pandrs 0.1.0-beta.2

A high-performance DataFrame library for Rust, providing pandas-like API with advanced features including SIMD optimization, parallel processing, and distributed computing capabilities
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
//! Zero-Copy Data Views and Cache-Aware Memory Management Example
//!
//! This example demonstrates the zero-copy data views and cache-aware memory
//! management capabilities in PandRS, showing how to achieve optimal performance
//! through efficient memory usage and cache-friendly operations.

use pandrs::storage::{
    CacheAwareOps, CacheTopology, MemoryMappedView, ZeroCopyManager, CACHE_LINE_SIZE, PAGE_SIZE,
};
use std::fs::File;
use std::io::Write;
use tempfile::tempdir;

#[allow(clippy::result_large_err)]
fn main() -> Result<(), Box<dyn std::error::Error>> {
    println!("🚀 PandRS Zero-Copy Data Views and Cache-Aware Memory Management Example");
    println!("=========================================================================\n");

    // Demonstrate cache topology detection
    demonstrate_cache_topology()?;

    // Demonstrate zero-copy views
    demonstrate_zero_copy_views()?;

    // Demonstrate memory-mapped views
    demonstrate_memory_mapped_views()?;

    // Demonstrate cache-aware operations
    demonstrate_cache_aware_operations()?;

    // Demonstrate performance optimizations
    demonstrate_performance_optimizations()?;

    println!("\n🎯 Zero-copy data views example completed successfully!");
    Ok(())
}

#[allow(clippy::result_large_err)]
fn demonstrate_cache_topology() -> Result<(), Box<dyn std::error::Error>> {
    println!("🏗️  Cache Topology Detection");
    println!("----------------------------");

    let topology = CacheTopology::detect()?;

    println!("🔍 System Cache Information:");
    println!(
        "   L1 Cache Size: {:.1} KB",
        topology.l1_cache_size as f64 / 1024.0
    );
    println!(
        "   L2 Cache Size: {:.1} KB",
        topology.l2_cache_size as f64 / 1024.0
    );
    println!(
        "   L3 Cache Size: {:.1} MB",
        topology.l3_cache_size as f64 / (1024.0 * 1024.0)
    );
    println!("   Cache Line Size: {} bytes", topology.cache_line_size);
    println!("   CPU Cores: {}", topology.cpu_cores);
    if let Some(numa_node) = topology.numa_node {
        println!("   NUMA Node: {numa_node}");
    }

    // Test optimal cache level selection
    let test_sizes = vec![
        16 * 1024,        // 16KB
        128 * 1024,       // 128KB
        2 * 1024 * 1024,  // 2MB
        32 * 1024 * 1024, // 32MB
    ];

    println!("\n📊 Optimal Cache Level Selection:");
    for size in test_sizes {
        let level = topology.optimal_cache_level(size);
        println!("   {} -> {:?}", format_size(size), level);
    }

    println!();
    Ok(())
}

#[allow(clippy::result_large_err)]
fn demonstrate_zero_copy_views() -> Result<(), Box<dyn std::error::Error>> {
    println!("📋 Zero-Copy Views");
    println!("------------------");

    let manager = ZeroCopyManager::new()?;

    // Create test data
    let data = (0..10000).map(|i| i as f64).collect::<Vec<_>>();
    println!(
        "🔬 Created test data: {} elements ({} KB)",
        data.len(),
        (data.len() * std::mem::size_of::<f64>()) / 1024
    );

    // Create zero-copy view
    let view = manager.create_view(data)?;
    println!("✅ Created zero-copy view: {} elements", view.len());
    println!("   Memory address: 0x{:x}", view.memory_address());
    println!("   Cache aligned: {}", view.is_cache_aligned());
    println!("   Capacity: {}", view.capacity());

    // Test view operations
    println!("\n🔍 View Operations:");
    println!("   First 5 elements: {:?}", &view.as_slice()[0..5]);
    println!(
        "   Last 5 elements: {:?}",
        &view.as_slice()[view.len() - 5..]
    );

    // Create subview
    let subview = view.subview(1000..2000)?;
    println!("   Subview (1000..2000): {} elements", subview.len());
    println!("   Subview first 5: {:?}", &subview.as_slice()[0..5]);

    // Memory layout information
    let layout = view.layout();
    println!("\n📐 Memory Layout:");
    println!("   Element size: {} bytes", layout.element_size);
    println!("   Stride: {} bytes", layout.stride);
    println!("   Alignment: {} bytes", layout.alignment);
    println!("   Cache aligned: {}", layout.cache_aligned);

    // Get manager statistics
    let stats = manager.stats()?;
    println!("\n📈 Manager Statistics:");
    println!("   Views created: {}", stats.views_created);
    println!("   Total memory: {}", format_size(stats.total_memory));

    println!();
    Ok(())
}

#[allow(clippy::result_large_err)]
fn demonstrate_memory_mapped_views() -> Result<(), Box<dyn std::error::Error>> {
    println!("🗺️  Memory-Mapped Views");
    println!("------------------------");

