slatedb 0.10.0

A cloud native embedded storage engine built on object storage.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
use async_trait::async_trait;
use std::cmp::Reverse;
use std::collections::BTreeMap;
use std::sync::Arc;
use std::time::Duration;

use crate::clock::SystemClock;
use crate::error::SlateDBError;
use crate::iter::KeyValueIterator;
use crate::seq_tracker::{FindOption, SequenceTracker};
use crate::types::ValueDeletable::Tombstone;
use crate::types::{RowEntry, ValueDeletable};

/// A retention iterator that filters entries based on retention time and handles expired/tombstoned keys.
///
/// This iterator implements a retention policy by filtering out entries that are older than a specified
/// retention period. It assumes the upstream iterator provides entries in decreasing order of sequence numbers
/// (newest first) and groups entries by key to apply retention filtering across all versions of each key.
pub(crate) struct RetentionIterator<T: KeyValueIterator> {
    /// The upstream iterator providing entries in decreasing order of sequence numbers
    inner: T,
    /// Retention time duration. Entries with create_ts older than (current_time - retention_time)
    /// will be filtered out (except the latest version)
    retention_timeout: Option<Duration>,
    /// The min sequence number to retain. It's taken from the minimum sequence number of the
    /// active snapshots.
    retention_min_seq: Option<u64>,
    /// Buffer for collecting and processing multiple versions of the same key
    buffer: RetentionBuffer,
    /// Whether to filter out tombstones
    filter_tombstone: bool,
    /// The current timestamp when the compaction started. This is a local timestamp,
    /// and used on handling expired entries.
    compaction_start_ts: i64,
    /// The system clock used to get the current timestamp. This is used on handling retention.
    system_clock: Arc<dyn SystemClock>,
    /// Historical sequence metadata used to translate sequence numbers into wall-clock timestamps.
    sequence_tracker: Arc<SequenceTracker>,
    /// The total number of bytes processed so far
    total_bytes_processed: u64,
}

impl<T: KeyValueIterator> RetentionIterator<T> {
    /// Creates a new retention iterator with the specified retention policy
    pub(crate) async fn new(
        inner: T,
        retention_timeout: Option<Duration>,
        retention_min_seq: Option<u64>,
        filter_tombstone: bool,
        compaction_start_ts: i64,
        system_clock: Arc<dyn SystemClock>,
        sequence_tracker: Arc<SequenceTracker>,
    ) -> Result<Self, SlateDBError> {
        Ok(Self {
            inner,
            retention_timeout,
            retention_min_seq,
            filter_tombstone,
            compaction_start_ts,
            system_clock,
            sequence_tracker,
            buffer: RetentionBuffer::new(),
            total_bytes_processed: 0,
        })
    }

    /// Applies retention filtering to a collection of versions for the same key
    ///
    /// This function implements the following retention logic:
    ///
    /// - Filters out older versions that exceed the retention period, but keep the latest version (unless tombstone is filtered out)
    /// - Transform expired entries into tombstones, and recycle the tombstones in the tail if filter_tombstone is true.
    fn apply_retention_filter(
        versions: BTreeMap<Reverse<u64>, RowEntry>,
        compaction_start_ts: i64,
        system_clock: Arc<dyn SystemClock>,
        retention_timeout: Option<Duration>,
        retention_min_seq: Option<u64>,
        filter_tombstone: bool,
        sequence_tracker: Arc<SequenceTracker>,
    ) -> BTreeMap<Reverse<u64>, RowEntry> {
        let mut filtered_versions = BTreeMap::new();
        let current_system_ts = system_clock.now().timestamp_millis();
        for (_, entry) in versions.into_iter() {
            // filter out any expired entries -- eventually we can consider
            // abstracting this away into generic, pluggable compaction filters
            // but for now we do it inline
            let is_merge = matches!(&entry.value, ValueDeletable::Merge(_));
            let entry = match entry.expire_ts.as_ref() {
                Some(expire_ts) if *expire_ts <= compaction_start_ts => {
                    if is_merge {
                        // just skip expired merge entries rather than write a tombstone
                        // as earlier merges may still be un-expired
                        continue;
                    }
                    // for values, insert a tombstone instead of just filtering out the
                    // value in the iterator because this may otherwise "revive"
                    // an older version of the KV pair that has a larger TTL in
                    // a lower level of the LSM tree
                    RowEntry {
                        key: entry.key,
                        value: Tombstone,
                        seq: entry.seq,
                        expire_ts: None,
                        create_ts: entry.create_ts,
                    }
                }
                _ => entry,
            };

            let entry_seq = entry.seq;

