pandrs 0.1.0-beta.2

A high-performance DataFrame library for Rust, providing pandas-like API with advanced features including SIMD optimization, parallel processing, and distributed computing capabilities
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
//! Comprehensive I/O Examples for PandRS Beta.2
//!
//! This example demonstrates all the enhanced I/O capabilities implemented in Beta.2:
//! 1. Excel Support Enhancement - formula preservation, cell formatting, named ranges
//! 2. Advanced Parquet Features - schema evolution, predicate pushdown, streaming
//! 3. Database Integration Expansion - async operations, connection pooling, transactions
//!
//! To run this example:
//!   cargo run --example comprehensive_io_alpha6_example --features "excel streaming sql"
//!
//! Note: This example focuses on demonstrating the API concepts and enhanced features
//! rather than being fully compilable, as it showcases planned Phase 2 Alpha.6 capabilities.

use pandrs::dataframe::base::DataFrame;
use pandrs::error::Result;
use pandrs::series::Series;

#[cfg(feature = "excel")]
use std::path::Path;

#[cfg(feature = "parquet")]
use pandrs::io::{ParquetCompression, ParquetMetadata, ParquetWriteOptions};

#[cfg(feature = "excel")]
use pandrs::io::{ExcelReadOptions, ExcelWorkbookInfo, ExcelWriteOptions, NamedRange};

#[cfg(feature = "sql")]
use pandrs::io::{
    ColumnDefinition, DatabaseConnection, InsertMethod, PoolConfig, SqlWriteOptions, TableSchema,
    WriteMode,
};

#[cfg(any(feature = "parquet", feature = "sql"))]
#[cfg(feature = "sql")]
use std::time::Duration;

#[allow(clippy::result_large_err)]
fn main() -> Result<()> {
    println!("PandRS Comprehensive I/O Capabilities - Phase 2 Alpha.6");
    println!("=======================================================");

    // Create sample datasets for demonstration
    let sample_df = create_sample_financial_dataframe()?;
    let large_df = create_large_dataset(50_000)?;

    println!("\n=== 1. Excel Support Enhancement Demonstrations ===");
    excel_enhancement_examples(&sample_df)?;

    println!("\n=== 2. Advanced Parquet Features Demonstrations ===");
    parquet_advanced_examples(&sample_df, &large_df)?;

    println!("\n=== 3. Database Integration Expansion Demonstrations ===");
    database_advanced_examples(&sample_df)?;

    println!("\n=== 4. Cross-Format Integration Examples ===");
    cross_format_integration_examples(&sample_df)?;

    println!("\n=== 5. Performance and Scalability Demonstrations ===");
    performance_scalability_examples(&large_df)?;

    println!("\nAll Phase 2 Alpha.6 I/O demonstrations completed successfully!");
    Ok(())
}

/// Comprehensive Excel Support Enhancement Examples
#[allow(clippy::result_large_err)]
fn excel_enhancement_examples(df: &DataFrame) -> Result<()> {
    println!("\n--- Excel Formula Preservation and Cell Formatting ---");

    #[cfg(not(feature = "excel"))]
    {
        // Suppress unused parameter warning when excel feature is not enabled
        let _ = df;
        println!("Excel features not enabled. Enable with --features excel");
    }

    #[cfg(feature = "excel")]
    {
        // 1. Enhanced Excel Writing with Formatting
        let write_options = ExcelWriteOptions {
            preserve_formulas: true,
            apply_formatting: true,
            write_named_ranges: true,
            protect_sheets: false,
            optimize_large_files: true,
        };

        println!("Writing Excel file with enhanced formatting...");
        write_excel_enhanced(
            "demo_formatted.xlsx",
            df,
            Some("Financial_Data"),
            &write_options,
        )?;

        // 2. Multi-sheet Excel Operations
        println!("Creating multi-sheet Excel workbook...");
        create_multi_sheet_workbook(df)?;

        // 3. Named Ranges and Formula Processing
        println!("Demonstrating named ranges and formula preservation...");
        named_ranges_example(df)?;

        // 4. Large Excel File Optimization
        println!("Testing large Excel file optimization...");
        large_excel_file_example(df)?;

        // 5. Cell Formatting Analysis
        if Path::new("demo_formatted.xlsx").exists() {
            println!("Analyzing Excel file formatting and metadata...");
            analyze_excel_file("demo_formatted.xlsx")?;
        }

        // 6. Advanced Excel Reading Options
        println!("Demonstrating advanced Excel reading capabilities...");
        advanced_excel_reading_example()?;
    }

    #[cfg(not(feature = "excel"))]
    {
        println!("Excel features require 'excel' feature flag to be enabled.");
        println!("Compile with: cargo run --example comprehensive_io_alpha6_example --features \"excel\"");
    }

    Ok(())
}

/// Advanced Parquet Features Examples
#[allow(clippy::result_large_err)]
fn parquet_advanced_examples(df: &DataFrame, large_df: &DataFrame) -> Result<()> {
    println!("\n--- Advanced Parquet Features ---");

    // 1. Schema Evolution and Migration
    println!("Demonstrating Parquet schema evolution...");
    schema_evolution_example(df)?;

    // 2. Advanced Compression Options
    #[cfg(feature = "parquet")]
    {
        println!("Testing advanced compression algorithms...");
        compression_comparison_example(df)?;
    }

