ms_toollib 1.4.17

Algorithms for Minesweeper
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
use itertools::Itertools;
#[cfg(any(feature = "py", feature = "rs"))]
use rand::seq::SliceRandom;
#[cfg(any(feature = "py", feature = "rs"))]
use rand::thread_rng;
use std::cmp::{max, min};
use std::vec;
// use std::convert::TryInto;
#[cfg(feature = "js")]
use getrandom::getrandom;

use crate::safe_board;
use crate::safe_board::BoardSize;
use crate::ENUM_LIMIT;
use crate:: big_number::BigNumber;

// 整个模块是最底层的一些小工具,如埋雷、局面分块、计算3BV等

/// 输入局面,计算空,即0的8连通域数
pub fn cal_op<T>(board_raw: &T) -> usize
where
    T: std::ops::Index<usize> + safe_board::BoardSize,
    T::Output: std::ops::Index<usize, Output = i32>,
{
    let row = board_raw.get_row();
    let column = board_raw.get_column();
    let mut board = vec![vec![0; column]; row];
    for i in 0..row {
        for j in 0..column {
            board[i][j] = board_raw[i][j];
        }
    }
    let mut op = 0;
    for i in 0..row {
        for j in 0..column {
            if board[i][j] == 0 {
                infect_board(&mut board, i, j);
                op += 1;
            }
        }
    }
    op
}

// Board(x, y)位置的整个空都用数字1填满,仅计算Op用
fn infect_board(board: &mut Vec<Vec<i32>>, x: usize, y: usize) {
    let row = board.len();
    let column = board[0].len();
    board[x][y] = 1;
    for i in max(1, x) - 1..min(row, x + 2) {
        for j in max(1, y) - 1..min(column, y + 2) {
            if board[i][j] == 0 {
                infect_board(board, i, j);
            }
        }
    }
}

/// 输入局面,计算岛  
pub fn cal_isl<T>(raw_board: &T) -> usize
where
    T: std::ops::Index<usize> + safe_board::BoardSize,
    T::Output: std::ops::Index<usize, Output = i32>,
{
    let row = raw_board.get_row();
    let column = raw_board.get_column();
    let mut board = vec![vec![1; column]; row];
    for i in 0..row {
        for j in 0..column {
            if raw_board[i][j] <= 0 {
                continue;
            }
            let mut flag = true;
            'outer: for m in max(1, i) - 1..min(row, i + 2) {
                for n in max(1, j) - 1..min(column, j + 2) {
                    if raw_board[m][n] == 0 {
                        flag = false;
                        break 'outer;
                    }
                }
            }
            if flag {
                board[i][j] = 0;
            }
        }
    }
    cal_op(&board)
}

/// 计算每个数字出现的次数  
pub fn cal_cell_nums<T>(raw_board: &T) -> [usize; 9]
where
    T: std::ops::Index<usize> + BoardSize,
    T::Output: std::ops::Index<usize, Output = i32>,
{
    let row = raw_board.get_row();
    let column = raw_board.get_column();
    let mut ans = [0; 9];
    for i in 0..row {
        for j in 0..column {
            if raw_board[i][j] < 0 {
                continue;
            }
            ans[raw_board[i][j] as usize] += 1;
        }
    }
    ans
}

/// 根据游戏局面生成矩阵,不分块。输入必须保证是合法的游戏局面。  
/// - 注意:优点是含义明确,便于理解。但不分块
pub fn refresh_matrix(
    game_board: &Vec<Vec<i32>>,
) -> (Vec<Vec<i32>>, Vec<(usize, usize)>, Vec<i32>) {
    let row = game_board.len();
    let column = game_board[0].len();
    let mut matrix_a: Vec<Vec<i32>> = Vec::new();
    let mut matrixx: Vec<(usize, usize)> = Vec::new();
    let mut matrixb: Vec<i32> = Vec::new();
    let mut matrix_a_row_num = 0;
    let mut matrix_a_column_num = 0;

    for i in 0..row {
        for j in 0..column {
            if game_board[i][j] > 0 && game_board[i][j] < 10 {
                let mut flag: bool = false;
                for m in max(1, i) - 1..min(row, i + 2) {
                    for n in max(1, j) - 1..min(column, j + 2) {
                        if game_board[m][n] == 10 {
                            flag = true;
                        }
                    }
                }
                if flag {
                    matrix_a.push(vec![0; matrix_a_column_num]);
                    matrixb.push(game_board[i][j]);
                    matrix_a_row_num += 1;
                    for m in max(1, i) - 1..min(row, i + 2) {
                        for n in max(1, j) - 1..min(column, j + 2) {
                            if game_board[m][n] == 11 {
                                matrixb[matrix_a_row_num - 1] -= 1
                            } else if game_board[m][n] == 10 {
                                let mut flag_exit: bool = false;
                                for id_matrixx in 0..matrix_a_column_num {
                                    if matrixx[id_matrixx].0 == m && matrixx[id_matrixx].1 == n {
                                        flag_exit = true;
                                        matrix_a[matrix_a_row_num - 1][id_matrixx] = 1;
                                    }
                                }
                                if !flag_exit {
                                    for ii in 0..matrix_a_row_num {
                                        matrix_a[ii].push(0)
                                    }
                                    matrixx.push((m, n));
                                    matrix_a_column_num += 1;
                                    matrix_a[matrix_a_row_num - 1][matrix_a_column_num - 1] = 1;
                                }
                            }
                        }
                    }
                }
            }
        }
    }
    (matrix_a, matrixx, matrixb)
}

