pandrs 0.1.0-beta.2

A high-performance DataFrame library for Rust, providing pandas-like API with advanced features including SIMD optimization, parallel processing, and distributed computing capabilities
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
//! Comprehensive PandRS Tutorial
//!
//! This example demonstrates common data analysis workflows using PandRS,
//! including data loading, cleaning, transformation, analysis, and visualization.

//use pandrs::{DataFrame, Series}; // Currently unused
use pandrs::optimized::OptimizedDataFrame;
use std::collections::HashMap;

#[allow(clippy::result_large_err)]
fn main() -> Result<(), Box<dyn std::error::Error>> {
    println!("PandRS Comprehensive Tutorial");
    println!("============================\n");

    // Step 1: Create and populate a DataFrame with sales data
    tutorial_step_1_data_creation()?;

    // Step 2: Data cleaning and preparation
    tutorial_step_2_data_cleaning()?;

    // Step 3: Data transformation and feature engineering
    tutorial_step_3_transformation()?;

    // Step 4: Statistical analysis
    tutorial_step_4_analysis()?;

    // Step 5: Grouping and aggregation
    tutorial_step_5_grouping()?;

    // Step 6: Data export and persistence
    tutorial_step_6_persistence()?;

    println!("\n🎉 Tutorial completed successfully!");
    Ok(())
}

/// Step 1: Creating and populating DataFrames
#[allow(clippy::result_large_err)]
fn tutorial_step_1_data_creation() -> Result<(), Box<dyn std::error::Error>> {
    println!("Step 1: Data Creation and Basic Operations");
    println!("==========================================");

    // Create an OptimizedDataFrame (recommended for performance)
    let mut sales_df = OptimizedDataFrame::new();

    // Add columns with different data types
    sales_df.add_string_column(
        "product",
        vec![
            "Laptop".to_string(),
            "Phone".to_string(),
            "Tablet".to_string(),
            "Monitor".to_string(),
            "Keyboard".to_string(),
            "Mouse".to_string(),
        ],
    )?;

    sales_df.add_int_column("quantity", vec![10, 25, 15, 8, 50, 30])?;

    sales_df.add_float_column("price", vec![999.99, 599.99, 399.99, 249.99, 79.99, 29.99])?;

    sales_df.add_string_column(
        "category",
        vec![
            "Electronics".to_string(),
            "Electronics".to_string(),
            "Electronics".to_string(),
            "Electronics".to_string(),
            "Accessories".to_string(),
            "Accessories".to_string(),
        ],
    )?;

    sales_df.add_string_column(
        "region",
        vec![
            "North".to_string(),
            "South".to_string(),
            "East".to_string(),
            "West".to_string(),
            "North".to_string(),
            "South".to_string(),
        ],
    )?;

    // Display basic information about the DataFrame
    println!(
        "DataFrame created with {} rows and {} columns",
        sales_df.row_count(),
        sales_df.column_count()
    );
    println!("Column names: {:?}", sales_df.column_names());

    // Calculate total revenue for each product
    let mut revenue_values = Vec::new();
    let quantity_binding = sales_df.column("quantity")?;
    let quantity_col = quantity_binding.as_int64().unwrap();
    let price_binding = sales_df.column("price")?;
    let price_col = price_binding.as_float64().unwrap();

    for i in 0..sales_df.row_count() {
        let qty = quantity_col.get(i)?.unwrap() as f64;
        let price = price_col.get(i)?.unwrap();
        revenue_values.push(qty * price);
    }

    sales_df.add_float_column("revenue", revenue_values)?;

    println!("Added revenue column");
    println!("Sample data preview (first 3 rows):");
    for i in 0..3.min(sales_df.row_count()) {
        let product_binding = sales_df.column("product")?;
        let product = product_binding.as_string().unwrap().get(i)?.unwrap();
        let quantity_binding = sales_df.column("quantity")?;
        let quantity = quantity_binding.as_int64().unwrap().get(i)?.unwrap();
        let price_binding = sales_df.column("price")?;
        let price = price_binding.as_float64().unwrap().get(i)?.unwrap();
        let revenue_binding = sales_df.column("revenue")?;
        let revenue = revenue_binding.as_float64().unwrap().get(i)?.unwrap();
        println!("  {product} | Qty: {quantity} | Price: ${price:.2} | Revenue: ${revenue:.2}");
    }
    println!();