            // always keep the entry with latest version.
            filtered_versions.insert(Reverse(entry.seq), entry);

            // For older versions, we keep iterating until we find the first entry outside the retention
            // window (by both time AND seq). This entry serves as a "boundary value" for snapshot reads.
            //
            // Example: Why we need the boundary value
            //   1. set a = 'v0' (seq=1)
            //   2. set a = 'v1' (seq=2)
            //   3. set b = 'v2' (seq=3)
            //   4. create snapshot s1 (captures seq=3, so min_retention_seq=3)
            //   5. delete a (seq=4, creates tombstone)
            //   6. run compaction (with retention_min_seq=3)
            //
            // For key 'a', the compaction will see:
            //   - tombstone (seq=4) -> KEEP (latest version, AND seq > min_seq)
            //   - 'v1' (seq=2) -> KEEP (boundary: first entry with seq <= min_seq)
            //   - 'v0' (seq=1) -> DROP (older than boundary)
            //
            // The boundary value (seq=2) is crucial: if snapshot s1 reads key 'a', it needs to find
            // a version at or before seq=3. Without keeping seq=2, the snapshot would incorrectly
            // see the tombstone (seq=4) which didn't exist when the snapshot was created.
            //
            // Note: We use OR logic below because we keep iterating as long as the entry is within
            // EITHER the time window OR the seq window. We only stop when it's outside BOTH.
            let continue_retain_by_time = retention_timeout
                .map(|timeout| {
                    let create_sys_ts = sequence_tracker
                        // Use RoundUp to conservatively estimate creation time. For example:
                        // - If retention window is 10min and current time is 12:00:00
                        // - And sequence tracker has timestamps at 11:49:30 and 11:50:30
                        // - RoundUp will use 11:50:30 (later timestamp) to avoid over-aggressive filtering
                        .find_ts(entry_seq, FindOption::RoundUp)
                        .map(|ts| ts.timestamp_millis())
                        // if the sequence number is greater than the last recorded sequence
                        // number we just assume that it was produced now (so it effectively
                        // should be kept in the filtered results)
                        .unwrap_or(current_system_ts);
                    create_sys_ts + (timeout.as_millis() as i64) > current_system_ts
                })
                .unwrap_or(false);
            let continue_retain_by_seq = retention_min_seq
                .map(|min_seq| entry_seq > min_seq)
                .unwrap_or(false);

            let continue_retain = continue_retain_by_time || continue_retain_by_seq || is_merge;
            if !continue_retain {
                // if we find the first non-merge entry that's neither in retention window by time
                // nor by seq we should break the loop to filter out the earlier versions of the
                // same key.
                break;
            }
        }

        if filter_tombstone {
            // remove the tombstones in the tail
            while filtered_versions
                .iter()
                .last()
                .map(|(_, entry)| entry.value.is_tombstone())
                .unwrap_or(false)
            {
                filtered_versions.pop_last();
            }
        }

        filtered_versions
    }

    pub(crate) fn total_bytes_processed(&self) -> u64 {
        self.total_bytes_processed
    }
}

#[async_trait]
impl<T: KeyValueIterator> KeyValueIterator for RetentionIterator<T> {
    async fn init(&mut self) -> Result<(), SlateDBError> {
        self.inner.init().await?;
        Ok(())
    }

    /// Retrieves the next entry from the retention iterator
    ///
    /// This method implements a state machine that:
    /// 1. Collects all versions of the current key from the upstream iterator
    /// 2. Applies retention filtering to the collected versions
    /// 3. Returns filtered entries one by one in sequence number order (newest first)
    ///
    /// The state machine ensures efficient processing by batching operations for each key.
    async fn next_entry(&mut self) -> Result<Option<RowEntry>, SlateDBError> {
        loop {
            match self.buffer.state() {
                RetentionBufferState::NeedPush => {
                    // Fetch next entry from upstream iterator
                    let entry = match self.inner.next_entry().await? {
                        Some(entry) => {
                            self.total_bytes_processed +=
                                entry.key.len() as u64 + entry.value.len() as u64;
                            entry
                        }
                        None => {
                            // No more entries from upstream, mark end of input
                            self.buffer.mark_end_of_input();
                            continue;
                        }
                    };

