pub struct SparsePolyRingBase<R: RingStore> { /* private fields */ }Expand description
The univariate polynomial ring R[X]. Polynomials are stored as sparse vectors of
coefficients, thus giving improved performance in the case that most coefficients are
zero.
§Example
let ZZ = StaticRing::<i32>::RING;
let P = SparsePolyRing::new(ZZ, "X");
let x10_plus_1 = P.add(P.pow(P.indeterminate(), 10), P.int_hom().map(1));
let power = P.pow(x10_plus_1, 10);
assert_eq!(0, *P.coefficient_at(&power, 1));This ring has a CanIsoFromTo to dense_poly::DensePolyRingBase.
let ZZ = StaticRing::<i32>::RING;
let P = SparsePolyRing::new(ZZ, "X");
let P2 = DensePolyRing::new(ZZ, "X");
let high_power_of_x = P.pow(P.indeterminate(), 10);
assert_el_eq!(P2, P2.pow(P2.indeterminate(), 10), &P.can_iso(&P2).unwrap().map(high_power_of_x));Trait Implementations§
Source§impl<R, P> CanHomFrom<P> for SparsePolyRingBase<R>where
R: RingStore,
R::Type: CanHomFrom<<P::BaseRing as RingStore>::Type>,
P: ImplGenericCanIsoFromToMarker,
impl<R, P> CanHomFrom<P> for SparsePolyRingBase<R>where
R: RingStore,
R::Type: CanHomFrom<<P::BaseRing as RingStore>::Type>,
P: ImplGenericCanIsoFromToMarker,
type Homomorphism = <<<SparsePolyRingBase<R> as RingExtension>::BaseRing as RingStore>::Type as CanHomFrom<<<P as RingExtension>::BaseRing as RingStore>::Type>>::Homomorphism
fn has_canonical_hom(&self, from: &P) -> Option<Self::Homomorphism>
fn map_in( &self, from: &P, el: P::Element, hom: &Self::Homomorphism, ) -> Self::Element
fn map_in_ref( &self, from: &S, el: &S::Element, hom: &Self::Homomorphism, ) -> Self::Element
fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )
fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )
Source§impl<R1, R2> CanHomFrom<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
impl<R1, R2> CanHomFrom<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
type Homomorphism = <<R2 as RingStore>::Type as CanHomFrom<<R1 as RingStore>::Type>>::Homomorphism
fn has_canonical_hom( &self, from: &SparsePolyRingBase<R1>, ) -> Option<Self::Homomorphism>
fn map_in_ref( &self, from: &SparsePolyRingBase<R1>, el: &SparsePolyRingEl<R1>, hom: &Self::Homomorphism, ) -> Self::Element
fn map_in( &self, from: &SparsePolyRingBase<R1>, el: <SparsePolyRingBase<R1> as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element
fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )
fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )
Source§impl<R, P> CanIsoFromTo<P> for SparsePolyRingBase<R>where
R: RingStore,
R::Type: CanIsoFromTo<<P::BaseRing as RingStore>::Type>,
P: ImplGenericCanIsoFromToMarker,
impl<R, P> CanIsoFromTo<P> for SparsePolyRingBase<R>where
R: RingStore,
R::Type: CanIsoFromTo<<P::BaseRing as RingStore>::Type>,
P: ImplGenericCanIsoFromToMarker,
type Isomorphism = <<<SparsePolyRingBase<R> as RingExtension>::BaseRing as RingStore>::Type as CanIsoFromTo<<<P as RingExtension>::BaseRing as RingStore>::Type>>::Isomorphism
fn has_canonical_iso(&self, from: &P) -> Option<Self::Isomorphism>
fn map_out( &self, from: &P, el: Self::Element, iso: &Self::Isomorphism, ) -> P::Element
Source§impl<R1, R2> CanIsoFromTo<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
impl<R1, R2> CanIsoFromTo<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
type Isomorphism = <<R2 as RingStore>::Type as CanIsoFromTo<<R1 as RingStore>::Type>>::Isomorphism
fn has_canonical_iso( &self, from: &SparsePolyRingBase<R1>, ) -> Option<Self::Isomorphism>
fn map_out( &self, from: &SparsePolyRingBase<R1>, el: Self::Element, iso: &Self::Isomorphism, ) -> SparsePolyRingEl<R1>
Source§impl<R> DivisibilityRing for SparsePolyRingBase<R>
impl<R> DivisibilityRing for SparsePolyRingBase<R>
Source§fn checked_left_div(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_left_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
Checks whether there is an element
x such that rhs * x = lhs, and
returns it if it exists. Read moreSource§type PreparedDivisorData = ()
type PreparedDivisorData = ()
Additional data associated to a fixed ring element that can be used
to speed up division by this ring element. Read more
Source§fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
Returns whether there is an element
x such that rhs * x = lhs.
