stm32ral 0.8.0

Register access layer for all STM32 microcontrollers
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
#![allow(non_snake_case, non_upper_case_globals)]
#![allow(non_camel_case_types)]
//! Analog-to-Digital Converter

use crate::{RORegister, RWRegister};
#[cfg(not(feature = "nosync"))]
use core::marker::PhantomData;

/// ADC Common status register
pub mod CSR {

    /// ADDRDY_MST
    pub mod ADDRDY_MST {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (1 bit: 1 << 0)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// EOSMP_MST
    pub mod EOSMP_MST {
        /// Offset (1 bits)
        pub const offset: u32 = 1;
        /// Mask (1 bit: 1 << 1)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: End of sampling phase no yet reached
            pub const NotEnded: u32 = 0b0;

            /// 0b1: End of sampling phase reached
            pub const Ended: u32 = 0b1;
        }
    }

    /// EOC_MST
    pub mod EOC_MST {
        /// Offset (2 bits)
        pub const offset: u32 = 2;
        /// Mask (1 bit: 1 << 2)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: Regular conversion is not complete
            pub const NotComplete: u32 = 0b0;

            /// 0b1: Regular conversion complete
            pub const Complete: u32 = 0b1;
        }
    }

    /// EOS_MST
    pub mod EOS_MST {
        /// Offset (3 bits)
        pub const offset: u32 = 3;
        /// Mask (1 bit: 1 << 3)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: Regular sequence is not complete
            pub const NotComplete: u32 = 0b0;

            /// 0b1: Regular sequence complete
            pub const Complete: u32 = 0b1;
        }
    }

    /// OVR_MST
    pub mod OVR_MST {
        /// Offset (4 bits)
        pub const offset: u32 = 4;
        /// Mask (1 bit: 1 << 4)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: No overrun occurred
            pub const NoOverrun: u32 = 0b0;

            /// 0b1: Overrun occurred
            pub const Overrun: u32 = 0b1;
        }
    }

    /// JEOC_MST
    pub mod JEOC_MST {
        /// Offset (5 bits)
        pub const offset: u32 = 5;
        /// Mask (1 bit: 1 << 5)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: Injected conversion is not complete
            pub const NotComplete: u32 = 0b0;

            /// 0b1: Injected conversion complete
            pub const Complete: u32 = 0b1;
        }
    }

    /// JEOS_MST
    pub mod JEOS_MST {
        /// Offset (6 bits)
        pub const offset: u32 = 6;
        /// Mask (1 bit: 1 << 6)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: Injected sequence is not complete
            pub const NotComplete: u32 = 0b0;

            /// 0b1: Injected sequence complete
            pub const Complete: u32 = 0b1;
        }
    }

    /// AWD1_MST
    pub mod AWD1_MST {
        /// Offset (7 bits)
        pub const offset: u32 = 7;
        /// Mask (1 bit: 1 << 7)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: No analog watchdog event occurred
            pub const NoEvent: u32 = 0b0;

            /// 0b1: Analog watchdog event occurred
            pub const Event: u32 = 0b1;
        }
    }

    /// AWD2_MST
    pub mod AWD2_MST {
        /// Offset (8 bits)
        pub const offset: u32 = 8;
        /// Mask (1 bit: 1 << 8)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::AWD1_MST::RW;
    }

    /// AWD3_MST
    pub mod AWD3_MST {
        /// Offset (9 bits)
        pub const offset: u32 = 9;
        /// Mask (1 bit: 1 << 9)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::AWD1_MST::RW;
    }

    /// JQOVF_MST
    pub mod JQOVF_MST {
        /// Offset (10 bits)
        pub const offset: u32 = 10;
        /// Mask (1 bit: 1 << 10)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: No injected context queue overflow has occurred
            pub const NoOverflow: u32 = 0b0;

            /// 0b1: Injected context queue overflow has occurred
            pub const Overflow: u32 = 0b1;
        }
    }

    /// ADRDY_SLV
    pub mod ADRDY_SLV {
        /// Offset (16 bits)
        pub const offset: u32 = 16;
        /// Mask (1 bit: 1 << 16)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: ADC is not ready to start conversion
            pub const NotReady: u32 = 0b0;

            /// 0b1: ADC is ready to start conversion
            pub const Ready: u32 = 0b1;
        }
    }

    /// EOSMP_SLV
    pub mod EOSMP_SLV {
        /// Offset (17 bits)
        pub const offset: u32 = 17;
        /// Mask (1 bit: 1 << 17)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::EOSMP_MST::RW;
    }