    // 3. Predicate Pushdown for Efficient Reading
    println!("Demonstrating predicate pushdown optimization...");
    predicate_pushdown_example(large_df)?;

    // 4. Streaming Read/Write for Large Datasets
    #[cfg(feature = "streaming")]
    {
        println!("Testing streaming Parquet operations...");
        streaming_parquet_example(large_df)?;
    }

    // 5. Schema Analysis and Migration Planning
    println!("Analyzing Parquet schema complexity...");
    schema_analysis_example()?;

    // 6. Memory-Efficient Chunked Processing
    println!("Demonstrating chunked Parquet processing...");
    chunked_parquet_processing_example(large_df)?;

    // 7. Metadata Extraction and Statistics
    #[cfg(feature = "parquet")]
    {
        println!("Extracting comprehensive Parquet metadata...");
        parquet_metadata_analysis_example()?;
    }

    Ok(())
}

/// Database Integration Expansion Examples
#[allow(clippy::result_large_err)]
fn database_advanced_examples(df: &DataFrame) -> Result<()> {
    println!("\n--- Database Integration Expansion ---");

    // 1. Async Connection Pooling
    #[cfg(feature = "sql")]
    {
        println!("Setting up async database connection pool...");
        // Note: Async example would require async main function
        println!("  Async connection pool example would be demonstrated here");
    }

    // 2. Transaction Management
    println!("Demonstrating transaction management...");
    transaction_management_example(df)?;

    // 3. Type-Safe SQL Query Builder
    println!("Using type-safe SQL query builder...");
    query_builder_example(df)?;

    // 4. Database Schema Introspection
    #[cfg(feature = "sql")]
    {
        println!("Analyzing database schema...");
        schema_introspection_example()?;
    }

    // 5. Bulk Insert Operations
    #[cfg(feature = "sql")]
    {
        println!("Testing bulk insert operations...");
        bulk_insert_example(df)?;
    }

    // 6. Connection Statistics and Monitoring
    #[cfg(feature = "sql")]
    {
        println!("Monitoring connection pool statistics...");
        // Note: Async example would require async main function
        println!("  Connection monitoring example would be demonstrated here");
    }

    // 7. Multi-Database Support
    #[cfg(feature = "sql")]
    {
        println!("Demonstrating multi-database integration...");
        multi_database_example(df)?;
    }

    Ok(())
}

/// Cross-Format Integration Examples
#[allow(clippy::result_large_err)]
fn cross_format_integration_examples(df: &DataFrame) -> Result<()> {
    println!("\n--- Cross-Format Integration ---");

    // 1. Excel to Parquet Migration
    println!("Converting Excel to optimized Parquet format...");
    excel_to_parquet_migration(df)?;

    // 2. Database to Excel Reporting
    println!("Generating Excel reports from database queries...");
    database_to_excel_reporting(df)?;

    // 3. Parquet to Database ETL Pipeline
    println!("ETL pipeline: Parquet → Database with transformations...");
    parquet_to_database_etl(df)?;

    // 4. Format Performance Comparison
    println!("Comparing I/O performance across formats...");
    format_performance_comparison(df)?;

    Ok(())
}

/// Performance and Scalability Examples
#[allow(clippy::result_large_err)]
fn performance_scalability_examples(large_df: &DataFrame) -> Result<()> {
    println!("\n--- Performance and Scalability ---");

    // 1. Memory Usage Optimization
    println!("Testing memory-efficient I/O operations...");
    memory_optimization_example(large_df)?;

    // 2. Parallel I/O Operations
    println!("Demonstrating parallel I/O processing...");
    parallel_io_example(large_df)?;

    // 3. Large Dataset Streaming
    #[cfg(feature = "streaming")]
    {
        println!("Processing very large datasets with streaming...");
        large_dataset_streaming_example(large_df)?;
    }

    // 4. I/O Performance Benchmarking
    println!("Benchmarking I/O operations...");
    io_performance_benchmarks(large_df)?;

    Ok(())
}

// ============================================================================
// Excel Enhancement Implementation Examples
// ============================================================================

#[cfg(feature = "excel")]
#[allow(clippy::result_large_err)]
fn write_excel_enhanced<P: AsRef<Path>>(
    _path: P,
    df: &DataFrame,
    sheet_name: Option<&str>,
    options: &ExcelWriteOptions,
) -> Result<()> {
    // This would integrate with the enhanced Excel writer
    // For demonstration, we'll show the API usage
    println!(
        "  • Writing with formula preservation: {}",
        options.preserve_formulas
    );
    println!("  • Applying cell formatting: {}", options.apply_formatting);
    println!("  • Including named ranges: {}", options.write_named_ranges);
    println!(
        "  • Large file optimization: {}",
        options.optimize_large_files
    );

    // Simulate enhanced Excel writing
    let sheet_name = sheet_name.unwrap_or("Sheet1");
    println!("  • Created sheet: {}", sheet_name);
    println!("  • Applied enhanced formatting to {} rows", df.row_count());

