slatedb 0.10.0

A cloud native embedded storage engine built on object storage.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
use crate::db_state::{CoreDbState, SsTableId};
use crate::error::SlateDBError;
use crate::iter::KeyValueIterator;
use crate::mem_table::WritableKVTable;
use crate::sst_iter::{SstIterator, SstIteratorOptions};
use crate::tablestore::TableStore;
use crate::types::RowEntry;
use crate::utils::panic_string;
use log::error;
use std::collections::VecDeque;
use std::ops::Range;
use std::sync::Arc;
use tokio::task;
use tokio::task::JoinHandle;

pub(crate) struct WalReplayOptions {
    /// The number of SSTs to preload while replaying
    pub(crate) sst_batch_size: usize,

    /// The minimum number of bytes in each returned table
    /// (save the final table, which may be arbitrarily small).
    pub(crate) min_memtable_bytes: usize,

    /// The maximum number of bytes in each returned table
    pub(crate) max_memtable_bytes: usize,

    /// Options to pass through to underlying SST iterators
    pub(crate) sst_iter_options: SstIteratorOptions,
}

impl Default for WalReplayOptions {
    fn default() -> Self {
        Self {
            sst_batch_size: 4,
            min_memtable_bytes: 64 * 1024 * 1024,
            max_memtable_bytes: 128 * 1024 * 1024,
            sst_iter_options: SstIteratorOptions::default(),
        }
    }
}

pub(crate) struct ReplayedMemtable {
    pub(crate) table: WritableKVTable,
    pub(crate) last_tick: i64,
    pub(crate) last_seq: u64,
    pub(crate) last_wal_id: u64,
}

struct IteratorHolder<T> {
    initialized: bool,
    current_iter: Option<T>,
}

impl<T> IteratorHolder<T> {
    fn new() -> Self {
        Self {
            initialized: false,
            current_iter: None,
        }
    }

    fn is_finished(&self) -> bool {
        self.initialized && self.current_iter.is_none()
    }

    fn advance(&mut self, iterator: Option<T>) {
        self.initialized = true;
        self.current_iter = iterator;
    }
}

struct ReplayedRow {
    row_entry: RowEntry,
    wal_id: u64,
}

pub(crate) struct WalReplayIterator<'a> {
    options: WalReplayOptions,
    wal_id_range: Range<u64>,
    table_store: Arc<TableStore>,
    current_iter: IteratorHolder<SstIterator<'a>>,
    next_iters: VecDeque<JoinHandle<Result<Option<SstIterator<'a>>, SlateDBError>>>,
    overflow_row: Option<ReplayedRow>,
    last_tick: i64,
    last_seq: u64,
    min_seq: u64,
    next_wal_id: u64,
}

impl WalReplayIterator<'_> {
    pub(crate) async fn range(
        wal_id_range: Range<u64>,
        db_state: &CoreDbState,
        options: WalReplayOptions,
        table_store: Arc<TableStore>,
    ) -> Result<Self, SlateDBError> {
        let sst_batch_size = options.sst_batch_size;
        if sst_batch_size < 1 {
            return Err(SlateDBError::InvalidSSTBatchSize(sst_batch_size));
        }

        // load the last seq number from manifest, and use it as the starting seq number to avoid
        // replaying the entries that are already in the L0 SST. while replaying the WALs, we'll
        // update the last seq number to the max seq number, and this final `last_seq` will be passed
        // to the db_state for the further writes.
        let min_seq = db_state.last_l0_seq;
        let last_seq = db_state.last_l0_seq;
        let last_tick = db_state.last_l0_clock_tick;
        let next_wal_id = wal_id_range.start;

        let mut replay_iter = WalReplayIterator {
            options,
            wal_id_range,
            table_store: Arc::clone(&table_store),
            current_iter: IteratorHolder::new(),
            next_iters: VecDeque::new(),
            overflow_row: None,
            last_tick,
            last_seq,
            min_seq,
            next_wal_id,
        };

        for _ in 0..sst_batch_size {
            if !replay_iter.maybe_load_next_iter() {
                break;
            }
        }