/// 根据游戏局面生成矩阵,分段。输入的必须保证是合法的游戏局面。
/// 返回:系数矩阵、变量矩阵、常数向量、内部方格、标出的雷数  
/// - *基于数字生成,矩阵的行可能有重复。  
pub fn refresh_matrixs(
    board_of_game: &Vec<Vec<i32>>,
) -> (
    Vec<Vec<Vec<i32>>>,
    Vec<Vec<(usize, usize)>>,
    Vec<Vec<i32>>,
    usize,
    usize,
) {
    // 根据游戏局面分块生成矩阵。分段的数据结构是最外面再套一层Vec
    // board_of_game必须且肯定是正确标雷的游戏局面,但不需要标全,不能标非雷
    // 矩阵的行和列都可能有重复
    // inside_cell是未知格子数量, is_minenum是标出的是雷的数量
    let row = board_of_game.len();
    let column = board_of_game[0].len();
    let mut inside_cell = 0;
    let mut is_minenum = 0;
    let mut matrix_as = vec![];
    let mut matrix_xs = vec![];
    let mut matrix_bs = vec![];
    let mut all_cell: Vec<(usize, usize)> = vec![]; // 记录所有周围有未打开格子的数字的位置
    for i in 0..row {
        for j in 0..column {
            if board_of_game[i][j] >= 0 && board_of_game[i][j] < 10 {
                'outer: for m in max(1, i) - 1..min(row, i + 2) {
                    for n in max(1, j) - 1..min(column, j + 2) {
                        if board_of_game[m][n] == 10 {
                            all_cell.push((i, j));
                            break 'outer;
                        }
                    }
                }
            } else if board_of_game[i][j] == 10 {
                // 数内部有几个格子
                let mut flag = true;
                for m in max(1, i) - 1..min(row, i + 2) {
                    for n in max(1, j) - 1..min(column, j + 2) {
                        if board_of_game[m][n] < 10 {
                            flag = false;
                        }
                    }
                }
                if flag {
                    inside_cell += 1;
                }
            } else if board_of_game[i][j] == 11 {
                is_minenum += 1;
            }
        }
    }
    let mut p = 0; //指针,代表第几块
    while !all_cell.is_empty() {
        matrix_xs.push(vec![]);
        matrix_bs.push(vec![]);
        let x_0 = all_cell[0].0;
        let y_0 = all_cell[0].1;
        let mut num_cells = vec![]; // 记录了当前段的数字格的坐标
        let mut temp_cells = vec![]; // 记录了待查找的数字格的坐标
        let mut flag_num = 0;
        for m in max(1, x_0) - 1..min(row, x_0 + 2) {
            for n in max(1, y_0) - 1..min(column, y_0 + 2) {
                if board_of_game[m][n] == 10 {
                    matrix_xs[p].push((m, n));
                }
                if board_of_game[m][n] == 11 {
                    flag_num += 1;
                }
            }
        }
        matrix_bs[p].push(board_of_game[x_0][y_0] - flag_num);
        num_cells.push((x_0, y_0));
        temp_cells.push((x_0, y_0));
        while !temp_cells.is_empty() {
            let x_e = temp_cells[0].0;
            let y_e = temp_cells[0].1;
            temp_cells.remove(0);
            for t in (1..all_cell.len()).rev() {
                // 从temp_cells中拿出一个格子,找出与其相邻的所有格子,加入temp_cells和matrix_bs、matrix_xs
                let x_t = all_cell[t].0;
                let y_t = all_cell[t].1;
                if x_t >= x_e + 3 || x_e >= x_t + 3 || y_t >= y_e + 3 || y_e >= y_t + 3 {
                    continue;
                }
                let mut flag_be_neighbor = false;
                for m in max(1, max(x_t, x_e)) - 1..min(row, min(x_t + 2, x_e + 2)) {
                    for n in max(1, max(y_t, y_e)) - 1..min(column, min(y_t + 2, y_e + 2)) {
                        if board_of_game[m][n] == 10 {
                            flag_be_neighbor = true;
                            break;
                        }
                    }
                } // 从局面上看,如果两个数字有相同的未知格子,那么就会分到同一块
                if flag_be_neighbor {
                    let mut flag_num = 0;
                    for m in max(1, x_t) - 1..min(row, x_t + 2) {
                        for n in max(1, y_t) - 1..min(column, y_t + 2) {
                            if board_of_game[m][n] == 10 {
                                if !matrix_xs[p].contains(&(m, n)) {
                                    matrix_xs[p].push((m, n));
                                }
                            }
                            if board_of_game[m][n] == 11 {
                                flag_num += 1;
                            }
                        }
                    }
                    matrix_bs[p].push(board_of_game[x_t][y_t] - flag_num);
                    num_cells.push((x_t, y_t));
                    temp_cells.push(all_cell[t]);
                    all_cell.remove(t);
                }
            }
        }
        matrix_as.push(vec![vec![0; matrix_xs[p].len()]; matrix_bs[p].len()]);
        for i in 0..num_cells.len() {
            for j in 0..matrix_xs[p].len() {
                if num_cells[i].0 <= matrix_xs[p][j].0 + 1
                    && matrix_xs[p][j].0 <= num_cells[i].0 + 1
                    && num_cells[i].1 <= matrix_xs[p][j].1 + 1
                    && matrix_xs[p][j].1 <= num_cells[i].1 + 1
                {
                    matrix_as[p][i][j] = 1;
                }
            }
        }
        all_cell.remove(0);
        p += 1;
    }
    (matrix_as, matrix_xs, matrix_bs, inside_cell, is_minenum)
}

/// 根据游戏局面生成矩阵,分段、且分块。输入的必须保证是合法的游戏局面。  
pub fn refresh_matrixses(
    board_of_game: &Vec<Vec<i32>>,
) -> (
    Vec<Vec<Vec<Vec<i32>>>>,
    Vec<Vec<Vec<(usize, usize)>>>,
    Vec<Vec<Vec<i32>>>,
) {
    let row = board_of_game.len();
    let column = board_of_game[0].len();
    let mut a_matses = vec![];
    let mut xses = vec![];
    let mut bses = vec![];
    let (mut a_mats, mut xs, mut bs, _, _) = refresh_matrixs(board_of_game);
    if a_mats.len() == 1 {
        // 不可能为0,至少为1
        return (vec![a_mats], vec![xs], vec![bs]);
    }
    // 邻接矩阵
    let mut adjacency_matrix = vec![vec![false; a_mats.len()]; a_mats.len()];
    // 局面的复刻,用于标记遍历过的格子
    let mut board_mark = board_of_game.clone();
    let mut cell_10 = vec![];
    for i in 0..row {
        for j in 0..column {
            if board_mark[i][j] == 10 {
                board_mark[i][j] = 21;
                let mut flag_c = false;
                let mut buffer = vec![];
                buffer.push((i, j));
                // 标志是否搜索完的缓冲区
                while !buffer.is_empty() {
                    let (t_i, t_j) = buffer.pop().unwrap();
                    let mut flag_is_side = false;
                    for m in max(1, t_i) - 1..min(row, t_i + 2) {
                        for n in max(1, t_j) - 1..min(column, t_j + 2) {
                            if board_mark[m][n] == 10 {
                                board_mark[m][n] = 21;
                                buffer.push((m, n));
                            } else if board_mark[m][n] < 10 {
                                flag_is_side = true;
                            }
                        }
                    }
                    if flag_is_side {
                        if !flag_c {
                            cell_10.push(vec![]);
                            flag_c = true;
                        }
                        cell_10.last_mut().unwrap().push((t_i, t_j));
                    }
                }
            } else {
                continue;
            }
        }
    }
    // println!("{:?}", cell_10);
    if cell_10.len() == 1 {
        // 不可能为0,至少为1
        return (vec![a_mats], vec![xs], vec![bs]);
    }
    for mut block in cell_10 {
        let mut seed_id = -1;
        while !block.is_empty() {
            let seed = block.pop().unwrap();
            let t = xs.iter().position(|r| r.contains(&seed)).unwrap();
            if seed_id >= 0 {
                adjacency_matrix[seed_id as usize][t] = true;
                adjacency_matrix[t][seed_id as usize] = true;
            }
            seed_id = t as i32;
            block.retain(|x| !xs[seed_id as usize].contains(x))
        }
    } // 整理完邻接矩阵。无向图。
    for i in 0..a_mats.len() {
        if a_mats[i].is_empty() {
            continue;
        }
        a_matses.push(vec![]);
        xses.push(vec![]);
        bses.push(vec![]);
        let mut buffer = vec![i];

