[][src]Struct gdnative::api::CollisionObject

pub struct CollisionObject { /* fields omitted */ }

core class CollisionObject inherits Spatial (unsafe).

Official documentation

See the documentation of this class in the Godot engine's official documentation.

Class hierarchy

CollisionObject inherits methods from:

Safety

All types in the Godot API have "interior mutability" in Rust parlance. To enforce that the official thread-safety guidelines are followed, the typestate pattern is used in the Ref and TRef smart pointers, and the Instance API. The typestate Access in these types tracks whether the access is unique, shared, or exclusive to the current thread. For more information, see the type-level documentation on Ref.

Implementations

impl CollisionObject[src]

pub fn create_shape_owner(&self, owner: impl AsArg<Object>) -> i64[src]

Creates a new shape owner for the given object. Returns [code]owner_id[/code] of the new owner for future reference.

pub fn capture_input_on_drag(&self) -> bool[src]

If [code]true[/code], the [CollisionObject] will continue to receive input events as the mouse is dragged across its shapes.

pub fn get_rid(&self) -> Rid[src]

Returns the object's [RID].

pub fn get_shape_owners(&self) -> VariantArray<Shared>[src]

Returns an [Array] of [code]owner_id[/code] identifiers. You can use these ids in other methods that take [code]owner_id[/code] as an argument.

pub fn is_ray_pickable(&self) -> bool[src]

If [code]true[/code], the [CollisionObject]'s shapes will respond to [RayCast]s.

pub fn is_shape_owner_disabled(&self, owner_id: i64) -> bool[src]

If [code]true[/code], the shape owner and its shapes are disabled.

pub fn remove_shape_owner(&self, owner_id: i64)[src]

Removes the given shape owner.

pub fn set_capture_input_on_drag(&self, enable: bool)[src]

If [code]true[/code], the [CollisionObject] will continue to receive input events as the mouse is dragged across its shapes.

pub fn set_ray_pickable(&self, ray_pickable: bool)[src]

If [code]true[/code], the [CollisionObject]'s shapes will respond to [RayCast]s.

pub fn shape_find_owner(&self, shape_index: i64) -> i64[src]

Returns the [code]owner_id[/code] of the given shape.

pub fn shape_owner_add_shape(&self, owner_id: i64, shape: impl AsArg<Shape>)[src]

Adds a [Shape] to the shape owner.

pub fn shape_owner_clear_shapes(&self, owner_id: i64)[src]

Removes all shapes from the shape owner.

pub fn shape_owner_get_owner(
    &self,
    owner_id: i64
) -> Option<Ref<Object, Shared>>
[src]

Returns the parent object of the given shape owner.

pub fn shape_owner_get_shape(
    &self,
    owner_id: i64,
    shape_id: i64
) -> Option<Ref<Shape, Shared>>
[src]

Returns the [Shape] with the given id from the given shape owner.

pub fn shape_owner_get_shape_count(&self, owner_id: i64) -> i64[src]

Returns the number of shapes the given shape owner contains.

pub fn shape_owner_get_shape_index(&self, owner_id: i64, shape_id: i64) -> i64[src]

Returns the child index of the [Shape] with the given id from the given shape owner.

pub fn shape_owner_get_transform(&self, owner_id: i64) -> Transform[src]

Returns the shape owner's [Transform].

pub fn shape_owner_remove_shape(&self, owner_id: i64, shape_id: i64)[src]

Removes a shape from the given shape owner.

pub fn shape_owner_set_disabled(&self, owner_id: i64, disabled: bool)[src]

If [code]true[/code], disables the given shape owner.

pub fn shape_owner_set_transform(&self, owner_id: i64, transform: Transform)[src]

Sets the [Transform] of the given shape owner.

Methods from Deref<Target = Spatial>

pub fn force_update_transform(&self)[src]

Forces the transform to update. Transform changes in physics are not instant for performance reasons. Transforms are accumulated and then set. Use this if you need an up-to-date transform when doing physics operations.

pub fn gizmo(&self) -> Option<Ref<SpatialGizmo, Shared>>[src]

The [SpatialGizmo] for this node. Used for example in [EditorSpatialGizmo] as custom visualization and editing handles in Editor.

pub fn global_transform(&self) -> Transform[src]

World space (global) [Transform] of this node.

pub fn get_parent_spatial(&self) -> Option<Ref<Spatial, Shared>>[src]

Returns the parent [Spatial], or an empty [Object] if no parent exists or parent is not of type [Spatial].

pub fn rotation(&self) -> Vector3D<f32, UnknownUnit>[src]