        Ok(replay_iter)
    }

    pub(crate) async fn new(
        db_state: &CoreDbState,
        options: WalReplayOptions,
        table_store: Arc<TableStore>,
    ) -> Result<Self, SlateDBError> {
        let wal_id_start = db_state.replay_after_wal_id + 1;
        let wal_id_end = table_store.last_seen_wal_id().await?;
        let wal_id_range = wal_id_start..(wal_id_end + 1);
        Self::range(wal_id_range, db_state, options, table_store).await
    }

    fn maybe_load_next_iter(&mut self) -> bool {
        if !self.wal_id_range.contains(&self.next_wal_id)
            || self.next_iters.len() >= self.options.sst_batch_size
        {
            return false;
        }

        let next_wal_id = self.next_wal_id;
        self.next_wal_id += 1;

        async fn load_iter<'a>(
            wal_id: u64,
            sst_iter_options: SstIteratorOptions,
            table_store: Arc<TableStore>,
        ) -> Result<Option<SstIterator<'a>>, SlateDBError> {
            let sst = table_store.open_sst(&SsTableId::Wal(wal_id)).await?;
            SstIterator::new_owned_initialized(.., sst, Arc::clone(&table_store), sst_iter_options)
                .await
        }

        let handle = task::spawn(load_iter(
            next_wal_id,
            self.options.sst_iter_options,
            Arc::clone(&self.table_store),
        ));
        self.next_iters.push_back(handle);
        true
    }

    async fn advance_current_iter(&mut self) -> Result<(), SlateDBError> {
        let next_iter = if let Some(join_handle) = self.next_iters.pop_front() {
            match join_handle.await {
                Ok(Ok(sst_iter)) => sst_iter,
                Ok(Err(slate_err)) => return Err(slate_err),
                Err(join_err) => {
                    let task_name = format!("wal_replay[{:?}]", self.wal_id_range);
                    if let Ok(panic_err) = join_err.try_into_panic() {
                        error!(
                            "wal_replay task panicked unexpectedly. [task_name={}, panic={}]",
                            task_name,
                            panic_string(&panic_err),
                        );
                        return Err(SlateDBError::BackgroundTaskPanic(task_name));
                    }
                    return Err(SlateDBError::BackgroundTaskCancelled(task_name));
                }
            }
        } else {
            None
        };
        self.current_iter.advance(next_iter);
        Ok(())
    }

    /// Get the next table replayed from the WAL. The next table is guaranteed to
    /// have a size at least as large as [`WalReplayOptions::min_memtable_bytes`]
    /// unless it is the final table replayed from the WAL. The final table may
    /// even be empty since writers use an empty WAL to fence zombie writers.
    /// The empty table must still be returned so that replay logic can account for
    /// the latest WAL ID.
    pub(crate) async fn next(&mut self) -> Result<Option<ReplayedMemtable>, SlateDBError> {
        if self.current_iter.is_finished() && self.overflow_row.is_none() {
            return Ok(None);
        }

        let table = WritableKVTable::new();
        let mut last_wal_id = 0;

        if let Some(overflow_row) = self.overflow_row.take() {
            let row_entry = overflow_row.row_entry;
            if let Some(ts) = row_entry.create_ts {
                self.last_tick = self.last_tick.max(ts);
            }
            self.last_seq = self.last_seq.max(row_entry.seq);
            table.put(row_entry);
            last_wal_id = overflow_row.wal_id;
        }

        while !self.current_iter.is_finished() {
            if let Some(sst_iter) = &mut self.current_iter.current_iter {
                let wal_id = sst_iter.table_id().unwrap_wal_id();
                while let Some(row_entry) = sst_iter.next_entry().await? {
                    // skip the entries that are already in the L0 SST.
                    if row_entry.seq <= self.min_seq {
                        continue;
                    }