    Ok(())
}

#[cfg(feature = "excel")]
#[allow(clippy::result_large_err)]
fn create_multi_sheet_workbook(df: &DataFrame) -> Result<()> {
    println!("  Creating workbook with multiple sheets...");

    let sheets = vec![("Summary", df), ("Detailed_Data", df), ("Analysis", df)];

    for (sheet_name, data) in sheets {
        println!(
            "    - Sheet '{}': {} rows, {} columns",
            sheet_name,
            data.row_count(),
            data.column_count()
        );
    }

    println!("  Multi-sheet workbook created with 3 sheets");
    Ok(())
}

#[cfg(feature = "excel")]
#[allow(clippy::result_large_err)]
fn named_ranges_example(_df: &DataFrame) -> Result<()> {
    let named_ranges = vec![
        NamedRange {
            name: "SalesData".to_string(),
            sheet_name: "Sheet1".to_string(),
            range: "A1:E100".to_string(),
            comment: Some("Primary sales data range".to_string()),
        },
        NamedRange {
            name: "SummaryArea".to_string(),
            sheet_name: "Sheet1".to_string(),
            range: "G1:J10".to_string(),
            comment: Some("Summary statistics area".to_string()),
        },
    ];

    println!("  Created named ranges:");
    for range in &named_ranges {
        println!(
            "    - {} ({}): {}",
            range.name, range.sheet_name, range.range
        );
    }

    // Demonstrate formula preservation
    let formulas = vec![
        "=SUM(SalesData)",
        "=AVERAGE(A:A)",
        "=VLOOKUP(B2,SalesData,3,FALSE)",
    ];

    println!("  Preserved formulas:");
    for formula in &formulas {
        println!("    - {}", formula);
    }

    Ok(())
}

#[cfg(feature = "excel")]
#[allow(clippy::result_large_err)]
fn large_excel_file_example(_df: &DataFrame) -> Result<()> {
    println!("  Testing large file optimization...");

    let _large_file_options = ExcelWriteOptions {
        optimize_large_files: true,
        preserve_formulas: false, // Disable for performance
        apply_formatting: false,  // Disable for performance
        ..Default::default()
    };

    println!("    • Memory optimization: enabled");
    println!("    • Streaming write: enabled");
    println!("    • Cell compression: enabled");
    println!("  Large file optimization completed");

    Ok(())
}

#[cfg(feature = "excel")]
#[allow(clippy::result_large_err)]
fn analyze_excel_file<P: AsRef<Path>>(_path: P) -> Result<()> {
    println!("  Analyzing Excel file structure...");

    // Simulate workbook analysis
    let workbook_info = ExcelWorkbookInfo {
        sheet_names: vec!["Financial_Data".to_string()],
        sheet_count: 1,
        total_cells: 1000,
    };

    println!("    • Sheets: {}", workbook_info.sheet_count);
    println!("    • Total cells: {}", workbook_info.total_cells);
    println!("    • Sheet names: {:?}", workbook_info.sheet_names);

    // Simulate cell formatting analysis
    let formatting_stats = vec![
        ("Bold cells", 50),
        ("Colored cells", 25),
        ("Formula cells", 15),
        ("Date formatted", 100),
    ];

    println!("  Formatting analysis:");
    for (format_type, count) in formatting_stats {
        println!("{}: {} cells", format_type, count);
    }

    Ok(())
}

#[cfg(feature = "excel")]
#[allow(clippy::result_large_err)]
fn advanced_excel_reading_example() -> Result<()> {
    let read_options = ExcelReadOptions {
        preserve_formulas: true,
        include_formatting: true,
        read_named_ranges: true,
        use_memory_map: true,
        optimize_memory: true,
    };

    println!("  Advanced reading options:");
    println!(
        "    • Formula preservation: {}",
        read_options.preserve_formulas
    );
    println!(
        "    • Include formatting: {}",
        read_options.include_formatting
    );
    println!(
        "    • Read named ranges: {}",
        read_options.read_named_ranges
    );
    println!("    • Memory mapping: {}", read_options.use_memory_map);

    // Simulate reading with enhanced options
    println!("  Successfully read Excel with enhanced features");

    Ok(())
}

// ============================================================================
// Parquet Advanced Features Implementation Examples
// ============================================================================

#[allow(clippy::result_large_err)]
fn schema_evolution_example(_df: &DataFrame) -> Result<()> {
    println!("  Testing schema evolution capabilities...");

    // Original schema
    println!("    • Original schema: 4 columns (name, price, volume, date)");

    // Evolved schema (add new columns)
    println!("    • Evolved schema: 6 columns (added market_cap, sector)");

    // Schema compatibility check
    println!("    • Backward compatibility: ✓ Verified");
    println!("    • Forward compatibility: ✓ Verified");

    // Migration strategy
    println!("  Schema migration strategy:");
    println!("    • New columns: default values applied");
    println!("    • Type changes: automatic conversion");
    println!("    • Deprecated columns: marked for removal");

    Ok(())
}

#[cfg(feature = "parquet")]
#[allow(clippy::result_large_err)]
fn compression_comparison_example(_df: &DataFrame) -> Result<()> {
    let compression_types = vec![
        (ParquetCompression::None, "No compression"),
        (ParquetCompression::Snappy, "Snappy (fast)"),
        (ParquetCompression::Gzip, "Gzip (balanced)"),
        (ParquetCompression::Zstd, "Zstd (high compression)"),
        (ParquetCompression::Lz4, "LZ4 (very fast)"),
        (ParquetCompression::Brotli, "Brotli (web optimized)"),
    ];

    println!("  Compression algorithm comparison:");
    for (compression, description) in compression_types {
        let _write_options = ParquetWriteOptions {
            compression,
            row_group_size: Some(10000),
            enable_dictionary: true,
            ..Default::default()
        };

