slatedb 0.10.0

A cloud native embedded storage engine built on object storage.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
use crate::batch::WriteBatchIterator;
use crate::bytes_range::BytesRange;
use crate::error::SlateDBError;
use crate::filter_iterator::FilterIterator;
use crate::iter::{EmptyIterator, KeyValueIterator};
use crate::map_iter::MapIterator;
use crate::merge_iterator::MergeIterator;
use crate::merge_operator::{
    MergeOperatorIterator, MergeOperatorRequiredIterator, MergeOperatorType,
};
use crate::types::{KeyValue, RowEntry, ValueDeletable};

use async_trait::async_trait;
use bytes::Bytes;
use parking_lot::Mutex;
use std::ops::RangeBounds;
use std::sync::Arc;

/// [`DbIteratorRangeTracker'] is used to track the range of keys accessed by a [`DbIterator`].  For
/// Serializable Snapshot Isolation, we need to track the read keys during the transaction to detect
/// read-write conflicts with recent committed transactions.
///
/// A naive implementation is to maintain a set of read keys, but this may suffers phantom read conflicts.
/// For example, if transaction A reads a range `["key01", "key10"]` and transaction B writes to `"key05"`
/// which falls within that range, we cannot detect this conflict and abort one of the transactions to
/// maintain serializability.
///
/// To mitigate this, we could use a range tracker to track the range of keys accessed by the iterator,
/// and check if the write key falls within the range.
///
/// A [`DbIteratorRangeTracker`] can be passed to [`DbIterator`] optionally. If it's passed, you can retrieve
/// the range of keys scanned by [`DbIterator`] from it.
#[derive(Debug)]
pub struct DbIteratorRangeTracker {
    inner: Mutex<DbIteratorRangeTrackerInner>,
}

#[derive(Debug)]
struct DbIteratorRangeTrackerInner {
    first_key: Option<Bytes>,
    last_key: Option<Bytes>,
    has_data: bool,
}

impl DbIteratorRangeTracker {
    pub fn new() -> Self {
        Self {
            inner: Mutex::new(DbIteratorRangeTrackerInner {
                first_key: None,
                last_key: None,
                has_data: false,
            }),
        }
    }

    pub fn track_key(&self, key: &Bytes) {
        let mut inner = self.inner.lock();

        inner.first_key = Some(match &inner.first_key {
            Some(first) if key < first => key.clone(),
            Some(first) => first.clone(),
            None => key.clone(),
        });

        inner.last_key = Some(match &inner.last_key {
            Some(last) if key > last => key.clone(),
            Some(last) => last.clone(),
            None => key.clone(),
        });

        inner.has_data = true;
    }

    pub fn get_range(&self) -> Option<BytesRange> {
        let inner = self.inner.lock();
        match (&inner.first_key, &inner.last_key) {
            (Some(first), Some(last)) => {
                use std::ops::Bound;
                Some(BytesRange::from((
                    Bound::Included(first.clone()),
                    Bound::Included(last.clone()),
                )))
            }
            _ => None,
        }
    }

    pub fn has_data(&self) -> bool {
        self.inner.lock().has_data
    }
}

struct GetIterator {
    key: Bytes,
    iters: Vec<Box<dyn KeyValueIterator + 'static>>,
    idx: usize,
}

impl GetIterator {
    pub(crate) fn new(
        key: Bytes,
        write_batch_iter: Box<dyn KeyValueIterator + 'static>,
        mem_iters: impl IntoIterator<Item = Box<dyn KeyValueIterator + 'static>>,
        l0_iters: impl IntoIterator<Item = Box<dyn KeyValueIterator + 'static>>,
        sr_iters: impl IntoIterator<Item = Box<dyn KeyValueIterator + 'static>>,
    ) -> Self {
        let iters = vec![write_batch_iter]
            .into_iter()
            .chain(mem_iters)
            .chain(l0_iters)
            .chain(sr_iters)
            .collect();