        while !buffer.is_empty() {
            let t = buffer.pop().unwrap();
            a_matses.last_mut().unwrap().push(vec![]);
            a_matses
                .last_mut()
                .unwrap()
                .last_mut()
                .unwrap()
                .append(&mut a_mats[t]);
            xses.last_mut().unwrap().push(vec![]);
            xses.last_mut()
                .unwrap()
                .last_mut()
                .unwrap()
                .append(&mut xs[t]);
            bses.last_mut().unwrap().push(vec![]);
            bses.last_mut()
                .unwrap()
                .last_mut()
                .unwrap()
                .append(&mut bs[t]);
            for idj in t..a_mats.len() {
                if adjacency_matrix[t][idj] {
                    buffer.push(idj);
                }
            }
        }
    }
    (a_matses, xses, bses)
}

// 获取0~limit-1范围内的随机整数
// 用于js平台
#[cfg(feature = "js")]
pub fn get_random_int(limit: usize) -> usize {
    if limit == 0 {
        return 0;
    }
    let mut a = [0, 0, 0, 0];
    let mut t;
    loop {
        getrandom(&mut a).unwrap();
        // println!("{:?}", a);
        t = (a[0] as usize) << 24 ^ (a[1] as usize) << 16 ^ (a[2] as usize) << 8 ^ (a[3] as usize);
        if t < (0b11111111_11111111_11111111_11111111 / limit * limit) {
            break;
        }
    }
    t % limit
}

#[cfg(feature = "js")]
pub trait JsShuffle {
    fn shuffle_(&mut self);
}

#[cfg(feature = "js")]
impl JsShuffle for Vec<i32> {
    fn shuffle_(&mut self) {
        // 存疑!!!!!
        let l = self.len();
        for i in 1..l {
            let id = get_random_int(i + 1);
            let t = self[i];
            self[i] = self[id];
            self[id] = t;
        }
    }
}

/// 一维埋雷,给局部埋雷,完全随机。
/// - 需要埋雷的区域的面积,雷数。
/// - 例如,高级标准埋雷时,area = 16*30-1
pub fn get_board_1d(area: usize, minenum: usize) -> Vec<i32> {
    let mut board_1d: Vec<i32> = vec![];
    board_1d.reserve(area);
    board_1d = vec![0; area - minenum];
    board_1d.append(&mut vec![-1; minenum]);
    #[cfg(any(feature = "py", feature = "rs"))]
    let mut rng = thread_rng();

    #[cfg(any(feature = "py", feature = "rs"))]
    board_1d.shuffle(&mut rng);

    #[cfg(feature = "js")]
    board_1d.shuffle_();
    board_1d
}

/// 根据起手不开空的规则,把一维的局面转换成二维的。
pub fn trans_board_1d_2d_op(
    board_1d: &Vec<i32>,
    row: usize,
    column: usize,
    x0: usize,
    y0: usize,
) -> Vec<Vec<i32>> {
    let mut board = vec![vec![0; column]; row];
    let mut i = 0;
    for x in 0..row {
        for y in 0..column {
            if x <= x0 + 1 && x0 <= x + 1 && y <= y0 + 1 && y0 <= y + 1 {
                continue;
            }
            if board_1d[i] < 0 {
                board[x][y] = -1;
                for j in max(1, x) - 1..min(row, x + 2) {
                    for k in max(1, y) - 1..min(column, y + 2) {
                        if board[j][k] >= 0 {
                            board[j][k] += 1
                        }
                    }
                }
            }
            i += 1;
        }
    }
    board
}

/// 通用标准埋雷引擎。
/// - 标准埋雷规则:起手位置非雷,其余位置的雷服从均匀分布。
/// - 输出:二维的局面,其中0代表空,1~8代表1~8,-1代表雷。
pub fn laymine(row: usize, column: usize, minenum: usize, x0: usize, y0: usize) -> Vec<Vec<i32>> {
    let board1_dim = get_board_1d(row * column - 1, minenum);

    let mut board1_dim_2: Vec<i32> = vec![];
    board1_dim_2.reserve(row * column);
    let pointer = x0 + y0 * row;
    for i in 0..pointer {
        board1_dim_2.push(board1_dim[i]);
    }
    board1_dim_2.push(0);
    for i in pointer..(row * column - 1) {
        board1_dim_2.push(board1_dim[i]);
    }
    let mut board: Vec<Vec<i32>> = vec![vec![0; column]; row];
    for i in 0..(row * column) {
        if board1_dim_2[i] < 0 {
            let x = i % row;
            let y = i / row;
            board[x][y] = -1;
            for j in max(1, x) - 1..min(row, x + 2) {
                for k in max(1, y) - 1..min(column, y + 2) {
                    if board[j][k] >= 0 {
                        board[j][k] += 1;
                    }
                }
            }
        }
    }
    board
}