                    // Add entry to buffer (may trigger state change if key changes)
                    self.buffer.push(entry);
                }
                RetentionBufferState::NeedPopAndContinue => {
                    // Return next filtered entry, continue processing current key
                    match self.buffer.pop() {
                        Some(entry) => return Ok(Some(entry)),
                        None => continue, // Buffer empty, need to collect more entries
                    }
                }
                RetentionBufferState::NeedPopAndQuit => {
                    // Return next filtered entry, no more entries available
                    return Ok(self.buffer.pop());
                }
                RetentionBufferState::NeedProcess => {
                    // Apply retention filtering to collected versions
                    let compaction_start_ts = self.compaction_start_ts;
                    let retention_timeout = self.retention_timeout;
                    let retention_min_seq = self.retention_min_seq;
                    let system_clock = self.system_clock.clone();
                    self.buffer.process_retention(|versions| {
                        Self::apply_retention_filter(
                            versions,
                            compaction_start_ts,
                            system_clock,
                            retention_timeout,
                            retention_min_seq,
                            self.filter_tombstone,
                            self.sequence_tracker.clone(),
                        )
                    })?;
                }
            }
        }
    }

    /// Seeks to the specified key in the upstream iterator
    ///
    /// Clears the internal buffer and resets the iterator state to begin processing
    /// from the specified key position.
    async fn seek(&mut self, next_key: &[u8]) -> Result<(), SlateDBError> {
        self.buffer.clear();
        self.inner.seek(next_key).await?;
        Ok(())
    }
}

/// A buffer that collects and manages multiple versions of the same key from an iterator.
///
/// This buffer implements a state machine to efficiently collect all versions of a key
/// before applying retention filtering. It maintains the current key's versions and
/// a preview of the next key's first entry.
struct RetentionBuffer {
    /// All versions of the current key being processed, ordered by sequence number (latest first)
    current_versions: BTreeMap<Reverse<u64>, RowEntry>,
    /// The first entry of the next key (if available). This is used to note the current key has
    /// been exhausted, and await to process the current key versions.
    next_entry: Option<RowEntry>,
    /// After the current key versions have been exhausted, process_retention will be called, and
    /// this flag will be set to true.
    processed: bool,
    /// Whether the upstream iterator has reached end of input.
    end_of_input: bool,
}

/// This enum drives the behavior of the retention iterator's main loop, determining what action
/// should be taken next.
#[allow(clippy::enum_variant_names)]
#[derive(Debug)]
enum RetentionBufferState {
    /// Need to fetch and push the next entry from upstream iterator.
    NeedPush,
    /// Need to pop the next filtered entry and continue processing current key
    NeedPopAndContinue,
    /// Need to pop the next filtered entry and quit (end of input reached)
    NeedPopAndQuit,
    /// Need to apply retention filtering to collected versions
    NeedProcess,
}

impl RetentionBuffer {
    /// Creates a new empty retention buffer
    fn new() -> Self {
        Self {
            current_versions: BTreeMap::new(),
            next_entry: None,
            processed: false,
            end_of_input: false,
        }
    }

    /// Determines the current state of the buffer state machine
    ///
    /// This method implements the state transition logic based on:
    /// - Whether current versions have been processed
    /// - Whether end of input has been reached
    /// - Whether a next entry is available
    ///
    /// # Returns
    /// The current state indicating what action should be taken next
    fn state(&self) -> RetentionBufferState {
        if self.processed {
            if self.end_of_input {
                return RetentionBufferState::NeedPopAndQuit;
            } else {
                return RetentionBufferState::NeedPopAndContinue;
            }
        }
        if self.end_of_input || self.next_entry.is_some() {
            return RetentionBufferState::NeedProcess;
        }
        RetentionBufferState::NeedPush
    }

    /// Clears the buffer and resets all state flags
    ///
    /// Called when seeking to a new position in the iterator.
    fn clear(&mut self) {
        self.current_versions.clear();
        self.next_entry = None;
        self.processed = false;
        self.end_of_input = false;
    }

    /// Marks that the upstream iterator has reached end of input
    ///
    /// This triggers state transitions to handle the final processing of remaining entries.
    fn mark_end_of_input(&mut self) {
        self.end_of_input = true;
    }

    /// Appends an entry to the buffer
    ///
    /// This method handles key transitions by detecting when a new key is encountered.
    /// It maintains the invariant that all versions of the current key are collected
    /// before moving to the next key.
    fn push(&mut self, entry: RowEntry) {
        let current_key = match self.current_versions.values().next() {
            Some(entry) => entry.key.clone(),
            None => {
                // If current versions are empty, this is the first entry
                self.current_versions.insert(Reverse(entry.seq), entry);
                return;
            }
        };

        // Different key detected - store as next entry and signal key transition
        if entry.key != current_key {
            self.next_entry = Some(entry);
            return;
        }

        // Same key - append to current versions
        self.current_versions.insert(Reverse(entry.seq), entry);
    }