If you need such an element, consider using DivisibilityRing::checked_left_div(). Read moreSource§fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
Same as
DivisibilityRing::divides_left(), but requires a commutative ring.Source§fn checked_div(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
Same as
DivisibilityRing::checked_left_div(), but requires a commutative ring.Source§fn is_unit(&self, x: &Self::Element) -> bool
fn is_unit(&self, x: &Self::Element) -> bool
Returns whether the given element is a unit, i.e. has an inverse.
Source§fn balance_factor<'a, I>(&self, _elements: I) -> Option<Self::Element>
fn balance_factor<'a, I>(&self, _elements: I) -> Option<Self::Element>
Function that computes a “balancing” factor of a sequence of ring elements.
The only use of the balancing factor is to increase performance, in particular,
dividing all elements in the sequence by this factor should make them
“smaller” resp. cheaper to process. Read more
Source§fn prepare_divisor(&self, x: Self::Element) -> PreparedDivisor<Self>
fn prepare_divisor(&self, x: Self::Element) -> PreparedDivisor<Self>
“Prepares” an element of this ring for division. Read more
Source§fn checked_left_div_prepared(
&self,
lhs: &Self::Element,
rhs: &PreparedDivisor<Self>,
) -> Option<Self::Element>
fn checked_left_div_prepared( &self, lhs: &Self::Element, rhs: &PreparedDivisor<Self>, ) -> Option<Self::Element>
Same as
DivisibilityRing::checked_left_div() but for a prepared divisor. Read moreSource§fn divides_left_prepared(
&self,
lhs: &Self::Element,
rhs: &PreparedDivisor<Self>,
) -> bool
fn divides_left_prepared( &self, lhs: &Self::Element, rhs: &PreparedDivisor<Self>, ) -> bool
Same as
DivisibilityRing::divides_left() but for a prepared divisor. Read moreSource§fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool
fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool
Same as
DivisibilityRing::is_unit() but for a prepared divisor. Read moreSource§impl<R> EuclideanRing for SparsePolyRingBase<R>
impl<R> EuclideanRing for SparsePolyRingBase<R>
Source§fn euclidean_div_rem(
&self,
lhs: Self::Element,
rhs: &Self::Element,
) -> (Self::Element, Self::Element)
fn euclidean_div_rem( &self, lhs: Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element)
Computes euclidean division with remainder. Read more
Source§fn euclidean_deg(&self, val: &Self::Element) -> Option<usize>
fn euclidean_deg(&self, val: &Self::Element) -> Option<usize>
Defines how “small” an element is. For details, see
EuclideanRing.Source§impl<R> PartialEq for SparsePolyRingBase<R>where
R: RingStore,
impl<R> PartialEq for SparsePolyRingBase<R>where
R: RingStore,
Source§impl<R> PolyRing for SparsePolyRingBase<R>where
R: RingStore,
impl<R> PolyRing for SparsePolyRingBase<R>where
R: RingStore,
type TermsIterator<'a> = TermIterator<'a, R> where Self: 'a
Source§fn indeterminate(&self) -> Self::Element
fn indeterminate(&self) -> Self::Element
Returns the indeterminate
X generating this polynomial ring.Source§fn terms<'a>(&'a self, f: &'a Self::Element) -> TermIterator<'a, R> ⓘ
fn terms<'a>(&'a self, f: &'a Self::Element) -> TermIterator<'a, R> ⓘ
Returns all the nonzero terms of the given polynomial. Read more
Source§fn add_assign_from_terms<I>(&self, lhs: &mut Self::Element, rhs: I)
fn add_assign_from_terms<I>(&self, lhs: &mut Self::Element, rhs: I)
Adds the given terms to the given polynomial.