/// 通用win7规则埋雷引擎。
/// - win7规则:起手位置开空,其余位置的雷服从均匀分布。
/// - 输出:二维的局面,其中0代表空,1~8代表1~8,-1代表雷。
pub fn laymine_op(
    row: usize,
    column: usize,
    minenum: usize,
    x0: usize,
    y0: usize,
) -> Vec<Vec<i32>> {
    let mut area_op = 9;
    if x0 == 0 || y0 == 0 || x0 == row - 1 || y0 == column - 1 {
        if x0 == 0 && y0 == 0
            || x0 == 0 && y0 == column - 1
            || x0 == row - 1 && y0 == 0
            || x0 == row - 1 && y0 == column - 1
        {
            area_op = 4;
        } else {
            area_op = 6;
        }
    }
    let area = row * column - area_op;
    let board_1d = get_board_1d(area, minenum);
    trans_board_1d_2d_op(&board_1d, row, column, x0, y0)
}

pub fn cal_bbbv_on_island<T>(board: &T) -> usize
where
    T: std::ops::Index<usize> + safe_board::BoardSize,
    T::Output: std::ops::Index<usize, Output = i32>,
{
    // 计算除空以外的3BV
    let row = board.get_row();
    let column = board.get_column();
    let mut num_bbbv_on_island = 0;
    for i in 0..row {
        for j in 0..column {
            if board[i][j] > 0 {
                let mut flag: bool = true;
                for x in max(1, i) - 1..min(row, i + 2) {
                    for y in max(1, j) - 1..min(column, j + 2) {
                        if board[x][y] == 0 {
                            flag = false;
                        }
                    }
                }
                if flag {
                    num_bbbv_on_island += 1;
                }
            }
        }
    }
    num_bbbv_on_island
}

/// 计算局面的3BV
pub fn cal_bbbv<T>(board: &T) -> usize
where
    T: std::ops::Index<usize> + safe_board::BoardSize,
    T::Output: std::ops::Index<usize, Output = i32>,
{
    cal_bbbv_on_island(board) + cal_op(board)
}

/// 依据左击位置刷新局面。如踩雷,标上或14、15标记
/// - 注意:兼容12标记符
pub fn refresh_board<T>(
    board: &T,
    board_of_game: &mut Vec<Vec<i32>>,
    mut clicked_poses: Vec<(usize, usize)>,
) where
    T: std::ops::Index<usize> + safe_board::BoardSize,
    T::Output: std::ops::Index<usize, Output = i32>,
{
    let row = board.get_row();
    let column = board.get_column();
    // 是否踩雷
    let mut loss_flag = false;
    while let Some(top) = clicked_poses.pop() {
        let (i, j) = top;
        if board[i][j] > 0 {
            board_of_game[i][j] = board[i][j];
        } else if board[i][j] == 0 {
            board_of_game[i][j] = 0;
            for m in max(1, i) - 1..min(row, i + 2) {
                for n in max(1, j) - 1..min(column, j + 2) {
                    if (i != m || j != n)
                        && (board_of_game[m][n] == 10 || board_of_game[m][n] == 12)
                    {
                        clicked_poses.push((m, n));
                    }
                }
            }
        } else {
            board_of_game[i][j] = 15; // 标红雷,此处是雷,且踩到了
            loss_flag = true;
        }
    }
    // 标叉雷
    if loss_flag {
        for i in 0..row {
            for j in 0..column {
                if board_of_game[i][j] == 11 && board[i][j] != -1 {
                    board_of_game[i][j] = 14; // 叉雷,即标错的雷
                }
            }
        }
    }
}

// 计算组合数 C(n, k)
pub fn c(n: usize, k: usize) -> BigNumber {
    if k > n {
        return BigNumber { a: 0.0, b: 0 };
    }
    if k > n - k {
        return c(n, n - k);
    }
    let mut result = BigNumber { a: 1.0, b: 0 };
    for i in 0..k {
        result = &result * ((n - i) as f64 / (i + 1) as f64);
    }
    result
}

pub fn c_query<T, U>(n: T, k: U) -> usize
where
    T: Into<usize>,
    U: Into<usize>,
{
    // 查表计算8以内小数字的组合数
    let a = [
        [1, 0, 0, 0, 0, 0, 0, 0, 0],
        [1, 1, 0, 0, 0, 0, 0, 0, 0],
        [1, 2, 1, 0, 0, 0, 0, 0, 0],
        [1, 3, 3, 1, 0, 0, 0, 0, 0],
        [1, 4, 6, 4, 1, 0, 0, 0, 0],
        [1, 5, 10, 10, 5, 1, 0, 0, 0],
        [1, 6, 15, 20, 15, 6, 1, 0, 0],
        [1, 7, 21, 35, 35, 21, 7, 1, 0],
        [1, 8, 28, 56, 70, 56, 28, 8, 1],
    ];
    a[n.into()][k.into()]
}

pub fn combine(
    matrix_a: &Vec<Vec<i32>>,
    matrixx: &Vec<(usize, usize)>,
) -> (Vec<Vec<i32>>, Vec<(usize, usize)>, Vec<Vec<usize>>) {
    // 检查地位完全相同的格子,全部返回。例如[[3,1,2],[0,5],[4],[6]]
    // matrix_a不能为空
    // 并在内部更改矩阵,合并重复的列
    let mut matrix_a_squeeze = matrix_a.clone();
    let mut matrixx_squeeze = matrixx.clone();
    let cells_num = matrixx_squeeze.len();
    let mut pair_cells = vec![];
    let mut del_cells = vec![]; // 由于重复需要最后被删除的列
    for i in 0..cells_num {
        pair_cells.push(vec![i]);
        for j in i + 1..cells_num {
            if !matrix_a_squeeze.iter().any(|x| x[i] != x[j]) {
                pair_cells[i].push(j);
                del_cells.push(j);
            }
        }
    }
    del_cells.sort_by(|a, b| b.cmp(&a));
    del_cells.dedup();
    for i in del_cells {
        for r in 0..matrix_a_squeeze.len() {
            matrix_a_squeeze[r].remove(i);
        }
        matrixx_squeeze.remove(i);
        pair_cells.remove(i);
    }
    let cell_squeeze_num = pair_cells.len();
    for i in 0..cell_squeeze_num {
        let k = pair_cells[i].len() as i32;
        for r in 0..matrix_a_squeeze.len() {
            matrix_a_squeeze[r][i] *= k;
        }
    }
    (matrix_a_squeeze, matrixx_squeeze, pair_cells)
}