        Self { key, iters, idx: 0 }
    }
}

#[async_trait]
impl KeyValueIterator for GetIterator {
    async fn init(&mut self) -> Result<(), SlateDBError> {
        // GetIterator departs from the normal convention for KeyValueIterator
        // in that it lazily initializes the iterators only when necessary -
        // this is because it is used in a way that will early exit before all
        // iterators are used.
        Ok(())
    }

    async fn next_entry(&mut self) -> Result<Option<RowEntry>, SlateDBError> {
        while self.idx < self.iters.len() {
            // initialization is idempotent, so we can call it multiple times
            self.iters[self.idx].init().await?;
            let result = self.iters[self.idx].next_entry().await?;
            if let Some(entry) = result {
                // Note: The Get iterator should not advance past tombstones, which is
                // why we filter them out here. When a tombstone is encountered, we return None
                // so the iterator stops without advancing to the next iterator in the chain.
                match &entry.value {
                    ValueDeletable::Tombstone => {
                        return Ok(None);
                    }
                    _ => {
                        return Ok(Some(entry));
                    }
                }
            }
            self.idx += 1;
        }

        Ok(None)
    }

    async fn seek(&mut self, next_key: &[u8]) -> Result<(), SlateDBError> {
        // we expect the GetIterator to only cover a single key, so if we seek
        // to something other than that key we should just return an error
        if next_key != self.key {
            return Err(SlateDBError::SeekKeyOutOfRange {
                key: next_key.to_vec(),
                range: BytesRange::from(self.key.clone()..=self.key.clone()),
            });
        }

        Ok(())
    }
}

struct ScanIterator {
    delegate: Box<dyn KeyValueIterator + 'static>,
}

impl ScanIterator {
    pub(crate) fn new(
        write_batch_iter: Box<dyn KeyValueIterator + 'static>,
        mem_iters: impl IntoIterator<Item = Box<dyn KeyValueIterator + 'static>>,
        l0_iters: impl IntoIterator<Item = Box<dyn KeyValueIterator + 'static>>,
        sr_iters: impl IntoIterator<Item = Box<dyn KeyValueIterator + 'static>>,
    ) -> Result<Self, SlateDBError> {
        // wrap each in a merge iterator
        let iters = vec![
            write_batch_iter,
            Box::new(MergeIterator::new(mem_iters)?),
            Box::new(MergeIterator::new(l0_iters)?),
            Box::new(MergeIterator::new(sr_iters)?),
        ];

        Ok(Self {
            delegate: Box::new(MergeIterator::new(iters)?),
        })
    }
}

#[async_trait]
impl KeyValueIterator for ScanIterator {
    async fn init(&mut self) -> Result<(), SlateDBError> {
        self.delegate.init().await
    }

    async fn next_entry(&mut self) -> Result<Option<RowEntry>, SlateDBError> {
        self.delegate.next_entry().await
    }

    async fn seek(&mut self, next_key: &[u8]) -> Result<(), SlateDBError> {
        self.delegate.seek(next_key).await
    }
}

pub struct DbIterator {
    range: BytesRange,
    iter: Box<dyn KeyValueIterator + 'static>,
    invalidated_error: Option<SlateDBError>,
    last_key: Option<Bytes>,
    range_tracker: Option<Arc<DbIteratorRangeTracker>>,
}

impl DbIterator {
    pub(crate) async fn new(
        range: BytesRange,
        write_batch_iter: Option<WriteBatchIterator>,
        mem_iters: impl IntoIterator<Item = Box<dyn KeyValueIterator + 'static>>,
        l0_iters: impl IntoIterator<Item = Box<dyn KeyValueIterator + 'static>>,
        sr_iters: impl IntoIterator<Item = Box<dyn KeyValueIterator + 'static>>,
        max_seq: Option<u64>,
        range_tracker: Option<Arc<DbIteratorRangeTracker>>,
        now: i64,
        merge_operator: Option<MergeOperatorType>,
    ) -> Result<Self, SlateDBError> {
        // The write_batch iterator is provided only when operating within a Transaction. It represents the uncommitted
        // writes made during the transaction. We do not need to apply the max_seq filter to them, because they do
        // not have an real committed sequence number yet.
        let write_batch_iter = write_batch_iter
            .map(|iter| Box::new(iter) as Box<dyn KeyValueIterator + 'static>)
            .unwrap_or_else(|| Box::new(EmptyIterator::new()));