    Ok(())
}

/// Step 2: Data cleaning and validation
#[allow(clippy::result_large_err)]
fn tutorial_step_2_data_cleaning() -> Result<(), Box<dyn std::error::Error>> {
    println!("Step 2: Data Cleaning and Validation");
    println!("====================================");

    let mut df = OptimizedDataFrame::new();

    // Create data with some edge cases to demonstrate cleaning
    df.add_string_column(
        "customer_name",
        vec![
            "John Doe".to_string(),
            "jane smith".to_string(), // lowercase
            "".to_string(),           // empty string
            "Bob Johnson".to_string(),
            "ALICE WILLIAMS".to_string(), // uppercase
        ],
    )?;

    df.add_float_column("score", vec![85.5, 92.0, -1.0, 78.5, 95.0])?; // -1.0 as invalid score
    df.add_int_column("age", vec![25, 35, 0, 42, 29])?; // 0 as potentially invalid age

    println!("Original data:");
    for i in 0..df.row_count() {
        let name_binding = df.column("customer_name")?;
        let name = name_binding.as_string().unwrap().get(i)?.unwrap();
        let score_binding = df.column("score")?;
        let score = score_binding.as_float64().unwrap().get(i)?.unwrap();
        let age_binding = df.column("age")?;
        let age = age_binding.as_int64().unwrap().get(i)?.unwrap();
        println!("  '{name}' | Score: {score} | Age: {age}");
    }

    // Data cleaning steps:
    // 1. Normalize customer names (this would typically be done with a dedicated function)
    // 2. Validate score ranges
    // 3. Check for reasonable age values

    let score_binding = df.column("score")?;
    let score_col = score_binding.as_float64().unwrap();
    let mut valid_scores = 0;
    let mut total_score = 0.0;

    for i in 0..df.row_count() {
        let score = score_col.get(i)?.unwrap();
        if (0.0..=100.0).contains(&score) {
            valid_scores += 1;
            total_score += score;
        }
    }

    println!("\nData quality check:");
    println!("Valid scores: {}/{}", valid_scores, df.row_count());
    println!(
        "Average valid score: {:.2}",
        total_score / valid_scores as f64
    );

    // Check for empty names
    let name_binding = df.column("customer_name")?;
    let name_col = name_binding.as_string().unwrap();
    let mut empty_names = 0;
    for i in 0..df.row_count() {
        let name = name_col.get(i)?.unwrap();
        if name.trim().is_empty() {
            empty_names += 1;
        }
    }
    println!("Empty names found: {empty_names}");
    println!();

    Ok(())
}

/// Step 3: Data transformation and feature engineering
#[allow(clippy::result_large_err)]
fn tutorial_step_3_transformation() -> Result<(), Box<dyn std::error::Error>> {
    println!("Step 3: Data Transformation and Feature Engineering");
    println!("===================================================");

    let mut df = OptimizedDataFrame::new();

    // Create time series-like data
    df.add_int_column("month", vec![1, 2, 3, 4, 5, 6])?;
    df.add_float_column(
        "sales",
        vec![1000.0, 1200.0, 1100.0, 1400.0, 1350.0, 1500.0],
    )?;
    df.add_float_column("costs", vec![600.0, 720.0, 660.0, 840.0, 810.0, 900.0])?;

    // Feature engineering: Calculate profit and profit margin
    let sales_binding = df.column("sales")?;
    let sales_col = sales_binding.as_float64().unwrap();
    let costs_binding = df.column("costs")?;
    let costs_col = costs_binding.as_float64().unwrap();

    let mut profit_values = Vec::new();
    let mut margin_values = Vec::new();

    for i in 0..df.row_count() {
        let sales = sales_col.get(i)?.unwrap();
        let costs = costs_col.get(i)?.unwrap();
        let profit = sales - costs;
        let margin = (profit / sales) * 100.0;

        profit_values.push(profit);
        margin_values.push(margin);
    }

    df.add_float_column("profit", profit_values)?;
    df.add_float_column("profit_margin", margin_values)?;