/// 枚举法求解矩阵,返回所有的解
pub fn cal_all_solution(matrix_a: &Vec<Vec<i32>>, matrixb: &Vec<i32>) -> Vec<Vec<u8>> {
    let column = matrix_a[0].len();
    let row = matrix_a.len();
    let mut enum_comb_table: Vec<Vec<u8>> = vec![vec![0; column]];
    let mut not_enum_cell: Vec<bool> = vec![true; column]; // 记录每个位置是否被枚举过,true是没有被枚举过
    let mut enum_cell_table: Vec<Vec<usize>> = vec![];
    for row in 0..row {
        let mut new_enum_cell = vec![]; // 当前条件涉及的新格子
        let mut enum_cell = vec![]; // 当前条件涉及的所有格子
        let mut new_enum_max = vec![];
        for j in 0..column {
            if matrix_a[row][j] > 0 {
                enum_cell.push(j);
                if not_enum_cell[j] {
                    not_enum_cell[j] = false;
                    new_enum_cell.push(j);
                    new_enum_max.push(matrix_a[row][j]);
                }
            }
        }
        // 第一步,整理出当前条件涉及的所有格子,以及其中哪些是新格子
        let mut new_enum_table = (0..new_enum_cell.len())
            .map(|i| 0..new_enum_max[i] + 1)
            .multi_cartesian_product()
            .collect::<Vec<_>>();
        new_enum_table.retain(|x| x.iter().sum::<i32>() <= matrixb[row]);
        // 第二步,获取这些新枚举到的格子的所有满足周围雷数约束的情况,即子枚举表
        if new_enum_table.is_empty() {
            enum_comb_table.retain(|item| {
                enum_cell
                    .iter()
                    .fold(0, |sum: u8, i: &usize| sum + item[*i])
                    == matrixb[row] as u8
            });
        // 第三步,若子枚举表为空,不用将子枚举表与主枚举表合并;且只检查主枚举表是否满足当前这条规则,删除一些不满足的
        } else {
            let mut flag_1 = true; // 代表新枚举的格子是否需要新增情况
            let enum_comb_table_len = enum_comb_table.len();
            for item in new_enum_table {
                if flag_1 {
                    for m in 0..new_enum_cell.len() {
                        for n in 0..enum_comb_table_len {
                            enum_comb_table[n][new_enum_cell[m]] = item[m] as u8;
                        }
                    }
                    flag_1 = false;
                } else {
                    for n in 0..enum_comb_table_len {
                        let mut one_row_in_new_table = enum_comb_table[n].clone();
                        for m in 0..new_enum_cell.len() {
                            one_row_in_new_table[new_enum_cell[m]] = item[m] as u8;
                        }
                        enum_comb_table.push(one_row_in_new_table);
                    }
                }
            } // 第四步,若子枚举表非空,先将子枚举表与主枚举表合并
            let mut equations = vec![];
            for kk in &enum_cell {
                for rr in 0..row {
                    if matrix_a[rr][*kk] > 0 {
                        equations.push(rr);
                    }
                }
            }
            equations.dedup();
            // 第五步,再找出本条规则涉及的之前所有的规则的id
            for equ in equations {
                enum_comb_table.retain(|item| {
                    enum_cell_table[equ]
                        .iter()
                        .fold(0, |sum: u8, i: &usize| sum + item[*i])
                        == matrixb[equ] as u8
                });
            }
            enum_comb_table.retain(|item| {
                enum_cell
                    .iter()
                    .fold(0, |sum: u8, i: &usize| sum + item[*i])
                    == matrixb[row] as u8
            }); // 这段重复了,不过不影响性能,之后优化
                // 第六步,用本条规则、以及涉及的之前所有规则过滤所有情况
        }
        enum_cell_table.push(enum_cell);
    }
    enum_comb_table
}

// pub fn enum_comb(
//     matrix_a_squeeze: &Vec<Vec<i32>>,
//     matrixx_squeeze: &Vec<(usize, usize)>,
//     Matrixb: &Vec<i32>,
// ) -> Vec<Vec<u8>> {
//     // 拟弃用
//     // 枚举法求解矩阵,返回所有的解
//     let column = matrixx_squeeze.len();
//     let row = matrix_a_squeeze.len();
//     let mut enum_comb_table: Vec<Vec<u8>> = vec![vec![0; column]];
//     let mut not_enum_cell: Vec<bool> = vec![true; column]; // 记录每个位置是否被枚举过,true是没有被枚举过
//     let mut enum_cell_table: Vec<Vec<usize>> = vec![];
//     for row in 0..row {
//         let mut new_enum_cell = vec![]; // 当前条件涉及的新格子
//         let mut enum_cell = vec![]; // 当前条件涉及的所有格子
//         let mut new_enum_max = vec![];
//         for j in 0..column {
//             if matrix_a_squeeze[row][j] > 0 {
//                 enum_cell.push(j);
//                 if not_enum_cell[j] {
//                     not_enum_cell[j] = false;
//                     new_enum_cell.push(j);
//                     new_enum_max.push(matrix_a_squeeze[row][j]);
//                 }
//             }
//         }
//         // 第一步,整理出当前条件涉及的所有格子,以及其中哪些是新格子
//         let mut new_enum_table = (0..new_enum_cell.len())
//             .map(|i| 0..new_enum_max[i] + 1)
//             .multi_cartesian_product()
//             .collect::<Vec<_>>();
//         new_enum_table.retain(|x| x.iter().sum::<i32>() <= Matrixb[row]);
//         // 第二步,获取这些新枚举到的格子的所有满足周围雷数约束的情况,即子枚举表
//         if new_enum_table.is_empty() {
//             enum_comb_table.retain(|item| {
//                 enum_cell
//                     .iter()
//                     .fold(0, |sum: u8, i: &usize| sum + item[*i])
//                     == Matrixb[row] as u8
//             });
//         // 第三步,若子枚举表为空,不用将子枚举表与主枚举表合并;且只检查主枚举表是否满足当前这条规则,删除一些不满足的
//         } else {
//             let mut flag_1 = true; // 代表新枚举的格子是否需要新增情况
//             let enum_comb_table_len = enum_comb_table.len();
//             for item in new_enum_table {
//                 if flag_1 {
//                     for m in 0..new_enum_cell.len() {
//                         for n in 0..enum_comb_table_len {
//                             enum_comb_table[n][new_enum_cell[m]] = item[m] as u8;
//                         }
//                     }
//                     flag_1 = false;
//                 } else {
//                     for n in 0..enum_comb_table_len {
//                         let mut one_row_in_new_table = enum_comb_table[n].clone();
//                         for m in 0..new_enum_cell.len() {
//                             one_row_in_new_table[new_enum_cell[m]] = item[m] as u8;
//                         }
//                         enum_comb_table.push(one_row_in_new_table);
//                     }
//                 }
//             } // 第四步,若子枚举表非空,先将子枚举表与主枚举表合并
//             let mut equations = vec![];
//             for kk in &enum_cell {
//                 for rr in 0..row {
//                     if matrix_a_squeeze[rr][*kk] > 0 {
//                         equations.push(rr);
//                     }
//                 }
//             }
//             equations.dedup();
//             // 第五步,再找出本条规则涉及的之前所有的规则的id
//             for equ in equations {
//                 enum_comb_table.retain(|item| {
//                     enum_cell_table[equ]
//                         .iter()
//                         .fold(0, |sum: u8, i: &usize| sum + item[*i])
//                         == Matrixb[equ] as u8
//                 });
//             }
//             enum_comb_table.retain(|item| {
//                 enum_cell
//                     .iter()
//                     .fold(0, |sum: u8, i: &usize| sum + item[*i])
//                     == Matrixb[row] as u8
//             }); // 这段重复了,不过不影响性能,之后优化
//                 // 第六步,用本条规则、以及涉及的之前所有规则过滤所有情况
//         }
//         enum_cell_table.push(enum_cell);
//     }
//     enum_comb_table
// }