        // Apply the max_seq filter to all the iterators. Please note that we should apply this filter BEFORE
        // merging the iterators.
        //
        // For example, if have the following iterators:
        // - Iterator A with entries [(key1, seq=96), (key1, seq=110)]
        // - Iterator B with entries [(key1, seq=95)]
        //
        // If we filter the iterator after merging with max_seq=100, we'll lost the entry with seq=96 from the
        // iterator A. But the element with seq=96 is actually the correct answer for this scan.
        let mem_iters = apply_filters(mem_iters, max_seq, now);
        let l0_iters = apply_filters(l0_iters, max_seq, now);
        let sr_iters = apply_filters(sr_iters, max_seq, now);

        let mut iter = match range.as_point() {
            Some(key) => Box::new(GetIterator::new(
                key.clone(),
                write_batch_iter,
                mem_iters,
                l0_iters,
                sr_iters,
            )) as Box<dyn KeyValueIterator + 'static>,
            None => Box::new(ScanIterator::new(
                write_batch_iter,
                mem_iters,
                l0_iters,
                sr_iters,
            )?) as Box<dyn KeyValueIterator + 'static>,
        };

        if let Some(merge_operator) = merge_operator {
            iter = Box::new(MergeOperatorIterator::new(
                merge_operator,
                iter,
                true,
                now,
                // Its important not to set a snapshot seq num barrier for this merge iterator
                // The entries in the write batch iterator have seq num u64::MAX and any merges
                // there need to be merged with the entries from the other iterators.
                None,
            ));
        } else {
            // When no merge operator is configured, wrap with iterator that errors on merge operands
            iter = Box::new(MergeOperatorRequiredIterator::new(iter));
        }

        iter.init().await?;

        Ok(DbIterator {
            range,
            iter,
            invalidated_error: None,
            last_key: None,
            range_tracker,
        })
    }

    /// Get the next record in the scan.
    ///
    /// # Errors
    ///
    /// Returns [`Error`] if the iterator has been invalidated due to an underlying error.
    pub async fn next(&mut self) -> Result<Option<KeyValue>, crate::Error> {
        self.next_key_value().await.map_err(Into::into)
    }

    pub(crate) async fn next_key_value(&mut self) -> Result<Option<KeyValue>, SlateDBError> {
        if let Some(error) = self.invalidated_error.clone() {
            Err(error)
        } else {
            let result = self.iter.next().await;
            let result = self.maybe_invalidate(result);
            if let Ok(Some(ref kv)) = result {
                self.last_key = Some(kv.key.clone());
                // Track the key in range tracker if present
                if let Some(tracker) = &self.range_tracker {
                    tracker.track_key(&kv.key);
                }
            }
            result
        }
    }

    fn maybe_invalidate<T: Clone>(
        &mut self,
        result: Result<T, SlateDBError>,
    ) -> Result<T, SlateDBError> {
        if let Err(error) = &result {
            self.invalidated_error = Some(error.clone());
        }
        result
    }

    /// Seek ahead to the next key. The next key must be larger than the
    /// last key returned by the iterator and less than the end bound specified
    /// in the `scan` arguments.
    ///
    /// After a successful seek, the iterator will return the next record
    /// with a key greater than or equal to `next_key`.
    ///
    /// # Errors
    ///
    /// Returns an invalid argument error in the following cases:
    ///
    /// - if `next_key` comes before the current iterator position
    /// - if `next_key` is beyond the upper bound specified in the original
    ///   [`crate::db::Db::scan`] parameters
    ///
    /// Returns [`Error`] if the iterator has been invalidated in order to reclaim resources.
    pub async fn seek<K: AsRef<[u8]>>(&mut self, next_key: K) -> Result<(), crate::Error> {
        let next_key = next_key.as_ref();
        if let Some(error) = self.invalidated_error.clone() {
            Err(error.into())
        } else if !self.range.contains(&next_key) {
            Err(SlateDBError::SeekKeyOutOfRange {
                key: next_key.to_vec(),
                range: self.range.clone(),
            }
            .into())
        } else if self
            .last_key
            .clone()
            .is_some_and(|last_key| next_key <= last_key)
        {
            Err(SlateDBError::SeekKeyLessThanLastReturnedKey.into())
        } else {
            let result = self.iter.seek(next_key).await;
            self.maybe_invalidate(result).map_err(Into::into)
        }
    }
}

pub(crate) fn apply_filters<T>(
    iters: impl IntoIterator<Item = T>,
    max_seq: Option<u64>,
    now: i64,
) -> Vec<Box<dyn KeyValueIterator>>
where
    T: KeyValueIterator + 'static,
{
    iters
        .into_iter()
        .map(|iter| FilterIterator::new_with_max_seq(iter, max_seq))
        .map(|iter| MapIterator::new_with_ttl_now(iter, now))
        .map(|iter| Box::new(iter) as Box<dyn KeyValueIterator + 'static>)
        .collect::<Vec<Box<dyn KeyValueIterator>>>()
}