    // Calculate moving averages (3-month window)
    let mut moving_avg_sales = Vec::new();
    let sales_binding = df.column("sales")?;
    let sales_col = sales_binding.as_float64().unwrap();

    for i in 0..df.row_count() {
        let start = i.saturating_sub(2);
        let end = i + 1;
        let window_size = end - start;

        let mut sum = 0.0;
        for j in start..end {
            sum += sales_col.get(j)?.unwrap();
        }
        moving_avg_sales.push(sum / window_size as f64);
    }

    df.add_float_column("sales_3ma", moving_avg_sales)?;

    // Categorize months by season
    let month_binding = df.column("month")?;
    let month_col = month_binding.as_int64().unwrap();
    let mut seasons = Vec::new();

    for i in 0..df.row_count() {
        let month = month_col.get(i)?.unwrap();
        let season = match month {
            1..=2 => "Winter",
            3..=5 => "Spring",
            6..=8 => "Summer",
            9..=11 => "Fall",
            12 => "Winter",
            _ => "Unknown",
        };
        seasons.push(season.to_string());
    }

    df.add_string_column("season", seasons)?;

    println!("Transformed data with new features:");
    for i in 0..df.row_count() {
        let month_binding = df.column("month")?;
        let month = month_binding.as_int64().unwrap().get(i)?.unwrap();
        let sales_binding = df.column("sales")?;
        let sales = sales_binding.as_float64().unwrap().get(i)?.unwrap();
        let profit_binding = df.column("profit")?;
        let profit = profit_binding.as_float64().unwrap().get(i)?.unwrap();
        let margin_binding = df.column("profit_margin")?;
        let margin = margin_binding.as_float64().unwrap().get(i)?.unwrap();
        let ma_binding = df.column("sales_3ma")?;
        let ma = ma_binding.as_float64().unwrap().get(i)?.unwrap();
        let season_binding = df.column("season")?;
        let season = season_binding.as_string().unwrap().get(i)?.unwrap();

        println!(
            "  Month {month}: Sales ${sales:.0} | Profit ${profit:.0} | Margin {margin:.1}% | 3MA ${ma:.0} | {season}"
        );
    }
    println!();

    Ok(())
}

/// Step 4: Statistical analysis
#[allow(clippy::result_large_err)]
fn tutorial_step_4_analysis() -> Result<(), Box<dyn std::error::Error>> {
    println!("Step 4: Statistical Analysis");
    println!("============================");

    let mut df = OptimizedDataFrame::new();

    // Create sample dataset for analysis
    let values = vec![15.0, 23.0, 18.0, 31.0, 27.0, 19.0, 22.0, 25.0, 29.0, 21.0];
    df.add_float_column("values", values)?;

    // Basic statistical measures
    let values_binding = df.column("values")?;
    let values_col = values_binding.as_float64().unwrap();

    // Calculate statistics manually to demonstrate the process
    let mut sum = 0.0;
    let mut min_val = f64::INFINITY;
    let mut max_val = f64::NEG_INFINITY;

    for i in 0..df.row_count() {
        let val = values_col.get(i)?.unwrap();
        sum += val;
        if val < min_val {
            min_val = val;
        }
        if val > max_val {
            max_val = val;
        }
    }

    let mean = sum / df.row_count() as f64;

    // Calculate standard deviation
    let mut variance_sum = 0.0;
    for i in 0..df.row_count() {
        let val = values_col.get(i)?.unwrap();
        variance_sum += (val - mean).powi(2);
    }
    let variance = variance_sum / (df.row_count() - 1) as f64;
    let std_dev = variance.sqrt();