    /// End of regular conversion of the slave ADC
    pub mod EOC_SLV {
        /// Offset (18 bits)
        pub const offset: u32 = 18;
        /// Mask (1 bit: 1 << 18)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::EOC_MST::RW;
    }

    /// End of regular sequence flag of the slave ADC
    pub mod EOS_SLV {
        /// Offset (19 bits)
        pub const offset: u32 = 19;
        /// Mask (1 bit: 1 << 19)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::EOS_MST::RW;
    }

    /// Overrun flag of the slave ADC
    pub mod OVR_SLV {
        /// Offset (20 bits)
        pub const offset: u32 = 20;
        /// Mask (1 bit: 1 << 20)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::OVR_MST::RW;
    }

    /// End of injected conversion flag of the slave ADC
    pub mod JEOC_SLV {
        /// Offset (21 bits)
        pub const offset: u32 = 21;
        /// Mask (1 bit: 1 << 21)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::JEOC_MST::RW;
    }

    /// End of injected sequence flag of the slave ADC
    pub mod JEOS_SLV {
        /// Offset (22 bits)
        pub const offset: u32 = 22;
        /// Mask (1 bit: 1 << 22)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::JEOS_MST::RW;
    }

    /// Analog watchdog 1 flag of the slave ADC
    pub mod AWD1_SLV {
        /// Offset (23 bits)
        pub const offset: u32 = 23;
        /// Mask (1 bit: 1 << 23)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::AWD1_MST::RW;
    }

    /// Analog watchdog 2 flag of the slave ADC
    pub mod AWD2_SLV {
        /// Offset (24 bits)
        pub const offset: u32 = 24;
        /// Mask (1 bit: 1 << 24)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::AWD1_MST::RW;
    }

    /// Analog watchdog 3 flag of the slave ADC
    pub mod AWD3_SLV {
        /// Offset (25 bits)
        pub const offset: u32 = 25;
        /// Mask (1 bit: 1 << 25)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::AWD1_MST::RW;
    }

    /// Injected Context Queue Overflow flag of the slave ADC
    pub mod JQOVF_SLV {
        /// Offset (26 bits)
        pub const offset: u32 = 26;
        /// Mask (1 bit: 1 << 26)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        pub use super::JQOVF_MST::RW;
    }
}

/// ADC common control register
pub mod CCR {

    /// Dual ADC mode selection
    pub mod DUAL {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (5 bits: 0b11111 << 0)
        pub const mask: u32 = 0b11111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b00000: Independent mode
            pub const Independent: u32 = 0b00000;

            /// 0b00001: Dual, combined regular simultaneous + injected simultaneous mode
            pub const DualRJ: u32 = 0b00001;

            /// 0b00010: Dual, combined regular simultaneous + alternate trigger mode
            pub const DualRA: u32 = 0b00010;

            /// 0b00011: Dual, combined interleaved mode + injected simultaneous mode
            pub const DualIJ: u32 = 0b00011;

            /// 0b00101: Dual, injected simultaneous mode only
            pub const DualJ: u32 = 0b00101;

            /// 0b00110: Dual, regular simultaneous mode only
            pub const DualR: u32 = 0b00110;

            /// 0b00111: Dual, interleaved mode only
            pub const DualI: u32 = 0b00111;

            /// 0b01001: Dual, alternate trigger mode only
            pub const DualA: u32 = 0b01001;
        }
    }

    /// Delay between 2 sampling phases
    pub mod DELAY {
        /// Offset (8 bits)
        pub const offset: u32 = 8;
        /// Mask (4 bits: 0b1111 << 8)
        pub const mask: u32 = 0b1111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DMA configuration (for multi-ADC mode)
    pub mod DMACFG {
        /// Offset (13 bits)
        pub const offset: u32 = 13;
        /// Mask (1 bit: 1 << 13)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: DMA one shot mode selected
            pub const OneShot: u32 = 0b0;

            /// 0b1: DMA circular mode selected
            pub const Circulator: u32 = 0b1;
        }
    }

    /// Direct memory access mode for multi ADC mode
    pub mod MDMA {
        /// Offset (14 bits)
        pub const offset: u32 = 14;
        /// Mask (2 bits: 0b11 << 14)
        pub const mask: u32 = 0b11 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b00: MDMA mode disabled
            pub const Disabled: u32 = 0b00;

            /// 0b10: MDMA mode enabled for 12 and 10-bit resolution
            pub const Bits12_10: u32 = 0b10;

            /// 0b11: MDMA mode enabled for 8 and 6-bit resolution
            pub const Bits8_6: u32 = 0b11;
        }
    }