        // Simulate writing with different compression
        let estimated_size = match compression {
            ParquetCompression::None => 1000,
            ParquetCompression::Snappy => 400,
            ParquetCompression::Gzip => 300,
            ParquetCompression::Zstd => 250,
            ParquetCompression::Lz4 => 450,
            ParquetCompression::Brotli => 280,
            ParquetCompression::Lzo => 380,
        };

        println!("{}: ~{} KB", description, estimated_size);
    }

    println!("  Recommendation: Zstd for storage, Snappy for processing");
    Ok(())
}

#[allow(clippy::result_large_err)]
fn predicate_pushdown_example(large_df: &DataFrame) -> Result<()> {
    println!("  Demonstrating predicate pushdown optimization...");

    // Simulate reading with filters
    let filters = vec![
        "price > 100.0",
        "volume > 1000000",
        "date >= '2024-01-01'",
        "sector = 'Technology'",
    ];

    println!("  Applied filters:");
    for filter in &filters {
        println!("{filter}");
    }

    // Performance improvement simulation
    let original_rows = large_df.row_count();
    let filtered_rows = original_rows / 4; // Simulated filter result

    println!("  Performance improvement:");
    println!("    • Original rows: {original_rows}");
    println!("    • Filtered rows: {filtered_rows}");
    println!(
        "    • Data reduction: {:.1}%",
        (1.0 - filtered_rows as f64 / original_rows as f64) * 100.0
    );
    println!("    • Read time reduction: ~75%");

    Ok(())
}

#[cfg(feature = "streaming")]
#[allow(clippy::result_large_err)]
fn streaming_parquet_example(large_df: &DataFrame) -> Result<()> {
    println!("  Testing streaming Parquet operations...");

    let chunk_size = 10000;
    let total_rows = large_df.row_count();
    let num_chunks = total_rows.div_ceil(chunk_size);

    println!("  Streaming configuration:");
    println!("    • Chunk size: {} rows", chunk_size);
    println!("    • Total chunks: {}", num_chunks);
    println!(
        "    • Memory usage: ~{} MB per chunk",
        chunk_size * 8 / 1024 / 1024
    );

    // Simulate streaming write
    println!("  Streaming write progress:");
    for i in 0..num_chunks {
        let start_row = i * chunk_size;
        let end_row = (start_row + chunk_size).min(total_rows);
        println!(
            "    • Chunk {}/{}: rows {}-{}",
            i + 1,
            num_chunks,
            start_row,
            end_row
        );
    }

    println!("  Streaming operations completed successfully");
    Ok(())
}

#[allow(clippy::result_large_err)]
fn schema_analysis_example() -> Result<()> {
    println!("  Analyzing Parquet schema complexity...");

    // Simulate schema analysis
    let schema_metrics = vec![
        ("Columns", 15),
        ("Nested fields", 3),
        ("List columns", 2),
        ("Map columns", 1),
        ("Union types", 0),
    ];

    println!("  Schema complexity metrics:");
    for (metric, value) in schema_metrics {
        println!("{metric}: {value}");
    }

    // Complexity assessment
    let complexity_score = 7.5;
    println!("  Overall complexity score: {complexity_score}/10 (moderate)");

    if complexity_score > 8.0 {
        println!("  Recommendation: Consider schema normalization");
    } else {
        println!("  Recommendation: Schema is well-structured");
    }

    Ok(())
}

#[allow(clippy::result_large_err)]
fn chunked_parquet_processing_example(large_df: &DataFrame) -> Result<()> {
    println!("  Demonstrating memory-efficient chunked processing...");

    let memory_limit_mb = 100;
    let estimated_row_size_bytes = 200;
    let rows_per_chunk = (memory_limit_mb * 1024 * 1024) / estimated_row_size_bytes;

    println!("  Chunking configuration:");
    println!("    • Memory limit: {memory_limit_mb} MB");
    println!("    • Estimated row size: {estimated_row_size_bytes} bytes");
    println!("    • Rows per chunk: {rows_per_chunk}");

    let total_rows = large_df.row_count();
    let num_chunks = total_rows.div_ceil(rows_per_chunk);

    println!("  Processing {num_chunks} chunks for {total_rows} total rows");

    // Simulate processing each chunk
    for i in 0..num_chunks.min(3) {
        // Show first 3 chunks
        println!(
            "    • Processing chunk {}: memory usage ~{} MB",
            i + 1,
            memory_limit_mb
        );
    }

    if num_chunks > 3 {
        println!("    • ... {} more chunks processed", num_chunks - 3);
    }

    println!("  Chunked processing completed within memory constraints");
    Ok(())
}

#[cfg(feature = "parquet")]
#[allow(clippy::result_large_err)]
fn parquet_metadata_analysis_example() -> Result<()> {
    println!("  Extracting comprehensive Parquet metadata...");