    /// Applies retention filtering to the collected versions
    fn process_retention(
        &mut self,
        f: impl FnOnce(BTreeMap<Reverse<u64>, RowEntry>) -> BTreeMap<Reverse<u64>, RowEntry>,
    ) -> Result<(), SlateDBError> {
        if self.processed {
            return Ok(());
        }
        let current_versions = std::mem::take(&mut self.current_versions);
        let processed_versions = f(current_versions);
        self.current_versions = processed_versions;
        self.processed = true;
        Ok(())
    }

    /// Pops the next entry from the current versions
    /// When current versions are exhausted, it promotes the next entry to become the new current key.
    fn pop(&mut self) -> Option<RowEntry> {
        match self.current_versions.pop_first() {
            Some((_, entry)) => Some(entry),
            None => {
                // Current versions exhausted - promote next entry to current versions
                let next_entry = self.next_entry.take();
                if let Some(entry) = next_entry {
                    self.current_versions.insert(Reverse(entry.seq), entry);
                    self.processed = false;
                    None // Signal that we need to continue processing
                } else if self.end_of_input {
                    // No next entry and at end of input - we're done
                    None
                } else {
                    // No next entry but not at end of input - this shouldn't happen
                    unreachable!("No next entry but not at end of input - this shouldn't happen");
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::types::RowEntry;
    use rstest::rstest;

    #[cfg(feature = "test-util")]
    use crate::seq_tracker::TrackedSeq;

    struct RetentionBufferTestCase {
        name: &'static str,
        build: fn() -> RetentionBuffer,
        expected_current_versions_len: usize,
        expected_has_next_entry: bool,
        expected_processed: bool,
        expected_end_of_input: bool,
        expected_state: RetentionBufferState,
    }

    // Table-driven test for complex scenarios
    #[rstest]
    #[case(RetentionBufferTestCase {
        name: "empty_buffer",
        build: || RetentionBuffer::new(),
        expected_current_versions_len: 0,
        expected_has_next_entry: false,
        expected_processed: false,
        expected_end_of_input: false,
        expected_state: RetentionBufferState::NeedPush,
    })]
    #[case(RetentionBufferTestCase {
        name: "single_entry",
        build: || {
            let mut buffer = RetentionBuffer::new();
            buffer.push(RowEntry::new_value(b"key1", b"value1", 1));
            buffer
        },
        expected_current_versions_len: 1,
        expected_has_next_entry: false,
        expected_processed: false,
        expected_end_of_input: false,
        expected_state: RetentionBufferState::NeedPush,
    })]
    #[case(RetentionBufferTestCase {
        name: "key_transition",
        build: || {
            let mut buffer = RetentionBuffer::new();
            buffer.push(RowEntry::new_value(b"key1", b"value1", 1));
            buffer.push(RowEntry::new_value(b"key2", b"value2", 2));
            buffer
        },
        expected_current_versions_len: 1,
        expected_has_next_entry: true,
        expected_processed: false,
        expected_end_of_input: false,
        expected_state: RetentionBufferState::NeedProcess,
    })]
    #[case(RetentionBufferTestCase {
        name: "processed_state",
        build: || {
            let mut buffer = RetentionBuffer::new();
            buffer.push(RowEntry::new_value(b"key1", b"value1", 1));
            buffer.process_retention(|versions| versions).unwrap();
            buffer
        },
        expected_current_versions_len: 1,
        expected_has_next_entry: false,
        expected_processed: true,
        expected_end_of_input: false,
        expected_state: RetentionBufferState::NeedPopAndContinue,
    })]
    #[case(RetentionBufferTestCase {
        name: "end_of_input_processed",
        build: || {
            let mut buffer = RetentionBuffer::new();
            buffer.push(RowEntry::new_value(b"key1", b"value1", 1));
            buffer.mark_end_of_input();
            buffer.process_retention(|versions| versions).unwrap();
            buffer
        },
        expected_current_versions_len: 1,
        expected_has_next_entry: false,
        expected_processed: true,
        expected_end_of_input: true,
        expected_state: RetentionBufferState::NeedPopAndQuit,
    })]
    #[case(RetentionBufferTestCase {
        name: "multiple_versions_same_key",
        build: || {
            let mut buffer = RetentionBuffer::new();
            buffer.push(RowEntry::new_value(b"key1", b"value1", 1));
            buffer.push(RowEntry::new_value(b"key1", b"value2", 2));
            buffer.push(RowEntry::new_value(b"key1", b"value3", 3));
            buffer
        },
        expected_current_versions_len: 3,
        expected_has_next_entry: false,
        expected_processed: false,
        expected_end_of_input: false,
        expected_state: RetentionBufferState::NeedPush,
    })]
    #[case(RetentionBufferTestCase {
        name: "pop_operation",
        build: || {
            let mut buffer = RetentionBuffer::new();
            buffer.push(RowEntry::new_value(b"key1", b"value1", 1));
            buffer.push(RowEntry::new_value(b"key1", b"value2", 2));
            buffer.process_retention(|versions| versions).unwrap();
            buffer.pop(); // Execute pop operation in the build function
            buffer
        },
        expected_current_versions_len: 1,
        expected_has_next_entry: false,
        expected_processed: true,
        expected_end_of_input: false,
        expected_state: RetentionBufferState::NeedPopAndContinue,
    })]
    #[case(RetentionBufferTestCase {
        name: "clear_operation",
        build: || {
            let mut buffer = RetentionBuffer::new();
            buffer.push(RowEntry::new_value(b"key1", b"value1", 1));
            buffer.push(RowEntry::new_value(b"key2", b"value2", 2));
            buffer.process_retention(|versions| versions).unwrap();
            buffer.mark_end_of_input();
            buffer.clear(); // Execute clear operation in the build function
            buffer
        },
        expected_current_versions_len: 0,
        expected_has_next_entry: false,
        expected_processed: false,
        expected_end_of_input: false,
        expected_state: RetentionBufferState::NeedPush,
    })]
    #[case(RetentionBufferTestCase {
        name: "tombstone_entries",
        build: || {
            let mut buffer = RetentionBuffer::new();
            buffer.push(RowEntry::new_value(b"key1", b"value1", 1));
            buffer.push(RowEntry::new_tombstone(b"key1", 2));
            buffer
        },
        expected_current_versions_len: 2,
        expected_has_next_entry: false,
        expected_processed: false,
        expected_end_of_input: false,
        expected_state: RetentionBufferState::NeedPush,
    })]
    #[case(RetentionBufferTestCase {
        name: "merge_entries",
        build: || {
            let mut buffer = RetentionBuffer::new();
            buffer.push(RowEntry::new_value(b"key1", b"value1", 1));
            buffer.push(RowEntry::new_merge(b"key1", b"merge1", 2));
            buffer.push(RowEntry::new_tombstone(b"key1", 3));
            buffer
        },
        expected_current_versions_len: 3,
        expected_has_next_entry: false,
        expected_processed: false,
        expected_end_of_input: false,
        expected_state: RetentionBufferState::NeedPush,
    })]
    fn test_retention_buffer_table_driven(#[case] test_case: RetentionBufferTestCase) {
        let buffer = (test_case.build)();