// fn enumerateSub(Col: usize, minenum: usize) -> Vec<Vec<usize>> {
//     let mut Out: Vec<Vec<usize>> = vec![];
//     for i in (0..Col).combinations(minenum) {
//         Out.push(vec![0; Col]);
//         let len = Out.len() - 1;
//         for j in 0..minenum {
//             Out[len][i[j]] = 1;
//         }
//     }
//     Out
// }

/// 忘了干嘛用的,有待重构。和弱可猜有关。
// pub fn enuOneStep(mut AllTable: Vec<Vec<usize>>, TableId: Vec<usize>, b: i32) -> Vec<Vec<usize>> {
//     // AllTable不能为空
//     let mut NewId: Vec<usize> = vec![];
//     for i in &TableId {
//         if AllTable[0][*i] == 2 {
//             NewId.push(*i);
//         }
//     }
//     let mut DelId = vec![];
//     for i in 0..AllTable.len() {
//         let mut ExtraMine = b;
//         for j in &TableId {
//             if AllTable[i][*j] == 1 {
//                 ExtraMine -= 1;
//             }
//         }
//         if ExtraMine < 0 || ExtraMine as usize > NewId.len() {
//             DelId.push(i);
//             continue;
//         }
//         let AddedTable = enumerateSub(NewId.len(), ExtraMine as usize);
//         for t in 0..NewId.len() {
//             AllTable[i][NewId[t]] = AddedTable[0][t];
//         }
//         for m in 1..AddedTable.len() {
//             AllTable.push(AllTable[i].clone());
//             for t in 0..NewId.len() {
//                 let len = AllTable.len() - 1;
//                 AllTable[len][NewId[t]] = AddedTable[m][t];
//             }
//         }
//     }
//     DelId.sort_by(|a, b| b.cmp(&a));
//     for i in DelId {
//         AllTable.remove(i);
//     }
//     AllTable
// }

fn cal_cell_and_equation_map(matrix_a: &Vec<Vec<i32>>) -> (Vec<Vec<usize>>, Vec<Vec<usize>>) {
    // cell_to_equation_map是方程中未知数的索引到方程的索引的映射
    // 方程中的未知数可以理解成未知的格子,每个方程可以理解成局面中的一个数字
    // 也可以理解成矩阵A的稀疏表示
    let cells_num = matrix_a[0].len();
    let equations_num = matrix_a.len();
    let mut cell_to_equation_map = vec![vec![]; cells_num];
    let mut equation_to_cell_map = vec![vec![]; equations_num];
    for i in 0..equations_num {
        for j in 0..cells_num {
            if matrix_a[i][j] >= 1 {
                equation_to_cell_map[i].push(j);
                cell_to_equation_map[j].push(i);
            }
        }
    }
    (cell_to_equation_map, equation_to_cell_map)
}

fn cal_table_minenum_recursion_step(
    idx: usize,
    current_amount: usize,
    table_minenum: &mut [Vec<usize>; 2],
    table_cell_minenum: &mut Vec<Vec<usize>>,
    // mut upper_limit: usize,
    // lower_limit: usize,
    matrix_a_squeeze: &Vec<Vec<i32>>,
    matrix_b: &Vec<i32>,
    matrix_b_remain: &mut Vec<i32>,
    combination_relationship: &Vec<Vec<usize>>,
    cell_to_equation_map: &Vec<Vec<usize>>,
    equation_to_cell_map: &Vec<Vec<usize>>,
    mine_vec: &mut Vec<usize>,
) -> Result<bool, usize> {
    // mine_vec: 是雷位置都记录下来,只记录一个索引,可能有重复
    let cells_num = matrix_a_squeeze[0].len();
    if idx >= cells_num {
        //终止条件
        let total_mines_num: usize = mine_vec.iter().sum();
        if total_mines_num >= table_minenum[1].len() {
            return Err(5);
        }
        table_minenum[1][total_mines_num] += current_amount;
        for (idn, n) in mine_vec.iter().enumerate() {
            table_cell_minenum[total_mines_num][idn] +=
                current_amount * n / combination_relationship[idn].len();
        }
        return Ok(true);
    }

    let mut upper_limit = combination_relationship[idx].len();
    let mut lower_limit = 0usize;
    for cell_i in &cell_to_equation_map[idx] {
        if matrix_a_squeeze[*cell_i][idx] == 0 {
            continue;
        }
        let upper_limit_i = min(
            matrix_b_remain[*cell_i],
            combination_relationship[idx].len() as i32,
        );
        let mut lower_limit_i = matrix_b_remain[*cell_i];
        for j in &equation_to_cell_map[*cell_i] {
            if j > &idx {
                lower_limit_i -= combination_relationship[*j].len() as i32;
            }
        }
        if upper_limit_i < upper_limit as i32 {
            upper_limit = upper_limit_i as usize;
        }
        if lower_limit_i > lower_limit as i32 {
            lower_limit = lower_limit_i as usize;
        }
    }