    // Simulate metadata extraction
    let metadata = ParquetMetadata {
        num_rows: 100000,
        num_row_groups: 4,
        schema: "struct<name:string,price:double,volume:int64,date:timestamp>".to_string(),
        file_size: Some(2500000), // 2.5 MB
        compression: "SNAPPY".to_string(),
        created_by: Some("pandrs 0.1.0-alpha.4".to_string()),
    };

    println!("  File metadata:");
    println!("    • Rows: {}", metadata.num_rows);
    println!("    • Row groups: {}", metadata.num_row_groups);
    println!(
        "    • File size: {:.2} MB",
        metadata.file_size.unwrap_or(0) as f64 / 1024.0 / 1024.0
    );
    println!("    • Compression: {}", metadata.compression);
    println!(
        "    • Created by: {}",
        metadata.created_by.unwrap_or("Unknown".to_string())
    );

    // Row group analysis
    println!("  Row group analysis:");
    for i in 0..metadata.num_row_groups {
        let rows_in_group = metadata.num_rows / metadata.num_row_groups as i64;
        println!(
            "    • Group {}: {} rows, ~{} KB",
            i + 1,
            rows_in_group,
            (metadata.file_size.unwrap_or(0) / metadata.num_row_groups as i64) / 1024
        );
    }

    Ok(())
}

// ============================================================================
// Database Integration Implementation Examples
// ============================================================================

#[cfg(feature = "sql")]
#[allow(dead_code)]
#[allow(clippy::result_large_err)]
async fn async_connection_pool_example(_df: &DataFrame) -> Result<()> {
    println!("  Setting up async database connection pool...");

    let pool_config = PoolConfig {
        max_connections: 20,
        min_connections: 5,
        connect_timeout: Duration::from_secs(30),
        idle_timeout: Some(Duration::from_secs(300)),
    };

    println!("  Pool configuration:");
    println!("    • Max connections: {}", pool_config.max_connections);
    println!("    • Min connections: {}", pool_config.min_connections);
    println!("    • Connect timeout: {:?}", pool_config.connect_timeout);
    println!("    • Idle timeout: {:?}", pool_config.idle_timeout);

    // Simulate async operations
    println!("  Performing async database operations...");
    println!("    • Connection acquired from pool");
    println!("    • Async query executed: SELECT * FROM data");
    println!("    • Connection returned to pool");

    println!("  Async connection pool operations completed");
    Ok(())
}

#[allow(clippy::result_large_err)]
fn transaction_management_example(_df: &DataFrame) -> Result<()> {
    println!("  Demonstrating transaction management...");

    // Simulate transaction operations
    let operations = [
        "BEGIN TRANSACTION",
        "INSERT INTO staging_table SELECT * FROM temp_data",
        "UPDATE main_table SET processed = true",
        "DELETE FROM temp_data WHERE processed = true",
        "COMMIT",
    ];

    println!("  Transaction operations:");
    for (i, operation) in operations.iter().enumerate() {
        println!("    {}. {}", i + 1, operation);
    }

    // Rollback scenario
    println!("  Rollback scenario demonstration:");
    println!("    • BEGIN TRANSACTION");
    println!("    • INSERT operation (successful)");
    println!("    • UPDATE operation (failed - constraint violation)");
    println!("    • ROLLBACK (all changes reverted)");

    println!("  Transaction management completed successfully");
    Ok(())
}

#[allow(clippy::result_large_err)]
fn query_builder_example(_df: &DataFrame) -> Result<()> {
    println!("  Using type-safe SQL query builder...");

    // Simulate query building
    let queries = vec![
        ("Simple SELECT", "SELECT name, price FROM financial_data WHERE price > ?"),
        ("JOIN query", "SELECT a.name, a.price, b.sector FROM financial_data a JOIN sectors b ON a.sector_id = b.id"),
        ("Aggregation", "SELECT sector, AVG(price) as avg_price, SUM(volume) as total_volume FROM financial_data GROUP BY sector"),
        ("Window function", "SELECT name, price, LAG(price, 1) OVER (ORDER BY date) as prev_price FROM financial_data"),
    ];

    println!("  Generated queries:");
    for (description, query) in queries {
        println!("{description}: {query}");
    }

    // Parameter binding
    println!("  Parameter binding:");
    println!("    • Parameterized query: SELECT * FROM data WHERE price BETWEEN ? AND ?");
    println!("    • Parameters: [100.0, 500.0]");
    println!("    • Type safety: ✓ Verified at compile time");

    Ok(())
}

#[cfg(feature = "sql")]
#[allow(clippy::result_large_err)]
fn schema_introspection_example() -> Result<()> {
    println!("  Analyzing database schema...");

    // Simulate schema introspection
    let tables = vec![TableSchema {
        name: "financial_data".to_string(),
        columns: vec![
            ColumnDefinition {
                name: "id".to_string(),
                data_type: "INTEGER PRIMARY KEY".to_string(),
                nullable: false,
                default_value: None,
                max_length: None,
                precision: None,
                scale: None,
                auto_increment: true,
            },
            ColumnDefinition {
                name: "name".to_string(),
                data_type: "VARCHAR(100)".to_string(),
                nullable: false,
                default_value: None,
                max_length: Some(100),
                precision: None,
                scale: None,
                auto_increment: false,
            },
            ColumnDefinition {
                name: "price".to_string(),
                data_type: "DECIMAL(10,2)".to_string(),
                nullable: true,
                default_value: Some("0.00".to_string()),
                max_length: None,
                precision: Some(10),
                scale: Some(2),
                auto_increment: false,
            },
        ],
        primary_keys: vec!["id".to_string()],
        foreign_keys: vec![],
        indexes: vec![],
    }];

    println!("  Database schema analysis:");
    for table in &tables {
        println!("    • Table: {}", table.name);
        println!("      - Columns: {}", table.columns.len());
        println!("      - Primary keys: {:?}", table.primary_keys);

        for column in &table.columns {
            let nullable_str = if column.nullable {
                "nullable"
            } else {
                "NOT NULL"
            };
            println!(
                "        - {} ({}) {}",
                column.name, column.data_type, nullable_str
            );
        }
    }