#[cfg(test)]
mod tests {
    use crate::batch::{WriteBatch, WriteBatchIterator};
    use crate::bytes_range::BytesRange;
    use crate::db_iter::DbIterator;
    use crate::error::SlateDBError;
    use crate::iter::{IterationOrder, KeyValueIterator};
    use crate::test_utils::TestIterator;
    use crate::types::RowEntry;
    use bytes::Bytes;
    use std::collections::VecDeque;

    #[tokio::test]
    async fn test_invalidated_iterator() {
        let mem_iters: VecDeque<Box<dyn KeyValueIterator + 'static>> = VecDeque::new();
        let mut iter = DbIterator::new(
            BytesRange::from(..),
            None,
            mem_iters,
            VecDeque::new(),
            VecDeque::new(),
            None,
            None,
            0,
            None,
        )
        .await
        .unwrap();

        iter.invalidated_error = Some(SlateDBError::ChecksumMismatch);

        let result = iter.next().await;
        let err = result.expect_err("Failed to return invalidated iterator");
        assert_invalidated_iterator_error(err);

        let result = iter.seek(Bytes::new()).await;
        let err = result.expect_err("Failed to return invalidated iterator");
        assert_invalidated_iterator_error(err);
    }

    fn assert_invalidated_iterator_error(err: crate::Error) {
        assert_eq!(err.to_string(), "Data error: checksum mismatch");
    }

    #[tokio::test]
    async fn test_sequence_number_filtering() {
        // Create two test iterators with overlapping keys but different sequence numbers
        let mem_iter1 = TestIterator::new()
            .with_entry(b"key1", b"value1", 96)
            .with_entry(b"key1", b"value2", 110);

        let mem_iter2 = TestIterator::new().with_entry(b"key1", b"value3", 95);

        // Create DbIterator with max_seq = 100
        let mut iter = DbIterator::new(
            BytesRange::from(..),
            None,
            vec![
                Box::new(mem_iter1) as Box<dyn KeyValueIterator + 'static>,
                Box::new(mem_iter2) as Box<dyn KeyValueIterator + 'static>,
            ],
            VecDeque::new(),
            VecDeque::new(),
            Some(100),
            None,
            0,
            None,
        )
        .await
        .unwrap();

        // The iterator should return the entry with seq=96 from the first memtable
        // and not the one with seq=95 from the second memtable
        let result = iter.next().await.unwrap();
        assert!(result.is_some());
        let kv = result.unwrap();
        assert_eq!(kv.key, Bytes::from("key1"));
        assert_eq!(kv.value, Bytes::from("value1"));
        assert!(iter.next().await.unwrap().is_none());
    }

    #[tokio::test]
    async fn test_seek_cannot_rewind() {
        // Build a simple test iterator with two keys
        let mem_iter = TestIterator::new()
            .with_entry(b"key1", b"value1", 1)
            .with_entry(b"key2", b"value2", 2);

        // Create a DbIterator over the whole range
        let mut iter = DbIterator::new(
            BytesRange::from(..),
            None,
            vec![Box::new(mem_iter) as Box<dyn KeyValueIterator + 'static>],
            VecDeque::new(),
            VecDeque::new(),
            None,
            None,
            0,
            None,
        )
        .await
        .unwrap();

        // Consume the first record
        let first = iter.next().await.unwrap().unwrap();
        assert_eq!(first.key, Bytes::from_static(b"key1"));

        // Seeking to the current key or a prior key should fail
        let err = iter.seek(b"key1").await.unwrap_err();
        assert_eq!(
            err.to_string(),
            "Invalid error: cannot seek to a key less than the last returned key"
        );

        let err = iter.seek(b"key0").await.unwrap_err();
        assert_eq!(
            err.to_string(),
            "Invalid error: cannot seek to a key less than the last returned key"
        );