    // Using built-in statistical functions
    let built_in_sum = df.sum("values")?;
    let built_in_mean = df.mean("values")?;
    let built_in_min = df.min("values")?;
    let built_in_max = df.max("values")?;

    println!("Statistical Analysis Results:");
    println!("Manual calculations:");
    println!("  Sum: {sum:.2}");
    println!("  Mean: {mean:.2}");
    println!("  Min: {min_val:.2}");
    println!("  Max: {max_val:.2}");
    println!("  Std Dev: {std_dev:.2}");

    println!("Built-in functions:");
    println!("  Sum: {built_in_sum:.2}");
    println!("  Mean: {built_in_mean:.2}");
    println!("  Min: {built_in_min:.2}");
    println!("  Max: {built_in_max:.2}");

    // Percentile calculations (simplified)
    let mut sorted_values: Vec<f64> = Vec::new();
    for i in 0..df.row_count() {
        sorted_values.push(values_col.get(i)?.unwrap());
    }
    sorted_values.sort_by(|a, b| a.partial_cmp(b).unwrap());

    let median = if sorted_values.len() % 2 == 0 {
        (sorted_values[sorted_values.len() / 2 - 1] + sorted_values[sorted_values.len() / 2]) / 2.0
    } else {
        sorted_values[sorted_values.len() / 2]
    };

    println!("  Median: {median:.2}");
    println!();

    Ok(())
}

/// Step 5: Grouping and aggregation
#[allow(clippy::result_large_err)]
fn tutorial_step_5_grouping() -> Result<(), Box<dyn std::error::Error>> {
    println!("Step 5: Grouping and Aggregation");
    println!("=================================");

    let mut df = OptimizedDataFrame::new();

    // Create sales data by region and product category
    df.add_string_column(
        "region",
        vec![
            "North".to_string(),
            "North".to_string(),
            "South".to_string(),
            "South".to_string(),
            "East".to_string(),
            "East".to_string(),
            "West".to_string(),
            "West".to_string(),
        ],
    )?;

    df.add_string_column(
        "category",
        vec![
            "Electronics".to_string(),
            "Accessories".to_string(),
            "Electronics".to_string(),
            "Accessories".to_string(),
            "Electronics".to_string(),
            "Accessories".to_string(),
            "Electronics".to_string(),
            "Accessories".to_string(),
        ],
    )?;

    df.add_float_column(
        "sales",
        vec![1000.0, 300.0, 1200.0, 350.0, 800.0, 250.0, 900.0, 280.0],
    )?;

    println!("Original sales data:");
    for i in 0..df.row_count() {
        let region_binding = df.column("region")?;
        let region = region_binding.as_string().unwrap().get(i)?.unwrap();
        let category_binding = df.column("category")?;
        let category = category_binding.as_string().unwrap().get(i)?.unwrap();
        let sales_binding = df.column("sales")?;
        let sales = sales_binding.as_float64().unwrap().get(i)?.unwrap();
        println!("  {region} | {category} | ${sales:.0}");
    }

    // Manual grouping by region to demonstrate the concept
    let mut region_totals: HashMap<String, f64> = HashMap::new();
    let region_binding = df.column("region")?;
    let region_col = region_binding.as_string().unwrap();
    let sales_binding = df.column("sales")?;
    let sales_col = sales_binding.as_float64().unwrap();

    for i in 0..df.row_count() {
        let region = region_col.get(i)?.unwrap().to_string();
        let sales = sales_col.get(i)?.unwrap();
        *region_totals.entry(region).or_insert(0.0) += sales;
    }

    println!("\nSales by region (manual calculation):");
    for (region, total) in &region_totals {
        println!("  {region}: ${total:.0}");
    }

    // Category totals
    let mut category_totals: HashMap<String, f64> = HashMap::new();
    let category_binding = df.column("category")?;
    let category_col = category_binding.as_string().unwrap();

    for i in 0..df.row_count() {
        let category = category_col.get(i)?.unwrap().to_string();
        let sales = sales_col.get(i)?.unwrap();
        *category_totals.entry(category).or_insert(0.0) += sales;
    }

    println!("\nSales by category:");
    for (category, total) in &category_totals {
        println!("  {category}: ${total:.0}");
    }