    // println!("{:?}, {:?}", lower_limit, upper_limit + 1);
    // if lower_limit < upper_limit + 1 {
    for u in lower_limit..upper_limit + 1 {
        // let b = mine_vec[idx];
        mine_vec[idx] = u;
        if u > 0 {
            for tt in &cell_to_equation_map[idx] {
                matrix_b_remain[*tt] -= u as i32;
            }
        }
        let _ = cal_table_minenum_recursion_step(
            idx + 1,
            current_amount * c_query(combination_relationship[idx].len(), u),
            table_minenum,
            table_cell_minenum,
            &matrix_a_squeeze,
            &matrix_b,
            matrix_b_remain,
            &combination_relationship,
            &cell_to_equation_map,
            &equation_to_cell_map,
            mine_vec,
        )?;
        for tt in &cell_to_equation_map[idx] {
            matrix_b_remain[*tt] += u as i32;
        }
        mine_vec[idx] = 0;
    }
    // }
    Ok(false)
}

pub fn cal_table_minenum_recursion(
    matrix_a_squeeze: &Vec<Vec<i32>>,
    matrixx_squeeze: &Vec<(usize, usize)>,
    matrix_b: &Vec<i32>,
    combination_relationship: &Vec<Vec<usize>>,
) -> Result<([Vec<usize>; 2], Vec<Vec<usize>>), usize> {
    // 递归算法,得到雷数分布表和每格是雷情况数表,顺便计算最小、最大雷数
    // 输入矩阵必须是非空的,且行列数必须匹配
    // 行数和列数至少为1
    let cells_num = matrixx_squeeze.len();
    if cells_num > ENUM_LIMIT {
        // 超出枚举极限长度异常
        return Err(cells_num);
    }
    let cells_num_total = combination_relationship
        .iter()
        .fold(0, |item, x| item + x.len());
    // cells_num_total指合并前的格子数

    let mut flag_legal_board = true;
    let mut table_minenum: [Vec<usize>; 2] = [
        (0..cells_num_total + 1).collect::<Vec<usize>>(),
        vec![0; cells_num_total + 1],
    ];
    let (cell_to_equation_map, equation_to_cell_map) = cal_cell_and_equation_map(&matrix_a_squeeze);
    // 计算两个映射表以减少复杂度
    // println!("cell_to_equation_map = {:?}; equation_to_cell_map = {:?}", cell_to_equation_map, equation_to_cell_map);

    let mut table_cell_minenum: Vec<Vec<usize>> = vec![vec![0; cells_num]; cells_num_total + 1];

    // println!("{:?}", matrix_a_squeeze);
    cal_table_minenum_recursion_step(
        0,
        1,
        &mut table_minenum,
        &mut table_cell_minenum,
        &matrix_a_squeeze,
        &matrix_b,
        &mut matrix_b.clone(),
        &combination_relationship,
        &cell_to_equation_map,
        &equation_to_cell_map,
        &mut (vec![0; cells_num]),
    )?;
    // println!("table_cell_minenum{:?}", table_cell_minenum);
    // println!("table_minenum{:?}", table_minenum);
    while table_minenum[1][0] == 0 {
        table_minenum[0].remove(0);
        table_minenum[1].remove(0);
        table_cell_minenum.remove(0);
        if table_cell_minenum.is_empty() {
            flag_legal_board = false;
            break;
        }
    }
    if flag_legal_board {
        while table_minenum[1][table_cell_minenum.len() - 1] == 0 {
            table_minenum[0].pop();
            table_minenum[1].pop();
            table_cell_minenum.pop();
        }
    }
    if flag_legal_board {
        Ok((table_minenum, table_cell_minenum))
    } else {
        return Err(1);
    }
}

// pub fn cal_table_minenum_enum(
//     matrix_a_squeeze: &Vec<Vec<i32>>,
//     matrixx_squeeze: &Vec<(usize, usize)>,
//     matrix_b: &Vec<i32>,
//     combination_relationship: &Vec<Vec<usize>>,
// ) -> Result<([Vec<usize>; 2], Vec<Vec<usize>>), usize> {
//     // 拟弃用,用cal_table_minenum_recursion代替
//     // 枚举并统计,得到雷数分布表和每格是雷情况数表
//     let mut table_minenum: [Vec<usize>; 2] = [vec![], vec![]];
//     // 雷数分布表表:记录了每块(不包括内部块)每种总雷数下的是雷总情况数
//     // 例如:[[17, 18, 19, 20, 21, 22, 23, 24], [48, 2144, 16872, 49568, 68975, 48960, 16608, 2046]]
//     let mut table_cell_minenum: Vec<Vec<usize>> = vec![];
//     // 每格是雷情况数表:记录了每块每格(或者地位等同的复合格)、每种总雷数下的是雷情况数
//     if matrixx_squeeze.len() > 45 {
//         // 超出枚举极限长度
//         return Err(0);
//     }
//     let enum_comb_table: Vec<Vec<u8>> = enum_comb(&matrix_a_squeeze, &matrixx_squeeze, &matrix_b);
//     if enum_comb_table.len() == 0 {
//         // 无解局面
//         return Err(1);
//     }
//     for s in enum_comb_table.clone() {
//         // println!("s: {:?}", s);
//         let s_sum = s.iter().sum::<u8>();
//         let mut si_num = 1; // 由于enum_comb_table中的格子每一个都代表了与其地位等同的所有格子,由此的情况数
//         for s_i in 0..s.len() {
//             si_num *= c_query(combination_relationship[s_i].len(), s[s_i]);
//         }
//         let fs = table_minenum[0]
//             .clone()
//             .iter()
//             .position(|x| *x == s_sum.into());
//         match fs {
//             None => {
//                 table_minenum[0].push(s_sum.into());
//                 table_minenum[1].push(si_num.into());
//                 let mut ss = vec![];
//                 for c in 0..s.len() {
//                     if s[c] == 0 {
//                         ss.push(0);
//                     } else {
//                         let mut sss = 1;
//                         for d in 0..s.len() {
//                             if c != d {
//                                 sss *= c_query(combination_relationship[d].len(), s[d]);
//                                 // println!("comb_relp_s = {:?}", comb_relp_s);
//                                 // println!("sss = {:?}", sss);
//                             } else {
//                                 sss *= c_query(combination_relationship[d].len() - 1, s[d] - 1);
//                             }
//                         }
//                         ss.push(sss as usize);
//                     }
//                 }
//                 table_cell_minenum.push(ss);
//             }
//             _ => {
//                 table_minenum[1][fs.unwrap()] += si_num as usize;
//                 for c in 0..s.len() {
//                     if s[c] == 0 {
//                         continue;
//                     } else {
//                         let mut sss = 1;
//                         for d in 0..s.len() {
//                             if c != d {
//                                 sss *= c_query(combination_relationship[d].len(), s[d]);
//                                 // println!("comb_relp_s=={:?}", comb_relp_s);
//                                 // println!("s=={:?}", s);
//                             } else {
//                                 sss *= c_query(combination_relationship[d].len() - 1, s[d] - 1);
//                             }
//                         }
//                         table_cell_minenum[fs.unwrap()][c] += sss as usize;
//                     }
//                 }
//             }
//         }
//     }