        // Verify expected state
        assert_eq!(
            buffer.current_versions.len(),
            test_case.expected_current_versions_len,
            "Test case '{}': current_versions_len mismatch",
            test_case.name
        );
        assert_eq!(
            buffer.next_entry.is_some(),
            test_case.expected_has_next_entry,
            "Test case '{}': has_next_entry mismatch",
            test_case.name
        );
        assert_eq!(
            buffer.processed, test_case.expected_processed,
            "Test case '{}': processed mismatch",
            test_case.name
        );
        assert_eq!(
            buffer.end_of_input, test_case.expected_end_of_input,
            "Test case '{}': end_of_input mismatch",
            test_case.name
        );

        // Check state using proper comparison
        let current_state = buffer.state();
        assert_eq!(
            std::mem::discriminant(&current_state),
            std::mem::discriminant(&test_case.expected_state),
            "Test case '{}': state mismatch, expected {:?}, got {:?}",
            test_case.name,
            test_case.expected_state,
            current_state
        );
    }

    #[cfg(feature = "test-util")]
    struct RetentionIteratorTestCase {
        name: &'static str,
        input_entries: Vec<RowEntry>,
        retention_timeout: Option<Duration>,
        retention_min_seq: Option<u64>,
        system_clock_ts: i64,
        compaction_start_ts: i64,
        expected_entries: Vec<RowEntry>,
        filter_tombstone: bool,
    }