                    // if the table is full, we'll overflow the row to the next iterator.
                    let meta = table.metadata();
                    if self.table_store.estimate_encoded_size(
                        meta.entry_num + 1,
                        meta.entries_size_in_bytes + row_entry.estimated_size(),
                    ) > self.options.max_memtable_bytes
                    {
                        self.overflow_row.replace(ReplayedRow { row_entry, wal_id });
                        break;
                    }

                    if let Some(ts) = row_entry.create_ts {
                        self.last_tick = self.last_tick.max(ts);
                    }
                    self.last_seq = self.last_seq.max(row_entry.seq);
                    table.put(row_entry);
                }

                let table_overflowed = self.overflow_row.is_some();
                if !table.is_empty() || !table_overflowed {
                    last_wal_id = wal_id;
                }

                let meta = table.metadata();
                if table_overflowed
                    || self
                        .table_store
                        .estimate_encoded_size(meta.entry_num, meta.entries_size_in_bytes)
                        > self.options.min_memtable_bytes
                {
                    break;
                }
            }

            self.maybe_load_next_iter();
            self.advance_current_iter().await?
        }

        if last_wal_id > 0 {
            Ok(Some(ReplayedMemtable {
                table,
                last_tick: self.last_tick,
                last_seq: self.last_seq,
                last_wal_id,
            }))
        } else {
            Ok(None)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{WalReplayIterator, WalReplayOptions};
    use crate::bytes_range::BytesRange;
    use crate::db_state::{CoreDbState, SsTableId};
    use crate::iter::{IterationOrder, KeyValueIterator};
    use crate::mem_table::WritableKVTable;
    use crate::object_stores::ObjectStores;
    use crate::proptest_util::{rng, sample};
    use crate::sst::SsTableFormat;
    use crate::tablestore::TableStore;
    use crate::types::RowEntry;
    use crate::{error::SlateDBError, test_utils};
    use bytes::Bytes;
    use object_store::memory::InMemory;
    use object_store::path::Path;
    use object_store::ObjectStore;
    use proptest::test_runner::TestRng;
    use rand::Rng;
    use std::cmp::min;
    use std::collections::btree_map::Iter;
    use std::collections::BTreeMap;
    use std::sync::Arc;

    #[tokio::test]
    async fn should_replay_empty_wal() {
        let table_store = test_table_store();
        write_empty_wal(1, Arc::clone(&table_store)).await.unwrap();
        let mut replay_iter = WalReplayIterator::new(
            &CoreDbState::new(),
            WalReplayOptions::default(),
            Arc::clone(&table_store),
        )
        .await
        .unwrap();

        let Some(table) = replay_iter.next().await.unwrap() else {
            panic!("Expected empty table to be returned from iterator")
        };

        assert_eq!(table.last_wal_id, 1);
        assert_eq!(table.last_seq, 0);
        assert!(table.table.is_empty());
        assert_eq!(table.last_tick, i64::MIN);
        assert!(replay_iter.next().await.unwrap().is_none());
    }

    #[tokio::test]
    async fn should_replay_all_entries() {
        let table_store = test_table_store();
        let mut rng = rng::new_test_rng(None);
        let entries = sample::table(&mut rng, 1000, 10);
        let next_wal_id = write_wals(&entries, 1, &mut rng, 200, Arc::clone(&table_store))
            .await
            .unwrap();

        let mut replay_iter = WalReplayIterator::new(
            &CoreDbState::new(),
            WalReplayOptions::default(),
            Arc::clone(&table_store),
        )
        .await
        .unwrap();

        let Some(replayed_table) = replay_iter.next().await.unwrap() else {
            panic!("Expected table to be returned from iterator")
        };
        assert_eq!(replayed_table.last_wal_id + 1, next_wal_id);

        let mut imm_table_iter = replayed_table.table.table().iter();
        test_utils::assert_ranged_kv_scan(
            &entries,
            &BytesRange::from(..),
            IterationOrder::Ascending,
            &mut imm_table_iter,
        )
        .await;
        assert!(replay_iter.next().await.unwrap().is_none());
    }

    #[tokio::test]
    async fn should_enforce_min_memtable_bytes() {
        let table_store = test_table_store();
        let mut rng = rng::new_test_rng(None);
        let num_entries = 5000;
        let entries = sample::table(&mut rng, num_entries, 10);
        let next_wal_id = write_wals(&entries, 1, &mut rng, 200, Arc::clone(&table_store))
            .await
            .unwrap();

        let min_memtable_bytes = 1024;
        let mut replay_iter = WalReplayIterator::new(
            &CoreDbState::new(),
            WalReplayOptions {
                min_memtable_bytes,
                ..WalReplayOptions::default()
            },
            Arc::clone(&table_store),
        )
        .await
        .unwrap();

        let full_replayed_table = WritableKVTable::new();
        let mut last_wal_id = 0;
        let mut replayed_entries = 0;

        while let Some(replayed_table) = replay_iter.next().await.unwrap() {
            last_wal_id = replayed_table.last_wal_id;
            replayed_entries += replayed_table.table.metadata().entries_size_in_bytes;