Rotation part of the local transformation in radians, specified in terms of YXZ-Euler angles in the format (X angle, Y angle, Z angle).
			[b]Note:[/b] In the mathematical sense, rotation is a matrix and not a vector. The three Euler angles, which are the three independent parameters of the Euler-angle parametrization of the rotation matrix, are stored in a [Vector3] data structure not because the rotation is a vector, but only because [Vector3] exists as a convenient data-structure to store 3 floating-point numbers. Therefore, applying affine operations on the rotation "vector" is not meaningful.

pub fn rotation_degrees(&self) -> Vector3D<f32, UnknownUnit>[src]

Rotation part of the local transformation in degrees, specified in terms of YXZ-Euler angles in the format (X angle, Y angle, Z angle).

pub fn scale(&self) -> Vector3D<f32, UnknownUnit>[src]

Scale part of the local transformation.

pub fn transform(&self) -> Transform[src]

Local space [Transform] of this node, with respect to the parent node.

pub fn translation(&self) -> Vector3D<f32, UnknownUnit>[src]

Local translation of this node.

pub fn get_world(&self) -> Option<Ref<World, Shared>>[src]

Returns the current [World] resource this [Spatial] node is registered to.

pub fn global_rotate(&self, axis: Vector3D<f32, UnknownUnit>, angle: f64)[src]

Rotates the global (world) transformation around axis, a unit [Vector3], by specified angle in radians. The rotation axis is in global coordinate system.

pub fn global_scale(&self, scale: Vector3D<f32, UnknownUnit>)[src]

Scales the global (world) transformation by the given [Vector3] scale factors.

pub fn global_translate(&self, offset: Vector3D<f32, UnknownUnit>)[src]

Moves the global (world) transformation by [Vector3] offset. The offset is in global coordinate system.

pub fn hide(&self)[src]

Disables rendering of this node. Changes [member visible] to [code]false[/code].

pub fn is_local_transform_notification_enabled(&self) -> bool[src]

Returns whether node notifies about its local transformation changes. [Spatial] will not propagate this by default.

pub fn is_scale_disabled(&self) -> bool[src]

Returns whether this node uses a scale of [code](1, 1, 1)[/code] or its local transformation scale.

pub fn is_set_as_toplevel(&self) -> bool[src]

Returns whether this node is set as Toplevel, that is whether it ignores its parent nodes transformations.

pub fn is_transform_notification_enabled(&self) -> bool[src]

Returns whether the node notifies about its global and local transformation changes. [Spatial] will not propagate this by default.

pub fn is_visible(&self) -> bool[src]

If [code]true[/code], this node is drawn. The node is only visible if all of its antecedents are visible as well (in other words, [method is_visible_in_tree] must return [code]true[/code]).

pub fn is_visible_in_tree(&self) -> bool[src]

Returns [code]true[/code] if the node is present in the [SceneTree], its [member visible] property is [code]true[/code] and all its antecedents are also visible. If any antecedent is hidden, this node will not be visible in the scene tree.

pub fn look_at(
    &self,
    target: Vector3D<f32, UnknownUnit>,
    up: Vector3D<f32, UnknownUnit>
)
[src]

Rotates itself so that the local -Z axis points towards the [code]target[/code] position.
				The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
				Operations take place in global space.

pub fn look_at_from_position(
    &self,
    position: Vector3D<f32, UnknownUnit>,
    target: Vector3D<f32, UnknownUnit>,
    up: Vector3D<f32, UnknownUnit>
)
[src]

Moves the node to the specified [code]position[/code], and then rotates itself to point toward the [code]target[/code] as per [method look_at]. Operations take place in global space.

pub fn orthonormalize(&self)[src]

Resets this node's transformations (like scale, skew and taper) preserving its rotation and translation by performing Gram-Schmidt orthonormalization on this node's [Transform].

pub fn rotate(&self, axis: Vector3D<f32, UnknownUnit>, angle: f64)[src]

Rotates the local transformation around axis, a unit [Vector3], by specified angle in radians.

pub fn rotate_object_local(&self, axis: Vector3D<f32, UnknownUnit>, angle: f64)[src]

Rotates the local transformation around axis, a unit [Vector3], by specified angle in radians. The rotation axis is in object-local coordinate system.

pub fn rotate_x(&self, angle: f64)[src]

Rotates the local transformation around the X axis by angle in radians.

pub fn rotate_y(&self, angle: f64)[src]

Rotates the local transformation around the Y axis by angle in radians.

pub fn rotate_z(&self, angle: f64)[src]

Rotates the local transformation around the Z axis by angle in radians.

pub fn scale_object_local(&self, scale: Vector3D<f32, UnknownUnit>)[src]

Scales the local transformation by given 3D scale factors in object-local coordinate system.

pub fn set_as_toplevel(&self, enable: bool)[src]

Makes the node ignore its parents transformations. Node transformations are only in global space.

pub fn set_disable_scale(&self, disable: bool)[src]