    // Cross-tabulation (region x category)
    let mut cross_tab: HashMap<(String, String), f64> = HashMap::new();

    for i in 0..df.row_count() {
        let region = region_col.get(i)?.unwrap().to_string();
        let category = category_col.get(i)?.unwrap().to_string();
        let sales = sales_col.get(i)?.unwrap();
        *cross_tab.entry((region, category)).or_insert(0.0) += sales;
    }

    println!("\nCross-tabulation (Region x Category):");
    for ((region, category), total) in &cross_tab {
        println!("  {region} x {category}: ${total:.0}");
    }
    println!();

    Ok(())
}

/// Step 6: Data persistence and export
#[allow(clippy::result_large_err)]
fn tutorial_step_6_persistence() -> Result<(), Box<dyn std::error::Error>> {
    println!("Step 6: Data Persistence and Export");
    println!("===================================");

    let mut df = OptimizedDataFrame::new();

    // Create a summary dataset for export
    df.add_string_column(
        "metric",
        vec![
            "Total Sales".to_string(),
            "Total Customers".to_string(),
            "Avg Order Value".to_string(),
            "Conversion Rate".to_string(),
        ],
    )?;

    df.add_float_column("value", vec![125000.0, 450.0, 277.78, 0.034])?;

    df.add_string_column(
        "unit",
        vec![
            "USD".to_string(),
            "Count".to_string(),
            "USD".to_string(),
            "Percentage".to_string(),
        ],
    )?;

    println!("Summary report data:");
    for i in 0..df.row_count() {
        let metric_binding = df.column("metric")?;
        let metric = metric_binding.as_string().unwrap().get(i)?.unwrap();
        let value_binding = df.column("value")?;
        let value = value_binding.as_float64().unwrap().get(i)?.unwrap();
        let unit_binding = df.column("unit")?;
        let unit = unit_binding.as_string().unwrap().get(i)?.unwrap();
        println!("  {metric}: {value:.2} {unit}");
    }

    // Export to CSV
    match df.to_csv("tutorial_summary_report.csv", true) {
        Ok(_) => {
            println!("\n✅ Successfully exported data to tutorial_summary_report.csv");

            // Verify by reading it back
            match pandrs::io::read_csv("tutorial_summary_report.csv", true) {
                Ok(loaded_df) => {
                    println!("✅ Successfully verified CSV export/import");
                    println!(
                        "   Loaded {} rows and {} columns",
                        loaded_df.row_count(),
                        loaded_df.column_count()
                    );
                }
                Err(e) => println!("❌ Error verifying CSV: {e}"),
            }
        }
        Err(e) => println!("❌ Error exporting to CSV: {e}"),
    }

    // Example of conditional exports based on data
    let total_sales_binding = df.column("value")?;
    let total_sales = total_sales_binding.as_float64().unwrap().get(0)?.unwrap();
    if total_sales > 100000.0 {
        println!("📊 High sales volume detected - consider generating detailed report");
    }

    println!();
    Ok(())
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_tutorial_steps() {
        // Test that all tutorial steps can run without panicking
        assert!(tutorial_step_1_data_creation().is_ok());
        assert!(tutorial_step_2_data_cleaning().is_ok());
        assert!(tutorial_step_3_transformation().is_ok());
        assert!(tutorial_step_4_analysis().is_ok());
        assert!(tutorial_step_5_grouping().is_ok());
        // Skip step 6 in tests to avoid file I/O
    }

    #[test]
    fn test_basic_dataframe_operations() {
        let mut df = OptimizedDataFrame::new();
        df.add_int_column("test", vec![1, 2, 3]).unwrap();

        assert_eq!(df.row_count(), 3);
        assert_eq!(df.column_count(), 1);
        assert_eq!(df.sum("test").unwrap(), 6.0);
        assert_eq!(df.mean("test").unwrap(), 2.0);
    }
}