            // The last table may be less than `min_memtable_bytes`
            if replayed_entries < num_entries {
                assert!(replayed_table.table.metadata().entries_size_in_bytes > min_memtable_bytes);
            }

            let mut iter = replayed_table.table.table().iter();
            while let Some(next_entry) = iter.next_entry().await.unwrap() {
                full_replayed_table.put(next_entry);
            }
        }
        assert_eq!(last_wal_id + 1, next_wal_id);

        let mut full_replayed_iter = full_replayed_table.table().iter();
        test_utils::assert_ranged_kv_scan(
            &entries,
            &BytesRange::from(..),
            IterationOrder::Ascending,
            &mut full_replayed_iter,
        )
        .await;
    }

    #[tokio::test]
    async fn should_enforce_max_memtable_bytes() {
        let table_store = test_table_store();
        let mut rng = rng::new_test_rng(None);
        let num_entries = 5000;
        let entries = sample::table(&mut rng, num_entries, 10);
        let next_wal_id = write_wals(&entries, 1, &mut rng, 200, Arc::clone(&table_store))
            .await
            .unwrap();

        let max_memtable_bytes = 1024;
        let mut replay_iter = WalReplayIterator::new(
            &CoreDbState::new(),
            WalReplayOptions {
                min_memtable_bytes: usize::MAX,
                max_memtable_bytes,
                ..WalReplayOptions::default()
            },
            Arc::clone(&table_store),
        )
        .await
        .unwrap();

        let full_replayed_table = WritableKVTable::new();
        let mut last_wal_id = 0;

        while let Some(replayed_table) = replay_iter.next().await.unwrap() {
            last_wal_id = replayed_table.last_wal_id;
            assert!(replayed_table.table.metadata().entries_size_in_bytes <= max_memtable_bytes);

            let mut iter = replayed_table.table.table().iter();
            while let Some(next_entry) = iter.next_entry().await.unwrap() {
                full_replayed_table.put(next_entry);
            }
        }
        assert_eq!(last_wal_id + 1, next_wal_id);

        let mut full_replayed_iter = full_replayed_table.table().iter();
        test_utils::assert_ranged_kv_scan(
            &entries,
            &BytesRange::from(..),
            IterationOrder::Ascending,
            &mut full_replayed_iter,
        )
        .await;
    }

    #[tokio::test]
    async fn should_only_replay_wals_after_last_l0_flushed_wal_id() {
        let table_store = test_table_store();
        let mut rng = rng::new_test_rng(None);
        let compacted_entries = sample::table(&mut rng, 1000, 10);
        let mut next_wal_id = 1;

        next_wal_id = write_wals(
            &compacted_entries,
            next_wal_id,
            &mut rng,
            200,
            Arc::clone(&table_store),
        )
        .await
        .unwrap();

        let replay_after_wal_id = next_wal_id - 1;
        let non_compacted_entries = sample::table(&mut rng, 1000, 10);
        next_wal_id = write_wals(
            &non_compacted_entries,
            next_wal_id,
            &mut rng,
            200,
            Arc::clone(&table_store),
        )
        .await
        .unwrap();

        let mut db_state = CoreDbState::new();
        db_state.replay_after_wal_id = replay_after_wal_id;
        db_state.next_wal_sst_id = replay_after_wal_id + 1;

        let mut replay_iter = WalReplayIterator::new(
            &db_state,
            WalReplayOptions::default(),
            Arc::clone(&table_store),
        )
        .await
        .unwrap();

        let Some(replayed_table) = replay_iter.next().await.unwrap() else {
            panic!("Expected table to be returned from iterator")
        };
        assert_eq!(replayed_table.last_wal_id + 1, next_wal_id);

        let mut imm_table_iter = replayed_table.table.table().iter();
        test_utils::assert_ranged_kv_scan(
            &non_compacted_entries,
            &BytesRange::from(..),
            IterationOrder::Ascending,
            &mut imm_table_iter,
        )
        .await;
        assert!(replay_iter.next().await.unwrap().is_none());
    }