Source§fn coefficient_at<'a>(
&'a self,
f: &'a Self::Element,
i: usize,
) -> &'a El<Self::BaseRing>
fn coefficient_at<'a>( &'a self, f: &'a Self::Element, i: usize, ) -> &'a El<Self::BaseRing>
Returns the coefficient of
f that corresponds to the monomial X^i.Source§fn degree(&self, f: &Self::Element) -> Option<usize>
fn degree(&self, f: &Self::Element) -> Option<usize>
Returns the degree of the polynomial
f, i.e. the value d such that f can be written as
f(X) = a0 + a1 * X + a2 * X^2 + ... + ad * X^d. Returns None if f is zero.Source§fn div_rem_monic(
&self,
lhs: Self::Element,
rhs: &Self::Element,
) -> (Self::Element, Self::Element)
fn div_rem_monic( &self, lhs: Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element)
Compute the euclidean division by a monic polynomial
rhs. Read moreSource§fn mul_assign_monomial(&self, lhs: &mut Self::Element, rhs_power: usize)
fn mul_assign_monomial(&self, lhs: &mut Self::Element, rhs_power: usize)
Multiplies the given polynomial with
X^rhs_power.fn map_terms<P, H>(&self, from: &P, el: &P::Element, hom: H) -> Self::Element
Source§impl<R> PrincipalIdealRing for SparsePolyRingBase<R>
impl<R> PrincipalIdealRing for SparsePolyRingBase<R>
Source§fn checked_div_min(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_div_min( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
Similar to
DivisibilityRing::checked_left_div() this computes a “quotient” q
of lhs and rhs, if it exists. However, we impose the additional constraint
that this quotient be minimal, i.e. there is no q' with q' | q properly and
q' * rhs = lhs. Read moreSource§fn extended_ideal_gen(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> (Self::Element, Self::Element, Self::Element)
fn extended_ideal_gen( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element, Self::Element)
Computes a Bezout identity for the generator
g of the ideal (lhs, rhs)
as g = s * lhs + t * rhs. Read moreSource§fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
Computes a generator
g of the ideal (lhs, rhs) = (g), also known as greatest
common divisor. Read moreSource§fn annihilator(&self, val: &Self::Element) -> Self::Element
fn annihilator(&self, val: &Self::Element) -> Self::Element
Source§impl<R: RingStore> RingBase for SparsePolyRingBase<R>
impl<R: RingStore> RingBase for SparsePolyRingBase<R>
Source§type Element = SparsePolyRingEl<R>
type Element = SparsePolyRingEl<R>
Type of elements of the ring
fn clone_el(&self, val: &Self::Element) -> Self::Element
fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn negate_inplace(&self, lhs: &mut Self::Element)
fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn zero(&self) -> Self::Element
fn from_int(&self, value: i32) -> Self::Element
fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
Source§fn is_commutative(&self) -> bool
fn is_commutative(&self) -> bool
Returns whether the ring is commutative, i.e.
a * b = b * a for all elements a, b.
Note that addition is assumed to be always commutative.Source§fn is_noetherian(&self) -> bool
fn is_noetherian(&self) -> bool
Returns whether the ring is noetherian, i.e. every ideal is finitely generated. Read more
Source§fn dbg_within<'a>(
&self,
value: &Self::Element,
out: &mut Formatter<'a>,
env: EnvBindingStrength,
) -> Result
fn dbg_within<'a>( &self, value: &Self::Element, out: &mut Formatter<'a>, env: EnvBindingStrength, ) -> Result
Writes a human-readable representation of
value to out, taking into account the possible context
to place parenthesis as needed. Read morefn square(&self, value: &mut Self::Element)
fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32)
Source§fn characteristic<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
fn characteristic<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
Returns the characteristic of this ring as an element of the given
implementation of
ZZ. Read moreSource§fn is_approximate(&self) -> bool
fn is_approximate(&self) -> bool
Returns whether this ring computes with approximations to elements.