    // Create a temporary file with test data
    let temp_dir = tempdir()?;
    let file_path = temp_dir.path().join("test_data.bin");

    {
        let mut file = File::create(&file_path)?;
        let data: Vec<f64> = (0..10000).map(|i| i as f64 * 0.5).collect();

        // Write binary data to file
        for value in &data {
            file.write_all(&value.to_le_bytes())?;
        }
        file.flush()?;
    }

    println!("📄 Created test file: {}", file_path.display());
    println!(
        "   File size: {}",
        format_size(std::fs::metadata(&file_path)?.len() as usize)
    );

    // Create memory-mapped view
    let manager = ZeroCopyManager::new()?;
    let mmap_view: MemoryMappedView<f64> =
        manager.create_mmap_view(file_path.to_str().unwrap(), 10000)?;

    println!(
        "✅ Created memory-mapped view: {} elements",
        mmap_view.len()
    );

    // Test memory-mapped operations
    println!("\n🔍 Memory-Mapped Operations:");
    println!("   First 5 elements: {:?}", &mmap_view.as_slice()[0..5]);
    println!(
        "   Last 5 elements: {:?}",
        &mmap_view.as_slice()[mmap_view.len() - 5..]
    );

    // Layout information
    let layout = mmap_view.layout();
    println!("\n📐 Memory-Mapped Layout:");
    println!("   Start address: 0x{:x}", layout.start_address);
    println!("   Element size: {} bytes", layout.element_size);
    println!("   Alignment: {} bytes", layout.alignment);

    // Statistics
    let stats = manager.stats()?;
    println!("\n📈 Updated Statistics:");
    println!("   Memory-mapped views: {}", stats.mmap_views_created);
    println!(
        "   Total memory managed: {}",
        format_size(stats.total_memory)
    );

    println!();
    Ok(())
}

#[allow(clippy::result_large_err)]
fn demonstrate_cache_aware_operations() -> Result<(), Box<dyn std::error::Error>> {
    println!("⚡ Cache-Aware Operations");
    println!("-------------------------");

    let manager = ZeroCopyManager::new()?;

    // Create large dataset for cache-aware operations
    let size = 100000;
    let data = (0..size).map(|i| (i as f64).sin()).collect::<Vec<_>>();
    let view = manager.create_view(data)?;

    println!(
        "🔬 Created large dataset: {} elements ({} MB)",
        view.len(),
        (view.len() * std::mem::size_of::<f64>()) as f64 / (1024.0 * 1024.0)
    );

    // Test optimal block size calculation
    let block_size = view.optimal_block_size();
    println!(
        "🧮 Optimal block size: {} elements ({} KB)",
        block_size,
        (block_size * std::mem::size_of::<f64>()) / 1024
    );

    // Perform cache-friendly linear scan
    let start_time = std::time::Instant::now();
    let positive_indices = view.linear_scan(|&x| x > 0.0);
    let scan_duration = start_time.elapsed();

    println!("\n🔍 Linear Scan Results:");
    println!("   Positive values found: {}", positive_indices.len());
    println!(
        "   Scan duration: {:.2} ms",
        scan_duration.as_secs_f64() * 1000.0
    );
    println!(
        "   Throughput: {:.1} MB/s",
        (view.len() * std::mem::size_of::<f64>()) as f64
            / (1024.0 * 1024.0 * scan_duration.as_secs_f64())
    );

    // Test blocked operations
    let other_data = vec![2.0f64; view.len()];
    let start_time = std::time::Instant::now();
    let results = view.blocked_operation(&other_data, block_size, |&a, &b| a * b);
    let blocked_duration = start_time.elapsed();

    println!("\n🔄 Blocked Operation Results:");
    println!("   Results computed: {}", results.len());
    println!(
        "   Operation duration: {:.2} ms",
        blocked_duration.as_secs_f64() * 1000.0
    );
    println!(
        "   Throughput: {:.1} MB/s",
        (results.len() * std::mem::size_of::<f64>() * 2) as f64
            / (1024.0 * 1024.0 * blocked_duration.as_secs_f64())
    );

    // Test prefetching
    let prefetch_indices: Vec<usize> = (0..view.len()).step_by(1000).collect();
    println!("\n🚀 Prefetching {} cache lines", prefetch_indices.len());
    view.prefetch(&prefetch_indices);

    println!();
    Ok(())
}

#[allow(clippy::result_large_err)]
fn demonstrate_performance_optimizations() -> Result<(), Box<dyn std::error::Error>> {
    println!("🏎️  Performance Optimizations");
    println!("------------------------------");

    let manager = ZeroCopyManager::new()?;