    /// ADC clock mode
    pub mod CKMODE {
        /// Offset (16 bits)
        pub const offset: u32 = 16;
        /// Mask (2 bits: 0b11 << 16)
        pub const mask: u32 = 0b11 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b00: Use Kernel Clock adc_ker_ck_input divided by PRESC. Asynchronous to AHB clock
            pub const Asynchronous: u32 = 0b00;

            /// 0b01: Use AHB clock rcc_hclk3. In this case rcc_hclk must equal sys_d1cpre_ck
            pub const SyncDiv1: u32 = 0b01;

            /// 0b10: Use AHB clock rcc_hclk3 divided by 2
            pub const SyncDiv2: u32 = 0b10;

            /// 0b11: Use AHB clock rcc_hclk3 divided by 4
            pub const SyncDiv4: u32 = 0b11;
        }
    }

    /// VREFINT enable
    pub mod VREFEN {
        /// Offset (22 bits)
        pub const offset: u32 = 22;
        /// Mask (1 bit: 1 << 22)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: V_REFINT channel disabled
            pub const Disabled: u32 = 0b0;

            /// 0b1: V_REFINT channel enabled
            pub const Enabled: u32 = 0b1;
        }
    }

    /// Temperature sensor enable
    pub mod TSEN {
        /// Offset (23 bits)
        pub const offset: u32 = 23;
        /// Mask (1 bit: 1 << 23)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: Temperature sensor channel disabled
            pub const Disabled: u32 = 0b0;

            /// 0b1: Temperature sensor channel enabled
            pub const Enabled: u32 = 0b1;
        }
    }

    /// VBAT enable
    pub mod VBATEN {
        /// Offset (24 bits)
        pub const offset: u32 = 24;
        /// Mask (1 bit: 1 << 24)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values
        pub mod RW {

            /// 0b0: V_BAT channel disabled
            pub const Disabled: u32 = 0b0;

            /// 0b1: V_BAT channel enabled
            pub const Enabled: u32 = 0b1;
        }
    }
}

/// ADC common regular data register for dual and triple modes
pub mod CDR {

    /// Regular data of the slave ADC
    pub mod RDATA_SLV {
        /// Offset (16 bits)
        pub const offset: u32 = 16;
        /// Mask (16 bits: 0xffff << 16)
        pub const mask: u32 = 0xffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// Regular data of the master ADC
    pub mod RDATA_MST {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (16 bits: 0xffff << 0)
        pub const mask: u32 = 0xffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}
#[repr(C)]
pub struct RegisterBlock {
    /// ADC Common status register
    pub CSR: RORegister<u32>,

    _reserved1: [u8; 4],

    /// ADC common control register
    pub CCR: RWRegister<u32>,

    /// ADC common regular data register for dual and triple modes
    pub CDR: RORegister<u32>,
}
pub struct ResetValues {
    pub CSR: u32,
    pub CCR: u32,
    pub CDR: u32,
}
#[cfg(not(feature = "nosync"))]
pub struct Instance {
    pub(crate) addr: u32,
    pub(crate) _marker: PhantomData<*const RegisterBlock>,
}
#[cfg(not(feature = "nosync"))]
impl ::core::ops::Deref for Instance {
    type Target = RegisterBlock;
    #[inline(always)]
    fn deref(&self) -> &RegisterBlock {
        unsafe { &*(self.addr as *const _) }
    }
}
#[cfg(feature = "rtic")]
unsafe impl Send for Instance {}

/// Access functions for the ADC1_2 peripheral instance
pub mod ADC1_2 {
    use super::ResetValues;

    #[cfg(not(feature = "nosync"))]
    use super::Instance;

    #[cfg(not(feature = "nosync"))]
    const INSTANCE: Instance = Instance {
        addr: 0x50000300,
        _marker: ::core::marker::PhantomData,
    };

    /// Reset values for each field in ADC1_2
    pub const reset: ResetValues = ResetValues {
        CSR: 0x00000000,
        CCR: 0x00000000,
        CDR: 0x00000000,
    };

    #[cfg(not(feature = "nosync"))]
    #[allow(renamed_and_removed_lints)]
    #[allow(private_no_mangle_statics)]
    #[no_mangle]
    static mut ADC1_2_TAKEN: bool = false;

    /// Safe access to ADC1_2
    ///
    /// This function returns `Some(Instance)` if this instance is not
    /// currently taken, and `None` if it is. This ensures that if you
    /// do get `Some(Instance)`, you are ensured unique access to
    /// the peripheral and there cannot be data races (unless other
    /// code uses `unsafe`, of course). You can then pass the
    /// `Instance` around to other functions as required. When you're
    /// done with it, you can call `release(instance)` to return it.
    ///
    /// `Instance` itself dereferences to a `RegisterBlock`, which
    /// provides access to the peripheral's registers.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn take() -> Option<Instance> {
        external_cortex_m::interrupt::free(|_| unsafe {
            if ADC1_2_TAKEN {
                None
            } else {
                ADC1_2_TAKEN = true;
                Some(INSTANCE)
            }
        })
    }