Sets whether the node uses a scale of [code](1, 1, 1)[/code] or its local transformation scale. Changes to the local transformation scale are preserved.

pub fn set_gizmo(&self, gizmo: impl AsArg<SpatialGizmo>)[src]

The [SpatialGizmo] for this node. Used for example in [EditorSpatialGizmo] as custom visualization and editing handles in Editor.

pub fn set_global_transform(&self, global: Transform)[src]

World space (global) [Transform] of this node.

pub fn set_identity(&self)[src]

Reset all transformations for this node (sets its [Transform] to the identity matrix).

pub fn set_ignore_transform_notification(&self, enabled: bool)[src]

Sets whether the node ignores notification that its transformation (global or local) changed.

pub fn set_notify_local_transform(&self, enable: bool)[src]

Sets whether the node notifies about its local transformation changes. [Spatial] will not propagate this by default.

pub fn set_notify_transform(&self, enable: bool)[src]

Sets whether the node notifies about its global and local transformation changes. [Spatial] will not propagate this by default.

pub fn set_rotation(&self, euler: Vector3D<f32, UnknownUnit>)[src]

Rotation part of the local transformation in radians, specified in terms of YXZ-Euler angles in the format (X angle, Y angle, Z angle).
			[b]Note:[/b] In the mathematical sense, rotation is a matrix and not a vector. The three Euler angles, which are the three independent parameters of the Euler-angle parametrization of the rotation matrix, are stored in a [Vector3] data structure not because the rotation is a vector, but only because [Vector3] exists as a convenient data-structure to store 3 floating-point numbers. Therefore, applying affine operations on the rotation "vector" is not meaningful.

pub fn set_rotation_degrees(&self, euler_degrees: Vector3D<f32, UnknownUnit>)[src]

Rotation part of the local transformation in degrees, specified in terms of YXZ-Euler angles in the format (X angle, Y angle, Z angle).

pub fn set_scale(&self, scale: Vector3D<f32, UnknownUnit>)[src]

Scale part of the local transformation.

pub fn set_transform(&self, local: Transform)[src]

Local space [Transform] of this node, with respect to the parent node.

pub fn set_translation(&self, translation: Vector3D<f32, UnknownUnit>)[src]

Local translation of this node.

pub fn set_visible(&self, visible: bool)[src]

If [code]true[/code], this node is drawn. The node is only visible if all of its antecedents are visible as well (in other words, [method is_visible_in_tree] must return [code]true[/code]).

pub fn show(&self)[src]

Enables rendering of this node. Changes [member visible] to [code]true[/code].

pub fn to_global(
    &self,
    local_point: Vector3D<f32, UnknownUnit>
) -> Vector3D<f32, UnknownUnit>
[src]

Transforms [code]local_point[/code] from this node's local space to world space.

pub fn to_local(
    &self,
    global_point: Vector3D<f32, UnknownUnit>
) -> Vector3D<f32, UnknownUnit>
[src]

Transforms [code]global_point[/code] from world space to this node's local space.

pub fn translate(&self, offset: Vector3D<f32, UnknownUnit>)[src]

Changes the node's position by the given offset [Vector3].
				Note that the translation [code]offset[/code] is affected by the node's scale, so if scaled by e.g. [code](10, 1, 1)[/code], a translation by an offset of [code](2, 0, 0)[/code] would actually add 20 ([code]2 * 10[/code]) to the X coordinate.

pub fn translate_object_local(&self, offset: Vector3D<f32, UnknownUnit>)[src]

Changes the node's position by the given offset [Vector3] in local space.

pub fn update_gizmo(&self)[src]

Updates the [SpatialGizmo] of this node.

Trait Implementations

impl Debug for CollisionObject[src]

impl Deref for CollisionObject[src]

type Target = Spatial

The resulting type after dereferencing.

impl DerefMut for CollisionObject[src]

impl GodotObject for CollisionObject[src]

type RefKind = ManuallyManaged

The memory management kind of this type. This modifies the behavior of the Ref smart pointer. See its type-level documentation for more information. Read more

impl QueueFree for CollisionObject[src]

impl SubClass<CollisionObject> for Area[src]

impl SubClass<CollisionObject> for PhysicalBone[src]

impl SubClass<CollisionObject> for VehicleBody[src]

impl SubClass<CollisionObject> for KinematicBody[src]

impl SubClass<CollisionObject> for PhysicsBody[src]

impl SubClass<CollisionObject> for RigidBody[src]

impl SubClass<CollisionObject> for StaticBody[src]

impl SubClass<Node> for CollisionObject[src]

impl SubClass<Object> for CollisionObject[src]

impl SubClass<Spatial> for CollisionObject[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> SubClass<T> for T where
    T: GodotObject
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.