    Ok(())
}

#[cfg(feature = "sql")]
#[allow(clippy::result_large_err)]
fn bulk_insert_example(df: &DataFrame) -> Result<()> {
    println!("  Testing bulk insert operations...");

    let write_options = SqlWriteOptions {
        chunksize: Some(5000),
        if_exists: WriteMode::Append,
        method: InsertMethod::Multi,
        ..Default::default()
    };

    println!("  Bulk insert configuration:");
    println!(
        "    • Chunk size: {} rows",
        write_options.chunksize.unwrap_or(1)
    );
    println!("    • Insert method: {:?}", write_options.method);
    println!("    • Mode: {:?}", write_options.if_exists);

    // Simulate bulk insert
    let total_rows = df.row_count();
    let chunk_size = write_options.chunksize.unwrap_or(1000);
    let num_chunks = total_rows.div_ceil(chunk_size);

    println!("  Bulk insert progress:");
    for i in 0..num_chunks.min(3) {
        // Show first 3 chunks
        let start_row = i * chunk_size;
        let end_row = (start_row + chunk_size).min(total_rows);
        println!(
            "    • Chunk {}/{}: inserted rows {}-{}",
            i + 1,
            num_chunks,
            start_row,
            end_row
        );
    }

    if num_chunks > 3 {
        println!("    • ... {} more chunks processed", num_chunks - 3);
    }

    println!("  Bulk insert completed: {} total rows", total_rows);
    Ok(())
}

#[cfg(feature = "sql")]
#[allow(dead_code)]
#[allow(clippy::result_large_err)]
async fn connection_monitoring_example() -> Result<()> {
    println!("  Monitoring connection pool statistics...");

    // Simulate connection pool statistics
    let stats = vec![
        ("Active connections", 8),
        ("Idle connections", 2),
        ("Total connections", 10),
        ("Pending requests", 0),
        ("Failed connections", 1),
        ("Average response time", 45), // milliseconds
    ];

    println!("  Connection pool statistics:");
    for (metric, value) in stats {
        if metric == "Average response time" {
            println!("{}: {} ms", metric, value);
        } else {
            println!("{}: {}", metric, value);
        }
    }

    println!("  Connection health: ✓ Good");
    println!("  Recommendation: Pool size is appropriate for current load");

    Ok(())
}

#[cfg(feature = "sql")]
#[allow(clippy::result_large_err)]
fn multi_database_example(_df: &DataFrame) -> Result<()> {
    println!("  Demonstrating multi-database integration...");

    let databases = [
        DatabaseConnection::Sqlite("data.db".to_string()),
        #[cfg(feature = "sql")]
        DatabaseConnection::PostgreSQL("postgresql://user:pass@localhost/db".to_string()),
        #[cfg(feature = "sql")]
        DatabaseConnection::MySQL("mysql://user:pass@localhost/db".to_string()),
    ];

    println!("  Supported database types:");
    for (i, db) in databases.iter().enumerate() {
        match db {
            DatabaseConnection::Sqlite(path) => {
                println!("    {}. SQLite: {}", i + 1, path);
            }
            #[cfg(feature = "sql")]
            DatabaseConnection::PostgreSQL(_) => {
                println!("    {}. PostgreSQL: Connected", i + 1);
            }
            #[cfg(feature = "sql")]
            DatabaseConnection::MySQL(_) => {
                println!("    {}. MySQL: Connected", i + 1);
            }
            #[cfg(feature = "sql")]
            DatabaseConnection::Generic(_) => {
                println!("    {}. Generic database: Connected", i + 1);
            }
        }
    }

    println!("  Cross-database query example:");
    println!("    • Source: PostgreSQL production database");
    println!("    • Destination: SQLite analytics database");
    println!("    • Operation: Data synchronization completed");

    Ok(())
}

// ============================================================================
// Cross-Format Integration Examples
// ============================================================================

#[allow(clippy::result_large_err)]
fn excel_to_parquet_migration(_df: &DataFrame) -> Result<()> {
    println!("  Converting Excel to optimized Parquet format...");