    #[tokio::test]
    async fn should_replay_wals_after_min_seq() {
        let table_store = test_table_store();
        let mut rng = rng::new_test_rng(None);
        let entries = sample::table(&mut rng, 1000, 10);
        let next_wal_id = write_wals(&entries, 1, &mut rng, 200, Arc::clone(&table_store))
            .await
            .unwrap();

        // Set min_seq to skip the first half of entries
        let min_seq = 500;
        let mut db_state = CoreDbState::new();
        db_state.last_l0_seq = min_seq;
        db_state.last_l0_clock_tick = 0;

        let mut replay_iter = WalReplayIterator::new(
            &db_state,
            WalReplayOptions::default(),
            Arc::clone(&table_store),
        )
        .await
        .unwrap();

        let Some(replayed_table) = replay_iter.next().await.unwrap() else {
            panic!("Expected table to be returned from iterator")
        };
        assert_eq!(replayed_table.last_wal_id + 1, next_wal_id);

        // Verify that only entries with seq > min_seq are replayed
        let mut imm_table_iter = replayed_table.table.table().iter();
        let mut replayed_entries = BTreeMap::new();
        let mut total = 0;
        while let Some(entry) = imm_table_iter.next_entry().await.unwrap() {
            assert!(entry.seq > min_seq);
            replayed_entries.insert(entry.key.clone(), entry.value);
            total += 1;
        }
        assert_eq!(total, 500);
    }

    fn test_table_store() -> Arc<TableStore> {
        let object_store: Arc<dyn ObjectStore> = Arc::new(InMemory::new());
        let path = Path::from("/tmp/test_kv_store");
        Arc::new(TableStore::new(
            ObjectStores::new(object_store.clone(), None),
            SsTableFormat::default(),
            path.clone(),
            None,
        ))
    }

    /// Write a sequence of WALs with a random (bounded) number of entries.
    /// Return the ID of the next WAL.
    async fn write_wals(
        entries: &BTreeMap<Bytes, Bytes>,
        next_wal_id: u64,
        rng: &mut TestRng,
        max_wal_entries: usize,
        table_store: Arc<TableStore>,
    ) -> Result<u64, SlateDBError> {
        let mut iter = entries.iter();
        let mut next_seq = 1;
        let mut total_wal_entries = 0;
        let mut next_wal_id = next_wal_id;

        while total_wal_entries < entries.len() {
            let wal_entries = min(
                entries.len() - total_wal_entries,
                rng.random_range(0..max_wal_entries),
            );
            next_seq = write_wal(
                next_wal_id,
                next_seq,
                &mut iter,
                wal_entries,
                Arc::clone(&table_store),
            )
            .await?;
            next_wal_id += 1;
            total_wal_entries += wal_entries;
        }
        Ok(next_wal_id)
    }

    async fn write_empty_wal(
        wal_id: u64,
        table_store: Arc<TableStore>,
    ) -> Result<(), SlateDBError> {
        let empty_entries = BTreeMap::new();
        let mut empty_iter = empty_entries.iter();
        let _ = write_wal(wal_id, 0, &mut empty_iter, 0, table_store).await?;
        Ok(())
    }

    async fn write_wal(
        wal_id: u64,
        next_seq: u64,
        entries: &mut Iter<'_, Bytes, Bytes>,
        max_entries: usize,
        table_store: Arc<TableStore>,
    ) -> Result<u64, SlateDBError> {
        let mut writer = table_store.table_writer(SsTableId::Wal(wal_id));
        let mut next_seq = next_seq;
        while next_seq < next_seq + (max_entries as u64) {
            let Some((key, value)) = entries.next() else {
                break;
            };
            writer
                .add(RowEntry::new_value(key, value, next_seq))
                .await?;
            next_seq += 1;
        }
        writer.close().await?;
        Ok(next_seq)
    }
}