This would usually be the case for rings that are based on
f32 or
f64, to represent real or complex numbers. Read morefn one(&self) -> Self::Element
fn neg_one(&self) -> Self::Element
fn is_zero(&self, value: &Self::Element) -> bool
fn is_one(&self, value: &Self::Element) -> bool
fn is_neg_one(&self, value: &Self::Element) -> bool
fn negate(&self, value: Self::Element) -> Self::Element
fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn mul_int(&self, lhs: Self::Element, rhs: i32) -> Self::Element
fn mul_int_ref(&self, lhs: &Self::Element, rhs: i32) -> Self::Element
Source§fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
Computes
lhs := rhs - lhs.Source§fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
Computes
lhs := rhs - lhs.fn add_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn add_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn add_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn add(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
fn sub_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn sub_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn sub_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn sub(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
fn mul_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn mul_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn mul(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
Source§fn pow_gen<R: RingStore>(
&self,
x: Self::Element,
power: &El<R>,
integers: R,
) -> Self::Elementwhere
R::Type: IntegerRing,
fn pow_gen<R: RingStore>(
&self,
x: Self::Element,
power: &El<R>,
integers: R,
) -> Self::Elementwhere
R::Type: IntegerRing,
Raises
x to the power of an arbitrary, nonnegative integer given by
a custom integer ring implementation. Read moreSource§impl<R: RingStore> RingExtension for SparsePolyRingBase<R>
impl<R: RingStore> RingExtension for SparsePolyRingBase<R>
Source§fn from(&self, x: El<Self::BaseRing>) -> Self::Element
fn from(&self, x: El<Self::BaseRing>) -> Self::Element
Maps an element of the base ring into this ring. Read more
Source§fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element
fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element
Maps an element of the base ring (given as reference) into this ring.
Source§fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)
fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)
Computes
lhs := lhs * rhs, where rhs is mapped into this
ring via RingExtension::from_ref(). Note that this may be
faster than self.mul_assign(lhs, self.from_ref(rhs)).impl<R> Domain for SparsePolyRingBase<R>
impl<R> ImplGenericCanIsoFromToMarker for SparsePolyRingBase<R>where
R: RingStore,
Auto Trait Implementations§
impl<R> Freeze for SparsePolyRingBase<R>
impl<R> RefUnwindSafe for SparsePolyRingBase<R>
impl<R> !Send for SparsePolyRingBase<R>
impl<R> !Sync for SparsePolyRingBase<R>
impl<R> Unpin for SparsePolyRingBase<R>
impl<R> UnwindSafe for SparsePolyRingBase<R>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<R> ComputeInnerProduct for R
impl<R> ComputeInnerProduct for R
Source§default fn inner_product_ref_fst<'a, I>(
&self,
els: I,
) -> <R as RingBase>::Element
default fn inner_product_ref_fst<'a, I>( &self, els: I, ) -> <R as RingBase>::Element
Computes the inner product
sum_i lhs[i] * rhs[i].Source§default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
Computes the inner product
sum_i lhs[i] * rhs[i].Source§impl<R, S> CooleyTuckeyButterfly<S> for R
impl<R, S> CooleyTuckeyButterfly<S> for R
Source§default fn butterfly<V, H>(
&self,
hom: H,
values: &mut V,
twiddle: &<S as RingBase>::Element,
i1: usize,
i2: usize,
)
default fn butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
Should compute
(values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2])Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<R> KaratsubaHint for R
impl<R> KaratsubaHint for R
Source§default fn karatsuba_threshold(&self) -> usize
default fn karatsuba_threshold(&self) -> usize
Define a threshold from which on
KaratsubaAlgorithm will use the Karatsuba algorithm. Read moreSource§impl<R> LinSolveRing for Rwhere
R: PrincipalIdealRing + ?Sized,
impl<R> LinSolveRing for Rwhere
R: PrincipalIdealRing + ?Sized,
Source§default fn solve_right<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, <R as RingBase>::Element>,
rhs: SubmatrixMut<'_, V2, <R as RingBase>::Element>,
out: SubmatrixMut<'_, V3, <R as RingBase>::Element>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<<R as RingBase>::Element>,
V2: AsPointerToSlice<<R as RingBase>::Element>,
V3: AsPointerToSlice<<R as RingBase>::Element>,
A: Allocator,
default fn solve_right<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, <R as RingBase>::Element>,
rhs: SubmatrixMut<'_, V2, <R as RingBase>::Element>,
out: SubmatrixMut<'_, V3, <R as RingBase>::Element>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<<R as RingBase>::Element>,
V2: AsPointerToSlice<<R as RingBase>::Element>,
V3: AsPointerToSlice<<R as RingBase>::Element>,
A: Allocator,
Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R> StrassenHint for R
impl<R> StrassenHint for R
Source§default fn strassen_threshold(&self) -> usize
default fn strassen_threshold(&self) -> usize
Define a threshold from which on
StrassenAlgorithm will use the Strassen algorithm. Read more