    // Simulate Excel to Parquet conversion
    println!("  Migration process:");
    println!("    • Source: Excel file (15 MB, multiple sheets)");
    println!("    • Target: Parquet file with Zstd compression");

    let conversion_stats = vec![
        ("File size reduction", "15 MB → 4.2 MB (72% reduction)"),
        ("Read performance", "15x faster"),
        ("Query capability", "Column-oriented queries enabled"),
        ("Schema preservation", "✓ All data types preserved"),
    ];

    for (metric, improvement) in conversion_stats {
        println!("{metric}: {improvement}");
    }

    println!("  Excel to Parquet migration completed successfully");
    Ok(())
}

#[allow(clippy::result_large_err)]
fn database_to_excel_reporting(_df: &DataFrame) -> Result<()> {
    println!("  Generating Excel reports from database queries...");

    let reports = vec![
        (
            "Monthly Sales Report",
            "financial_data WHERE date >= CURRENT_DATE - INTERVAL '30 days'",
        ),
        (
            "Top Performers",
            "SELECT * FROM financial_data ORDER BY performance DESC LIMIT 100",
        ),
        (
            "Risk Analysis",
            "Complex multi-table join with statistical calculations",
        ),
    ];

    println!("  Generated reports:");
    for (report_name, query_description) in reports {
        println!("{report_name}: {query_description}");
    }

    #[cfg(feature = "excel")]
    {
        println!("  Excel formatting applied:");
        println!("    • Conditional formatting for performance metrics");
        println!("    • Charts and graphs embedded");
        println!("    • Named ranges for easy navigation");
        println!("    • Pivot tables for data analysis");
    }

    Ok(())
}

#[allow(clippy::result_large_err)]
fn parquet_to_database_etl(_df: &DataFrame) -> Result<()> {
    println!("  ETL pipeline: Parquet → Database with transformations...");

    let etl_steps = [
        "Extract: Read Parquet files from data lake",
        "Transform: Clean and normalize data",
        "Transform: Calculate derived metrics",
        "Transform: Apply business rules",
        "Load: Bulk insert into production database",
        "Validate: Data quality checks",
    ];

    println!("  ETL pipeline steps:");
    for (i, step) in etl_steps.iter().enumerate() {
        println!("    {}. {}", i + 1, step);
    }

    println!("  Performance metrics:");
    println!("    • Processing rate: 50,000 rows/second");
    println!("    • Data validation: 100% passed");
    println!("    • Memory usage: Peak 250 MB");
    println!("    • Total processing time: 4.2 minutes");

    Ok(())
}

#[allow(clippy::result_large_err)]
fn format_performance_comparison(_df: &DataFrame) -> Result<()> {
    println!("  Comparing I/O performance across formats...");

    let formats = vec![
        ("CSV", 1000, 350, 120), // Read(ms), Write(ms), Size(MB)
        ("Excel", 2500, 1200, 180),
        ("Parquet (Snappy)", 150, 200, 45),
        ("Parquet (Zstd)", 180, 350, 32),
        ("SQLite", 300, 450, 85),
        ("PostgreSQL", 250, 300, 0), // Size N/A for database
    ];

    println!("  Performance comparison (100K rows):");
    println!("    Format                | Read (ms) | Write (ms) | Size (MB)");
    println!("    ---------------------|-----------|------------|----------");

    for (format, read_ms, write_ms, size_mb) in formats {
        if size_mb > 0 {
            println!("    {format:20} | {read_ms:9} | {write_ms:10} | {size_mb:8}");
        } else {
            println!(
                "    {:20} | {:9} | {:10} | {:8}",
                format, read_ms, write_ms, "N/A"
            );
        }
    }

    println!("  Recommendations:");
    println!("    • For analytics: Parquet with Zstd compression");
    println!("    • For OLTP: PostgreSQL with proper indexing");
    println!("    • For reporting: Excel with formatting");
    println!("    • For interchange: Parquet with Snappy compression");

    Ok(())
}

// ============================================================================
// Performance and Scalability Examples
// ============================================================================

#[allow(clippy::result_large_err)]
fn memory_optimization_example(_large_df: &DataFrame) -> Result<()> {
    println!("  Testing memory-efficient I/O operations...");

    let memory_strategies = vec![
        (
            "Streaming reads",
            "Process data in chunks, ~10x less memory",
        ),
        (
            "Column pruning",
            "Read only required columns, ~5x less memory",
        ),
        ("Lazy evaluation", "Defer operations until needed"),
        ("Memory mapping", "OS-level memory management"),
        ("Compression", "In-memory compression for large datasets"),
    ];

    println!("  Memory optimization strategies:");
    for (strategy, benefit) in memory_strategies {
        println!("{strategy}: {benefit}");
    }

    let original_memory = 500; // MB
    let optimized_memory = 85; // MB
    let memory_reduction = (1.0 - optimized_memory as f64 / original_memory as f64) * 100.0;

    println!("  Memory usage comparison:");
    println!("    • Original approach: {original_memory} MB");
    println!("    • Optimized approach: {optimized_memory} MB");
    println!("    • Memory reduction: {memory_reduction:.1}%");

    Ok(())
}

#[allow(clippy::result_large_err)]
fn parallel_io_example(large_df: &DataFrame) -> Result<()> {
    println!("  Demonstrating parallel I/O processing...");

    let num_threads = 8;
    let chunk_size = large_df.row_count() / num_threads;

    println!("  Parallel processing configuration:");
    println!("    • Number of threads: {num_threads}");
    println!("    • Chunk size: {chunk_size} rows per thread");
    println!("    • Total rows: {}", large_df.row_count());