        // Seeking forward succeeds and allows reading the next key
        iter.seek(b"key2").await.unwrap();
        let kv = iter.next().await.unwrap().unwrap();
        assert_eq!(kv.key, Bytes::from_static(b"key2"));
        assert!(iter.next().await.unwrap().is_none());
    }

    #[tokio::test]
    async fn test_dbiterator_with_writebatch() {
        // Create a WriteBatch with some data
        let mut batch = WriteBatch::new();
        batch.put(b"key1", b"value1");
        batch.put(b"key3", b"value3");

        // Create WriteBatchIterator
        let wb_iter = WriteBatchIterator::new(batch.clone(), .., IterationOrder::Ascending);

        // Create DbIterator with WriteBatch
        let mem_iters: VecDeque<Box<dyn KeyValueIterator + 'static>> = VecDeque::new();
        let mut iter = DbIterator::new(
            BytesRange::from(..),
            Some(wb_iter),
            mem_iters,
            VecDeque::new(),
            VecDeque::new(),
            None,
            None,
            0,
            None,
        )
        .await
        .unwrap();

        // Should get data from WriteBatch in sorted order
        let kv1 = iter.next().await.unwrap().unwrap();
        assert_eq!(kv1.key, Bytes::from_static(b"key1"));
        assert_eq!(kv1.value, Bytes::from_static(b"value1"));

        let kv2 = iter.next().await.unwrap().unwrap();
        assert_eq!(kv2.key, Bytes::from_static(b"key3"));
        assert_eq!(kv2.value, Bytes::from_static(b"value3"));

        // Should be done
        let kv3 = iter.next().await.unwrap();
        assert!(kv3.is_none());
    }

    #[tokio::test]
    async fn test_dbiterator_with_ttl_filtering() {
        // Create test iterators with entries that have different TTLs
        let mut entry1 = RowEntry::new_value(b"key1", b"value1", 1);
        entry1.create_ts = Some(0);
        entry1.expire_ts = Some(50);

        let mut entry2 = RowEntry::new_value(b"key2", b"value2", 2);
        entry2.create_ts = Some(0);
        entry2.expire_ts = Some(100);

        let mut entry3 = RowEntry::new_value(b"key3", b"value3", 3);
        entry3.create_ts = Some(0);
        entry3.expire_ts = None;

        let mem_iter = TestIterator::new()
            .with_row_entry(entry1)
            .with_row_entry(entry2)
            .with_row_entry(entry3);

        // Test at t=49 - all entries should be returned
        let mut iter = DbIterator::new(
            BytesRange::from(..),
            None,
            vec![Box::new(mem_iter) as Box<dyn KeyValueIterator + 'static>],
            VecDeque::new(),
            VecDeque::new(),
            None,
            None,
            49,
            None,
        )
        .await
        .unwrap();

        assert_eq!(
            iter.next().await.unwrap().unwrap().key,
            Bytes::from_static(b"key1")
        );
        assert_eq!(
            iter.next().await.unwrap().unwrap().key,
            Bytes::from_static(b"key2")
        );
        assert_eq!(
            iter.next().await.unwrap().unwrap().key,
            Bytes::from_static(b"key3")
        );
        assert!(iter.next().await.unwrap().is_none());

        // Test at t=50 - key1 should be expired, key2 and key3 should be returned
        let mut entry1 = RowEntry::new_value(b"key1", b"value1", 1);
        entry1.create_ts = Some(0);
        entry1.expire_ts = Some(50);

        let mut entry2 = RowEntry::new_value(b"key2", b"value2", 2);
        entry2.create_ts = Some(0);
        entry2.expire_ts = Some(100);

        let mut entry3 = RowEntry::new_value(b"key3", b"value3", 3);
        entry3.create_ts = Some(0);
        entry3.expire_ts = None;

        let mem_iter = TestIterator::new()
            .with_row_entry(entry1)
            .with_row_entry(entry2)
            .with_row_entry(entry3);

        let mut iter = DbIterator::new(
            BytesRange::from(..),
            None,
            vec![Box::new(mem_iter) as Box<dyn KeyValueIterator + 'static>],
            VecDeque::new(),
            VecDeque::new(),
            None,
            None,
            50,
            None,
        )
        .await
        .unwrap();

        assert_eq!(
            iter.next().await.unwrap().unwrap().key,
            Bytes::from_static(b"key2")
        );
        assert_eq!(
            iter.next().await.unwrap().unwrap().key,
            Bytes::from_static(b"key3")
        );
        assert!(iter.next().await.unwrap().is_none());