    // Table-driven test for retention iterator scenarios
    #[rstest]
    #[case(RetentionIteratorTestCase {
        name: "empty_iterator",
        input_entries: vec![],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "single_entry_within_retention",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(950), // 50 seconds ago
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(950)
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "single_entry_outside_retention",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(500), // 500 seconds ago
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(500), // 500 + 3600 = 4100 >= 1000, so kept
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "multiple_versions_same_key_within_retention",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950), // Latest
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900), // Within retention
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850), // Within retention
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950),
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900),
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850),
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "multiple_versions_same_key_mixed_retention",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950), // Latest (always kept)
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(500), // Outside retention
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850), // Within retention
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950),
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(500), // 500 + 3600 = 4100 >= 1000, so kept
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850),
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "tombstone_entries",
        input_entries: vec![
            RowEntry::new_tombstone(b"key1", 3).with_create_ts(950), // Latest
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(500), // Outside retention
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850), // Within retention
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_tombstone(b"key1", 3).with_create_ts(950),
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(500), // 500 + 3600 = 4100 >= 1000, so kept
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850),
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "merge_entries",
        input_entries: vec![
            RowEntry::new_merge(b"key1", b"merge3", 3).with_create_ts(950), // Latest
            RowEntry::new_merge(b"key1", b"merge2", 2).with_create_ts(500), // Outside retention
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850), // Within retention
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_merge(b"key1", b"merge3", 3).with_create_ts(950),
            RowEntry::new_merge(b"key1", b"merge2", 2).with_create_ts(500), // 500 + 3600 = 4100 >= 1000, so kept
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850),
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "zero_retention_time",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(1000), // Current time
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(999),  // 1 second ago
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(998), // 2 seconds ago
        ],
        retention_timeout: Some(Duration::from_secs(0)), // No retention
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(1000), // Latest always kept
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "very_long_retention_time",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(100), // Very old
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(50),  // Very old
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(10),  // Very old
        ],
        retention_timeout: Some(Duration::from_secs(1000)), // Very long retention
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(100),
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(50),
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(10),
        ],
        filter_tombstone: false,
    })]
    // Test cases for expire_ts handling
    #[case(RetentionIteratorTestCase {
        name: "expired_entry_converted_to_tombstone",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(950).with_expire_ts(900), // Expired
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_tombstone(b"key1", 1).with_create_ts(950), // Converted to tombstone
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "not_expired_entry_kept_as_is",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(950).with_expire_ts(1100), // Not expired
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(950).with_expire_ts(1100), // Kept as is
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "mixed_expired_and_not_expired_entries",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950).with_expire_ts(1100), // Not expired
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900).with_expire_ts(950), // Expired
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850).with_expire_ts(1200), // Not expired
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950).with_expire_ts(1100), // Not expired
            RowEntry::new_tombstone(b"key1", 2).with_create_ts(900), // Converted to tombstone
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850).with_expire_ts(1200), // Not expired
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "expire_ts_equals_compaction_start_ts",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(950).with_expire_ts(1000), // Expired (equal)
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_tombstone(b"key1", 1).with_create_ts(950), // Converted to tombstone
        ],
        filter_tombstone: false,
    })]
    // Test cases for retention_min_seq handling
    #[case(RetentionIteratorTestCase {
        name: "retention_min_seq_basic",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 30).with_create_ts(950), // seq > retention_min_seq
            RowEntry::new_value(b"key1", b"value2", 20).with_create_ts(900), // seq <= retention_min_seq
            RowEntry::new_value(b"key1", b"value1", 10).with_create_ts(850), // seq <= retention_min_seq
        ],
        retention_timeout: None,
        retention_min_seq: Some(25),
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 30).with_create_ts(950), // Kept (latest in retention window)
            RowEntry::new_value(b"key1", b"value2", 20).with_create_ts(900), // Kept (boundary value for snapshots)