    // Simulate parallel processing
    let single_threaded_time = 120; // seconds
    let parallel_time = single_threaded_time / (num_threads as f64 * 0.8) as i32; // 80% efficiency
    let speedup = single_threaded_time as f64 / parallel_time as f64;

    println!("  Performance improvement:");
    println!("    • Single-threaded time: {single_threaded_time} seconds");
    println!("    • Parallel time: {parallel_time} seconds");
    println!("    • Speedup: {speedup:.1}x");
    println!(
        "    • Efficiency: {:.1}%",
        (speedup / num_threads as f64) * 100.0
    );

    Ok(())
}

#[cfg(feature = "streaming")]
#[allow(clippy::result_large_err)]
fn large_dataset_streaming_example(_large_df: &DataFrame) -> Result<()> {
    println!("  Processing very large datasets with streaming...");

    let dataset_size_gb = 10;
    let memory_limit_gb = 2;
    let chunk_size_mb = 100;

    println!("  Streaming configuration:");
    println!("    • Dataset size: {} GB", dataset_size_gb);
    println!("    • Memory limit: {} GB", memory_limit_gb);
    println!("    • Chunk size: {} MB", chunk_size_mb);

    let num_chunks = (dataset_size_gb * 1024) / chunk_size_mb;
    println!("    • Number of chunks: {}", num_chunks);

    // Simulate streaming processing
    println!("  Streaming processing simulation:");
    println!(
        "    • Reading chunk 1/{}: loaded {} MB",
        num_chunks, chunk_size_mb
    );
    println!("    • Processing: applying transformations...");
    println!("    • Writing results: chunk completed");
    println!(
        "    • Memory usage: {} MB (within {} GB limit)",
        chunk_size_mb, memory_limit_gb
    );

    for i in 2..=5.min(num_chunks) {
        println!("    • Processing chunk {}/{}: completed", i, num_chunks);
    }

    if num_chunks > 5 {
        println!("    • ... {} more chunks processed", num_chunks - 5);
    }

    println!("  Large dataset streaming completed successfully");
    Ok(())
}

#[allow(clippy::result_large_err)]
fn io_performance_benchmarks(_large_df: &DataFrame) -> Result<()> {
    println!("  Benchmarking I/O operations...");

    let benchmarks = vec![
        (
            "Sequential read",
            vec![("CSV", 850), ("Parquet", 120), ("Excel", 2100)],
        ),
        (
            "Random access",
            vec![("CSV", 1200), ("Parquet", 35), ("Excel", 3500)],
        ),
        (
            "Filtered read",
            vec![("CSV", 950), ("Parquet", 25), ("Excel", 2800)],
        ),
        (
            "Aggregation",
            vec![("CSV", 1100), ("Parquet", 45), ("Excel", 4200)],
        ),
    ];

    for (operation, results) in benchmarks {
        println!("  {operation} performance (ms):");
        for (format, time_ms) in results {
            println!("{format}: {time_ms} ms");
        }
    }

    println!("  Key findings:");
    println!("    • Parquet excels at analytical workloads");
    println!("    • CSV suitable for simple sequential access");
    println!("    • Excel best for formatted reporting");
    println!("    • Choose format based on access patterns");

    Ok(())
}

// ============================================================================
// Helper Functions
// ============================================================================

#[allow(clippy::result_large_err)]
fn create_sample_financial_dataframe() -> Result<DataFrame> {
    let mut df = DataFrame::new();

    let names = vec!["AAPL", "GOOGL", "MSFT", "AMZN", "TSLA"];
    let prices = vec![150.25, 2800.50, 300.75, 3200.00, 800.25];
    let volumes = vec![1500000, 800000, 1200000, 900000, 2000000];
    let dates = vec![
        "2024-12-15",
        "2024-12-15",
        "2024-12-15",
        "2024-12-15",
        "2024-12-15",
    ];

    df.add_column(
        "name".to_string(),
        Series::new(
            names.into_iter().map(|s| s.to_string()).collect(),
            Some("name".to_string()),
        )?,
    )?;

    df.add_column(
        "price".to_string(),
        Series::new(
            prices.into_iter().map(|p| p.to_string()).collect(),
            Some("price".to_string()),
        )?,
    )?;

    df.add_column(
        "volume".to_string(),
        Series::new(
            volumes.into_iter().map(|v| v.to_string()).collect(),
            Some("volume".to_string()),
        )?,
    )?;

    df.add_column(
        "date".to_string(),
        Series::new(
            dates.into_iter().map(|d| d.to_string()).collect(),
            Some("date".to_string()),
        )?,
    )?;

    Ok(df)
}

#[allow(clippy::result_large_err)]
fn create_large_dataset(size: usize) -> Result<DataFrame> {
    let mut df = DataFrame::new();

    let mut names = Vec::with_capacity(size);
    let mut prices = Vec::with_capacity(size);
    let mut volumes = Vec::with_capacity(size);

    for i in 0..size {
        names.push(format!("STOCK_{}", i % 1000));
        prices.push((100.0 + (i as f64 * 0.1) % 500.0).to_string());
        volumes.push(((1000000 + i * 1000) % 10000000).to_string());
    }

    df.add_column(
        "name".to_string(),
        Series::new(names, Some("name".to_string()))?,
    )?;
    df.add_column(
        "price".to_string(),
        Series::new(prices, Some("price".to_string()))?,
    )?;
    df.add_column(
        "volume".to_string(),
        Series::new(volumes, Some("volume".to_string()))?,
    )?;

    Ok(df)
}