    // Compare different data sizes and their cache behavior
    let test_sizes = vec![
        1024,        // 1K elements - fits in L1
        32 * 1024,   // 32K elements - fits in L2
        1024 * 1024, // 1M elements - requires L3/Memory
    ];

    for &size in &test_sizes {
        println!(
            "\n📊 Testing size: {} elements ({} KB)",
            size,
            (size * std::mem::size_of::<f64>()) / 1024
        );

        // Create data and view
        let data = (0..size).map(|i| i as f64).collect::<Vec<_>>();
        let view = manager.create_view(data)?;

        // Determine expected cache level
        let topology = CacheTopology::detect()?;
        let expected_level = topology.optimal_cache_level(size * std::mem::size_of::<f64>());
        println!("   Expected cache level: {expected_level:?}");

        // Performance test: sum all elements
        let iterations = 100;
        let mut total_time = std::time::Duration::ZERO;

        for _ in 0..iterations {
            let start = std::time::Instant::now();
            let _sum: f64 = view.as_slice().iter().sum();
            total_time += start.elapsed();
        }

        let avg_time = total_time / iterations;
        let throughput =
            (size * std::mem::size_of::<f64>()) as f64 / (1024.0 * 1024.0 * avg_time.as_secs_f64());

        println!(
            "   Average time: {:.2} μs",
            avg_time.as_secs_f64() * 1_000_000.0
        );
        println!("   Throughput: {throughput:.1} MB/s");
        println!("   Cache aligned: {}", view.is_cache_aligned());
    }

    // Memory alignment demonstration
    println!("\n🎯 Memory Alignment:");
    println!("   Cache line size: {CACHE_LINE_SIZE} bytes");
    println!("   Page size: {PAGE_SIZE} bytes");

    let data = vec![42i32; 1000];
    let view = manager.create_view(data)?;
    let address = view.memory_address();

    println!("   View address: 0x{address:x}");
    println!("   Cache line aligned: {}", address % CACHE_LINE_SIZE == 0);
    println!("   Page aligned: {}", address % PAGE_SIZE == 0);

    // Final statistics
    let final_stats = manager.stats()?;
    println!("\n📈 Final Statistics:");
    println!("   Total views created: {}", final_stats.views_created);
    println!("   Memory-mapped views: {}", final_stats.mmap_views_created);
    println!(
        "   Total memory managed: {}",
        format_size(final_stats.total_memory)
    );

    println!();
    Ok(())
}

/// Format byte size in human-readable format
fn format_size(bytes: usize) -> String {
    const UNITS: &[&str] = &["B", "KB", "MB", "GB", "TB"];

    if bytes == 0 {
        return "0 B".to_string();
    }

    let mut size = bytes as f64;
    let mut unit_index = 0;

    while size >= 1024.0 && unit_index < UNITS.len() - 1 {
        size /= 1024.0;
        unit_index += 1;
    }

    if unit_index == 0 {
        format!("{} {}", bytes, UNITS[unit_index])
    } else {
        format!("{:.1} {}", size, UNITS[unit_index])
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_zero_copy_example() {
        // This test ensures the example compiles and basic functionality works
        let manager = ZeroCopyManager::new().unwrap();
        let data = vec![1, 2, 3, 4, 5];
        let view = manager.create_view(data).unwrap();

        assert_eq!(view.len(), 5);
        assert_eq!(view.as_slice(), &[1, 2, 3, 4, 5]);
    }

    #[test]
    fn test_cache_topology() {
        let topology = CacheTopology::detect().unwrap();
        assert!(topology.l1_cache_size > 0);
        assert!(topology.l2_cache_size > 0);
        assert!(topology.l3_cache_size > 0);
        assert!(topology.cpu_cores > 0);
    }

    #[test]
    fn test_cache_aware_operations() {
        let manager = ZeroCopyManager::new().unwrap();
        let data = (0..1000).collect::<Vec<i32>>();
        let view = manager.create_view(data).unwrap();

        // Test linear scan
        let evens = view.linear_scan(|&x| x % 2 == 0);
        assert_eq!(evens.len(), 500);

        // Test blocked operation
        let other = vec![2; 1000];
        let results = view.blocked_operation(&other, 100, |&a, &b| a * b);
        assert_eq!(results.len(), 1000);
    }

    #[test]
    fn test_subview_operations() {
        let manager = ZeroCopyManager::new().unwrap();
        let data = (0..100).collect::<Vec<i32>>();
        let view = manager.create_view(data).unwrap();

        let subview = view.subview(10..20).unwrap();
        assert_eq!(subview.len(), 10);
        assert_eq!(subview.as_slice()[0], 10);
        assert_eq!(subview.as_slice()[9], 19);
    }

    #[test]
    fn test_format_size() {
        assert_eq!(format_size(0), "0 B");
        assert_eq!(format_size(512), "512 B");
        assert_eq!(format_size(1024), "1.0 KB");
        assert_eq!(format_size(1024 * 1024), "1.0 MB");
        assert_eq!(format_size(1536), "1.5 KB");
    }
}