews a geometry around a point of origin, sheared by an angle along the x and y dimensions. Read more
Source§

fn skew_around_point_mut(&mut self, xs: T, ys: T, origin: impl Into<Coord<T>>)

Mutable version of skew_around_point.
Source§

impl<T, G> ToDegrees<T> for G
where T: CoordFloat, G: MapCoords<T, T, Output = G> + MapCoordsInPlace<T>,

Source§

fn to_degrees(&self) -> Self

Source§

fn to_degrees_in_place(&mut self)

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, G> ToRadians<T> for G
where T: CoordFloat, G: MapCoords<T, T, Output = G> + MapCoordsInPlace<T>,

Source§

fn to_radians(&self) -> Self

Source§

fn to_radians_in_place(&mut self)

Source§

impl<T, G> Translate<T> for G
where T: CoordNum, G: AffineOps<T>,

Source§

fn translate(&self, x_offset: T, y_offset: T) -> G

Translate a Geometry along its axes by the given offsets Read more
Source§

fn translate_mut(&mut self, x_offset: T, y_offset: T)

Translate a Geometry along its axes, but in place.
Source§

impl<'a, T, G> TriangulateDelaunay<'a, T> for G
where T: SpadeTriangulationFloat, G: TriangulationRequirementTrait<'a, T>,

Source§

fn unconstrained_triangulation(&'a self) -> TriangulationResult<Triangles<T>>

returns a triangulation that’s solely based on the points of the geometric object Read more
Source§

fn constrained_outer_triangulation( &'a self, config: DelaunayTriangulationConfig<T>, ) -> TriangulationResult<Triangles<T>>

returns triangulation that’s based on the points of the geometric object and also incorporates the lines of the input geometry Read more
Source§

fn constrained_triangulation( &'a self, config: DelaunayTriangulationConfig<T>, ) -> TriangulationResult<Triangles<T>>

returns triangulation that’s based on the points of the geometric object and also incorporates the lines of the input geometry Read more
Source§

impl<'a, T, G> TriangulateSpade<'a, T> for G
where T: SpadeTriangulationFloat, G: TriangulationRequirementTrait<'a, T>,

Source§

fn unconstrained_triangulation(&'a self) -> TriangulationResult<Triangles<T>>

👎Deprecated since 0.29.4: please use the triangulate_delaunay module instead
returns a triangulation that’s solely based on the points of the geometric object Read more
Source§

fn constrained_outer_triangulation( &'a self, config: SpadeTriangulationConfig<T>, ) -> TriangulationResult<Triangles<T>>

👎Deprecated since 0.29.4: please use the triangulate_delaunay module instead
returns triangulation that’s based on the points of the geometric object and also incorporates the lines of the input geometry Read more
Source§

fn constrained_triangulation( &'a self, config: SpadeTriangulationConfig<T>, ) -> TriangulationResult<Triangles<T>>

👎Deprecated since 0.29.4: please use the triangulate_delaunay module instead
returns triangulation that’s based on the points of the geometric object and also incorporates the lines of the input geometry Read more
Source§

impl<G, T, U> TryConvert<T, U> for G
where T: CoordNum, U: CoordNum + TryFrom<T>, G: MapCoords<T, U>,

Source§

type Output = Result<<G as MapCoords<T, U>>::Output, <U as TryFrom<T>>::Error>

Source§

fn try_convert(&self) -> <G as TryConvert<T, U>>::Output

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<G1, G2> Within<G2> for G1
where G2: Contains<G1>,

Source§

fn is_within(&self, b: &G2) -> bool