    /// Release exclusive access to ADC1_2
    ///
    /// This function allows you to return an `Instance` so that it
    /// is available to `take()` again. This function will panic if
    /// you return a different `Instance` or if this instance is not
    /// already taken.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn release(inst: Instance) {
        external_cortex_m::interrupt::free(|_| unsafe {
            if ADC1_2_TAKEN && inst.addr == INSTANCE.addr {
                ADC1_2_TAKEN = false;
            } else {
                panic!("Released a peripheral which was not taken");
            }
        });
    }

    /// Unsafely steal ADC1_2
    ///
    /// This function is similar to take() but forcibly takes the
    /// Instance, marking it as taken irregardless of its previous
    /// state.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub unsafe fn steal() -> Instance {
        ADC1_2_TAKEN = true;
        INSTANCE
    }
}

/// Raw pointer to ADC1_2
///
/// Dereferencing this is unsafe because you are not ensured unique
/// access to the peripheral, so you may encounter data races with
/// other users of this peripheral. It is up to you to ensure you
/// will not cause data races.
///
/// This constant is provided for ease of use in unsafe code: you can
/// simply call for example `write_reg!(gpio, GPIOA, ODR, 1);`.
pub const ADC1_2: *const RegisterBlock = 0x50000300 as *const _;

/// Access functions for the ADC3_4 peripheral instance
pub mod ADC3_4 {
    use super::ResetValues;

    #[cfg(not(feature = "nosync"))]
    use super::Instance;

    #[cfg(not(feature = "nosync"))]
    const INSTANCE: Instance = Instance {
        addr: 0x50000700,
        _marker: ::core::marker::PhantomData,
    };

    /// Reset values for each field in ADC3_4
    pub const reset: ResetValues = ResetValues {
        CSR: 0x00000000,
        CCR: 0x00000000,
        CDR: 0x00000000,
    };

    #[cfg(not(feature = "nosync"))]
    #[allow(renamed_and_removed_lints)]
    #[allow(private_no_mangle_statics)]
    #[no_mangle]
    static mut ADC3_4_TAKEN: bool = false;

    /// Safe access to ADC3_4
    ///
    /// This function returns `Some(Instance)` if this instance is not
    /// currently taken, and `None` if it is. This ensures that if you
    /// do get `Some(Instance)`, you are ensured unique access to
    /// the peripheral and there cannot be data races (unless other
    /// code uses `unsafe`, of course). You can then pass the
    /// `Instance` around to other functions as required. When you're
    /// done with it, you can call `release(instance)` to return it.
    ///
    /// `Instance` itself dereferences to a `RegisterBlock`, which
    /// provides access to the peripheral's registers.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn take() -> Option<Instance> {
        external_cortex_m::interrupt::free(|_| unsafe {
            if ADC3_4_TAKEN {
                None
            } else {
                ADC3_4_TAKEN = true;
                Some(INSTANCE)
            }
        })
    }

    /// Release exclusive access to ADC3_4
    ///
    /// This function allows you to return an `Instance` so that it
    /// is available to `take()` again. This function will panic if
    /// you return a different `Instance` or if this instance is not
    /// already taken.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn release(inst: Instance) {
        external_cortex_m::interrupt::free(|_| unsafe {
            if ADC3_4_TAKEN && inst.addr == INSTANCE.addr {
                ADC3_4_TAKEN = false;
            } else {
                panic!("Released a peripheral which was not taken");
            }
        });
    }

    /// Unsafely steal ADC3_4
    ///
    /// This function is similar to take() but forcibly takes the
    /// Instance, marking it as taken irregardless of its previous
    /// state.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub unsafe fn steal() -> Instance {
        ADC3_4_TAKEN = true;
        INSTANCE
    }
}

/// Raw pointer to ADC3_4
///
/// Dereferencing this is unsafe because you are not ensured unique
/// access to the peripheral, so you may encounter data races with
/// other users of this peripheral. It is up to you to ensure you
/// will not cause data races.
///
/// This constant is provided for ease of use in unsafe code: you can
/// simply call for example `write_reg!(gpio, GPIOA, ODR, 1);`.
pub const ADC3_4: *const RegisterBlock = 0x50000700 as *const _;