            // value1 filtered out because it's older than the boundary
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "retention_min_seq_with_timeout",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 30).with_create_ts(950), // seq > retention_min_seq, within timeout
            RowEntry::new_value(b"key1", b"value2", 20).with_create_ts(900), // seq > retention_min_seq, within timeout
            RowEntry::new_value(b"key1", b"value1", 10).with_create_ts(850), // seq <= retention_min_seq, within timeout
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: Some(25),
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 30).with_create_ts(950), // Kept (latest)
            RowEntry::new_value(b"key1", b"value2", 20).with_create_ts(900), // Kept (within retention window)
            RowEntry::new_value(b"key1", b"value1", 10).with_create_ts(850), // Kept (within timeout window)
        ],
        filter_tombstone: false,
    })]
    // Test cases for filter_tombstone: true (contrasting with existing cases)
    #[case(RetentionIteratorTestCase {
        name: "expired_entry_converted_to_tombstone_filter_tombstone_true",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(950).with_expire_ts(900), // Expired
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            // Tombstone filtered out, so no entries remain
        ],
        filter_tombstone: true, // Converted tombstone filtered out
    })]
    #[case(RetentionIteratorTestCase {
        name: "tombstone_tail_filtered_out",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950), // Latest
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900), // Middle value
            RowEntry::new_tombstone(b"key1", 1).with_create_ts(850), // Tombstone at end (oldest)
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950),
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900),
            // Tombstone at end filtered out
        ],
        filter_tombstone: true, // Tombstone at end filtered out
    })]
    #[case(RetentionIteratorTestCase {
        name: "all_tombstones_filtered_out",
        input_entries: vec![
            RowEntry::new_tombstone(b"key1", 3).with_create_ts(950), // Latest is tombstone
            RowEntry::new_tombstone(b"key1", 2).with_create_ts(900), // Second tombstone
            RowEntry::new_tombstone(b"key1", 1).with_create_ts(850), // Third tombstone
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            // All tombstones filtered out, so no entries remain
        ],
        filter_tombstone: true, // All tombstones filtered out
    })]
    #[case(RetentionIteratorTestCase {
        name: "mixed_expired_and_not_expired_entries_filter_tombstone_true",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950).with_expire_ts(1100), // Not expired
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900).with_expire_ts(950), // Expired
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850).with_expire_ts(1200), // Not expired
        ],
        retention_timeout: Some(Duration::from_secs(3600)), // 1 hour
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value3", 3).with_create_ts(950).with_expire_ts(1100), // Not expired
            RowEntry::new_tombstone(b"key1", 2).with_create_ts(900), // Expired变成tombstone,且不会被移除
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850).with_expire_ts(1200), // Not expired
        ],
        filter_tombstone: true, // tombstone is not in the tail, so not filtered out
    })]
    #[case(RetentionIteratorTestCase {
        name: "filter_out_expired_merge_entries",
        input_entries: vec![
            RowEntry::new_merge(b"key1", b"value3", 3).with_create_ts(950).with_expire_ts(1100), // Not expired
            RowEntry::new_merge(b"key1", b"value2", 2).with_create_ts(900).with_expire_ts(950), // Expired
            RowEntry::new_merge(b"key1", b"value1", 1).with_create_ts(850).with_expire_ts(1200), // Not expired
        ],
        retention_timeout: Some(Duration::ZERO),
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_merge(b"key1", b"value3", 3).with_create_ts(950).with_expire_ts(1100), // Not expired
            RowEntry::new_merge(b"key1", b"value1", 1).with_create_ts(850).with_expire_ts(1200), // Not expired
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "retain_up_to_first_non_merge_entry",
        input_entries: vec![
            RowEntry::new_merge(b"key1", b"value5", 5).with_create_ts(1050),
            RowEntry::new_merge(b"key1", b"value4", 4).with_create_ts(1000),
            RowEntry::new_merge(b"key1", b"value3", 3).with_create_ts(950),
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900),
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850),
        ],
        retention_timeout: Some(Duration::ZERO),
        retention_min_seq: None,
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_merge(b"key1", b"value5", 5).with_create_ts(1050),
            RowEntry::new_merge(b"key1", b"value4", 4).with_create_ts(1000),
            RowEntry::new_merge(b"key1", b"value3", 3).with_create_ts(950),
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900),
        ],
        filter_tombstone: false,
    })]
    #[case(RetentionIteratorTestCase {
        name: "retain_up_to_first_non_merge_entry_when_seq_num_provided",
        input_entries: vec![
            RowEntry::new_value(b"key1", b"value5", 5).with_create_ts(1050),
            RowEntry::new_merge(b"key1", b"value4", 4).with_create_ts(1000),
            RowEntry::new_merge(b"key1", b"value3", 3).with_create_ts(950),
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900),
            RowEntry::new_value(b"key1", b"value1", 1).with_create_ts(850),
        ],
        retention_timeout: Some(Duration::ZERO),
        retention_min_seq: Some(4),
        system_clock_ts: 1000,
        compaction_start_ts: 1000,
        expected_entries: vec![
            RowEntry::new_value(b"key1", b"value5", 5).with_create_ts(1050),
            RowEntry::new_merge(b"key1", b"value4", 4).with_create_ts(1000),
            RowEntry::new_merge(b"key1", b"value3", 3).with_create_ts(950),
            RowEntry::new_value(b"key1", b"value2", 2).with_create_ts(900),
        ],
        filter_tombstone: false,
    })]
    #[test]
    #[cfg(feature = "test-util")]
    fn test_retention_iterator_table_driven(#[case] test_case: RetentionIteratorTestCase) {
        use crate::clock::MockSystemClock;
        use crate::test_utils::TestIterator;

