Peroxide
Rust numeric library contains linear algebra, numerical analysis, statistics and machine learning tools with R, MATLAB, Python like macros.
Why Peroxide?
1. Back-end options
Peroxide provides two back-end options.
- Default - Pure Rust (No dependencies of architecture - Perfect cross compilation)
- BLAS - No pain, no gain. (Perfect performance but hard to set-up - Strongly recommend to read OpenBLAS for Rust
So, if you are familiar with unix environment (can setup BLAS environment), then you can get one of the fastest scientific computation tools. Or if you hate dependencies from fortran, C/C++ libraries, then you can get comfortable scientific computation tools.
2. Easy to optimize
Peroxide uses 1D data structure to describe matrix. So, it's too easy to integrate BLAS. It means peroxide guarantees perfect performance for linear algebraic computations.
3. Friendly syntax
Rust is so strange for Numpy, MATLAB, R users. Thus, it's harder to learn the more rust libraries. With peroxide, you can do heavy computations with R, Numpy, MATLAB like syntax.
For example,
extern crate peroxide;
use *;
4. Batteries included
Peroxide can do many things. Refer to Covered contents.
5. Written in Rust
Rust & Cargo are awesome for scientific computations. You can use any external packages easily with Cargo, not make. And default runtime performance of Rust is also great. If you use many iterations for computations, then Rust become great choice.
Latest README version
Corresponding to 0.14.0 (not yet released).
Pre-requisite
- Python module :
matplotlibfor plotting
Install
- Add next line to your
cargo.toml
= "0.13"
Module Structure
- src
- lib.rs :
modandre-export - macros : Macro files
- julia_macro.rs : Julia like macro
- matlab_macro.rs : MATLAB like macro
- mod.rs
- r_macro.rs : R like macro
- ml : For machine learning (Beta)
- numerical : To do numerical things
- bdf.rs : Backward Differentiation Formula
- gauss_legendre.rs : Gauss-Legendre 4th order
- interp.rs : Interpolation
- mod.rs
- newton.rs : Newton's Method
- ode.rs : Main ODE solver
- optimize.rs : Non-linear regression
- spline.rs : Natural Spline
- utils.rs : Utils to do numerical things (e.g. jacobian)
- operation : To define general operations
- extra_ops.rs : Missing operations & Real Trait
- mut_ops.rs : Mutable operations
- mod.rs
- number.rs : Number type (include
f64,Dual)
- special : Wrapper for
specialcrate- mod.rs
- function.rs : Special functions
- statistics : Statistical Tools
- structure : Fundamental data structures
- dataframe.rs : Not yet implemented
- dual.rs : Dual number system for automatic differentiation
- hyper_dual.rs : Hyper dual number system for automatic differentiation
- matrix.rs : Matrix
- multinomial.rs : For multinomial (Beta)
- mod.rs
- polynomial.rs : Polynomial
- vector.rs : Extra tools for
Vec<f64>
- util
- mod.rs
- api.rs : Matrix constructor for various language style
- non_macro.rs : Primordial version of macros
- pickle.rs : To handle
pickledata structure - plot.rs : To draw plot (using
pyo3) - print.rs : To print conveniently
- useful.rs : Useful utils to implement library
- writer.rs : More convenient write system
- lib.rs :
Documentation
Covered Contents
- Linear Algebra
- Effective Matrix structure
- Transpose, Determinant, Diagonal
- LU Decomposition, Inverse matrix, Block partitioning
- Column, Row operations
- Functional Programming
- More easy functional programming with
Vec<f64> - For matrix, there are three maps
fmap: map for all elementscol_map: map for column vectorsrow_map: map for row vectors
- More easy functional programming with
- Automatic Differentiation
- Dual number system - for 1st order AD
- Hyper dual number system - for 2nd order AD
- Exact jacobian
Realtrait to constrain forf64andDualNumberstructure to unifyf64andDual
- Numerical Analysis
- Lagrange interpolation
- Cubic spline
- Non-linear regression
- Gradient Descent
- Gauss Newton
- Levenberg Marquardt
- Ordinary Differential Equation
- Euler
- Runge Kutta 4th order
- Backward Euler
- Gauss Legendre 4th order
- Statistics
- More easy random with
randcrate - Probability Distributions
- Bernoulli
- Uniform
- Normal
- Gamma
- Beta
- RNG algorithms
- Acceptance Rejection
- Marsaglia Polar
- Ziggurat
- More easy random with
- Special functions
- Wrapper for
specialcrate
- Wrapper for
- Utils
- R-like macro & functions
- Matlab-like macro & functions
- Numpy-like macro & functions
- Julia-like macro & functions
- Plotting
- With
pyo3&matplotlib
- With
Example
Basic Runge-Kutta 4th order with inline-python
extern crate peroxide;
extern crate inline_python;
use *;
use python;
// dy/dx = (5x^2 - y) / e^(x+y)
Basic Runge-Kutta 4th order with advanced plotting
extern crate peroxide;
use *;
Basic Runge-Kutta 4th order with Stop condition
extern crate peroxide;
use *;

Multi-Layer Perceptron (from scratch)
extern crate peroxide;
use *;
// x : n x L
// xb: n x (L+1)
// v : (L+1) x M
// a : n x M
// ab: n x (M+1)
// w : (M+1) x n
// wb: M x N
// y : n x N
// t : n x N
// dh: n x M
// do: n x N
Levenberg-Marquardt Algorithm (refer to lm.pdf)
extern crate peroxide;
use *;

Version Info
To see RELEASES.md
TODO
To see TODO.md