        // Test at t=100 - key1 and key2 should be expired, only key3 should be returned
        let mut entry1 = RowEntry::new_value(b"key1", b"value1", 1);
        entry1.create_ts = Some(0);
        entry1.expire_ts = Some(50);

        let mut entry2 = RowEntry::new_value(b"key2", b"value2", 2);
        entry2.create_ts = Some(0);
        entry2.expire_ts = Some(100);

        let mut entry3 = RowEntry::new_value(b"key3", b"value3", 3);
        entry3.create_ts = Some(0);
        entry3.expire_ts = None;

        let mem_iter = TestIterator::new()
            .with_row_entry(entry1)
            .with_row_entry(entry2)
            .with_row_entry(entry3);

        let mut iter = DbIterator::new(
            BytesRange::from(..),
            None,
            vec![Box::new(mem_iter) as Box<dyn KeyValueIterator + 'static>],
            VecDeque::new(),
            VecDeque::new(),
            None,
            None,
            100,
            None,
        )
        .await
        .unwrap();

        assert_eq!(
            iter.next().await.unwrap().unwrap().key,
            Bytes::from_static(b"key3")
        );
        assert!(iter.next().await.unwrap().is_none());

        // Test at t=200 - only key3 (no TTL) should be returned
        let mut entry1 = RowEntry::new_value(b"key1", b"value1", 1);
        entry1.create_ts = Some(0);
        entry1.expire_ts = Some(50);

        let mut entry2 = RowEntry::new_value(b"key2", b"value2", 2);
        entry2.create_ts = Some(0);
        entry2.expire_ts = Some(100);

        let mut entry3 = RowEntry::new_value(b"key3", b"value3", 3);
        entry3.create_ts = Some(0);
        entry3.expire_ts = None;

        let mem_iter = TestIterator::new()
            .with_row_entry(entry1)
            .with_row_entry(entry2)
            .with_row_entry(entry3);

        let mut iter = DbIterator::new(
            BytesRange::from(..),
            None,
            vec![Box::new(mem_iter) as Box<dyn KeyValueIterator + 'static>],
            VecDeque::new(),
            VecDeque::new(),
            None,
            None,
            200,
            None,
        )
        .await
        .unwrap();

        assert_eq!(
            iter.next().await.unwrap().unwrap().key,
            Bytes::from_static(b"key3")
        );
        assert!(iter.next().await.unwrap().is_none());
    }

    #[tokio::test]
    async fn test_dbiterator_expired_value_hides_older_valid_value() {
        // Test the case where a newer value is expired and an older value is not expired.
        // The newer expired value should become a tombstone and hide the older value,
        // so the iterator should return None for that key.

        // Newer entry (seq=100) that expires at t=50
        let mut newer_entry = RowEntry::new_value(b"key1", b"newer_value", 100);
        newer_entry.create_ts = Some(0);
        newer_entry.expire_ts = Some(50);

        // Older entry (seq=50) that doesn't expire
        let mut older_entry = RowEntry::new_value(b"key1", b"older_value", 50);
        older_entry.create_ts = Some(0);
        older_entry.expire_ts = None;

        let mem_iter = TestIterator::new()
            .with_row_entry(newer_entry)
            .with_row_entry(older_entry);

        // Test at t=100 - the newer entry is expired and should hide the older entry
        let mut iter = DbIterator::new(
            BytesRange::from(..),
            None,
            vec![Box::new(mem_iter) as Box<dyn KeyValueIterator + 'static>],
            VecDeque::new(),
            VecDeque::new(),
            None,
            None,
            100, // now = 100, so newer_entry with expire_ts=50 is expired
            None,
        )
        .await
        .unwrap();

        // Should return None because the newer expired value becomes a tombstone
        // which hides the older non-expired value
        assert!(iter.next().await.unwrap().is_none());
    }
}