        // Test the apply_retention_filter function directly since TestIterator doesn't support create_ts
        let mut versions = std::collections::BTreeMap::new();
        for entry in test_case.input_entries.iter() {
            versions.insert(Reverse(entry.seq), entry.clone());
        }

        let system_clock = Arc::new(MockSystemClock::with_time(test_case.system_clock_ts));
        let filtered_versions = RetentionIterator::<TestIterator>::apply_retention_filter(
            versions,
            test_case.compaction_start_ts,
            system_clock,
            test_case.retention_timeout,
            test_case.retention_min_seq,
            test_case.filter_tombstone,
            Arc::new(SequenceTracker::new()),
        );

        // Convert filtered versions back to expected order
        let mut actual_entries = Vec::new();
        for (_, entry) in filtered_versions.iter() {
            actual_entries.push(entry.clone());
        }

        // Sort by sequence number (descending) to match expected order
        actual_entries.sort_by(|a, b| b.seq.cmp(&a.seq));

        assert_eq!(
            actual_entries.len(),
            test_case.expected_entries.len(),
            "Test case '{}': Expected {} entries, got {}",
            test_case.name,
            test_case.expected_entries.len(),
            actual_entries.len()
        );

        for (i, (actual, expected)) in actual_entries
            .iter()
            .zip(test_case.expected_entries.iter())
            .enumerate()
        {
            assert_eq!(
                actual.key, expected.key,
                "Test case '{}': Entry {} key mismatch",
                test_case.name, i
            );
            assert_eq!(
                actual.value, expected.value,
                "Test case '{}': Entry {} value mismatch",
                test_case.name, i
            );
            assert_eq!(
                actual.seq, expected.seq,
                "Test case '{}': Entry {} sequence number mismatch",
                test_case.name, i
            );
            assert_eq!(
                actual.create_ts, expected.create_ts,
                "Test case '{}': Entry {} create timestamp mismatch",
                test_case.name, i
            );
        }
    }

    #[cfg(feature = "test-util")]
    #[rstest]
    #[case("exact_match", vec![(5, 1_000)], 5, 1_500, 700)]
    #[case("before_first_rounds_up", vec![(10, 2_000)], 7, 2_100, 400)]
    #[case(
        "between_entries_rounds_up",
        vec![(5, 1_000), (15, 2_000)],
        11,
        2_400,
        500
    )]
    #[case(
        "after_last_defaults_to_now",
        vec![(5, 1_000)],
        20,
        1_500,
        100
    )]
    #[case("no_tracker_defaults_to_now", vec![], 8, 2_000, 0)]
    fn test_retention_uses_sequence_tracker_timestamp(
        #[case] _name: &str,
        #[case] tracker_points: Vec<(u64, i64)>,
        #[case] entry_seq: u64,
        #[case] clock_now: i64,
        #[case] timeout_ms: u64,
    ) {
        use crate::clock::MockSystemClock;
        use crate::test_utils::TestIterator;
        use chrono::TimeZone;

        let mut sorted_points = tracker_points;
        sorted_points.sort_by_key(|(seq, _)| *seq);

        let mut tracker = SequenceTracker::new();
        for (seq, ts) in &sorted_points {
            let ts = chrono::Utc.timestamp_millis_opt(*ts).unwrap();
            tracker.insert(TrackedSeq { seq: *seq, ts });
        }
        let tracker = Arc::new(tracker);

        let system_clock = Arc::new(MockSystemClock::with_time(clock_now));
        let latest_seq = entry_seq + 10;
        let mut versions = BTreeMap::new();
        versions.insert(
            Reverse(latest_seq),
            RowEntry::new_value(b"k", b"new", latest_seq).with_create_ts(clock_now),
        );
        let target_entry = RowEntry::new_value(b"k", b"old", entry_seq);
        versions.insert(Reverse(entry_seq), target_entry);

        let timeout = if timeout_ms == 0 {
            Duration::from_millis(0)
        } else {
            Duration::from_millis(timeout_ms)
        };

        let filtered = RetentionIterator::<TestIterator>::apply_retention_filter(
            versions,
            0,
            system_clock.clone(),
            Some(timeout),
            None,
            false,
            tracker.clone(),
        );

        let derived_ts = sorted_points
            .iter()
            .find_map(|(seq, ts)| if *seq >= entry_seq { Some(*ts) } else { None })
            .unwrap_or(clock_now);
        let expected_keep_by_logic =
            (derived_ts as i128 + timeout.as_millis() as i128) > clock_now as i128;

        let actual_keep = filtered.contains_key(&Reverse(entry_seq));
        assert_eq!(
            actual_keep, expected_keep_by_logic,
            "{:?}[{}@{} Now({})]",
            filtered, entry_seq, derived_ts, clock_now
        );
    }
}