//     Ok((table_minenum, table_cell_minenum))
// }

/// 用几种模板,检测实际局面中是否有明显的死猜的结构。  
/// - 使用模板包括:工型、回型、器型。  
/// - 注意:对于一个局面,即使该检测返回true,也不能判断其必然是无猜的局面。想要真正判断一个局面无猜,请使用[is_solvable](#is_solvable)  
/// - 注意:局面至少大于4*4。
pub fn unsolvable_structure(board_check: &Vec<Vec<i32>>) -> bool {
    let row = board_check.len();
    let column = board_check[0].len();
    let mut board = vec![vec![0; column]; row];
    for i in 0..row {
        for j in 0..column {
            if board_check[i][j] == -1 {
                board[i][j] = -1;
            }
        }
    }
    for i in 0..row - 2 {
        // 检查左右两侧的工
        if i < row - 3 {
            if board[i][0] == -1
                && board[i][1] == -1
                && board[i + 3][0] == -1
                && board[i + 3][1] == -1
                && board[i + 1][0] + board[i + 2][0] == -1
                || board[i][column - 1] == -1
                    && board[i][column - 2] == -1
                    && board[i + 3][column - 1] == -1
                    && board[i + 3][column - 2] == -1
                    && board[i + 1][column - 1] + board[i + 2][column - 1] == -1
            {
                return true;
            }
        }
        if board[i][2] == -1
            && board[i + 1][2] == -1
            && board[i + 2][2] == -1
            && board[i + 1][0] + board[i + 1][1] == -1
            || board[i][column - 3] == -1
                && board[i + 1][column - 3] == -1
                && board[i + 2][column - 3] == -1
                && board[i + 1][column - 1] + board[i + 1][column - 2] == -1
            || board[i][0] == -1
                && board[i][1] == -1
                && board[i + 1][1] == -1
                && board[i + 2][1] == -1
                && board[i + 2][0] == -1
                && board[i + 1][0] == 0
            || board[i][column - 1] == -1
                && board[i][column - 2] == -1
                && board[i + 1][column - 2] == -1
                && board[i + 2][column - 2] == -1
                && board[i + 2][column - 1] == -1
                && board[i + 1][column - 1] == 0
        {
            return true;
        }
        if i < row - 3 {
            if board[i][2] == -1
                && board[i + 3][2] == -1
                && board[i + 1][0] + board[i + 1][1] == -1
                && board[i + 1][1] + board[i + 2][1] == -1
                && board[i + 2][1] + board[i + 2][0] == -1
                || board[i][column - 3] == -1
                    && board[i + 3][column - 3] == -1
                    && board[i + 1][column - 1] + board[i + 1][column - 2] == -1
                    && board[i + 1][column - 2] + board[i + 2][column - 2] == -1
                    && board[i + 2][column - 2] + board[i + 2][column - 1] == -1
            {
                return true;
            }
        }
    }
    for j in 0..column - 2 {
        // 检查上下两侧
        if j < column - 3 {
            if board[0][j] == -1
                && board[1][j] == -1
                && board[0][j + 3] == -1
                && board[1][j + 3] == -1
                && board[0][j + 1] + board[0][j + 2] == -1
                || board[row - 1][j] == -1
                    && board[row - 2][j] == -1
                    && board[row - 1][j + 3] == -1
                    && board[row - 2][j + 3] == -1
                    && board[row - 1][j + 1] + board[row - 1][j + 2] == -1
            {
                return true;
            }
        }
        if board[2][j] == -1
            && board[2][j + 1] == -1
            && board[2][j + 2] == -1
            && board[0][j + 1] + board[1][j + 1] == -1
            || board[row - 3][j] == -1
                && board[row - 3][j + 1] == -1
                && board[row - 3][j + 2] == -1
                && board[row - 1][j + 1] + board[row - 2][j + 1] == -1
            || board[0][j] == -1
                && board[1][j] == -1
                && board[1][j + 1] == -1
                && board[1][j + 2] == -1
                && board[0][j + 2] == -1
                && board[0][j + 1] == 0
            || board[row - 1][j] == -1
                && board[row - 2][j] == -1
                && board[row - 2][j + 1] == -1
                && board[row - 2][j + 2] == -1
                && board[row - 1][j + 2] == -1
                && board[row - 1][j + 1] == 0
        {
            return true;
        }
        if j < column - 3 {
            if board[2][j] == -1
                && board[2][j + 3] == -1
                && board[0][j + 1] + board[1][j + 1] == -1
                && board[1][j + 1] + board[1][j + 2] == -1
                && board[1][j + 2] + board[0][j + 2] == -1
                || board[row - 3][j] == -1
                    && board[row - 3][j + 3] == -1
                    && board[row - 1][j + 1] + board[row - 2][j + 1] == -1
                    && board[row - 2][j + 1] + board[row - 2][j + 2] == -1
                    && board[row - 2][j + 2] + board[row - 1][j + 2] == -1
            {
                return true;
            }
        }
    }
    if board[0][2] == -1 && board[1][2] == -1 && board[0][0] + board[0][1] == -1
        || board[2][0] == -1 && board[2][1] == -1 && board[0][0] + board[1][0] == -1
        || board[0][column - 3] == -1
            && board[1][column - 3] == -1
            && board[0][column - 1] + board[0][column - 2] == -1
        || board[2][column - 1] == -1
            && board[2][column - 2] == -1
            && board[0][column - 1] + board[1][column - 1] == -1
        || board[row - 1][2] == -1
            && board[row - 2][2] == -1
            && board[row - 1][0] + board[row - 1][1] == -1
        || board[row - 3][0] == -1
            && board[row - 3][1] == -1
            && board[row - 1][0] + board[row - 2][0] == -1
        || board[row - 1][column - 3] == -1
            && board[row - 2][column - 3] == -1
            && board[row - 1][column - 1] + board[row - 1][column - 2] == -1
        || board[row - 3][column - 1] == -1
            && board[row - 3][column - 2] == -1
            && board[row - 1][column - 1] + board[row - 2][column - 1] == -1
        || board[0][1] + board[1][1] + board[1][0] == -3 && board[0][0] == 0
        || board[0][column - 2] + board[1][column - 2] + board[1][column - 1] == -3
            && board[0][column - 1] == 0
        || board[row - 1][column - 2] + board[row - 2][column - 2] + board[row - 2][column - 1]
            == -3
            && board[row - 1][column - 1] == 0
        || board[row - 1][1] + board[row - 2][1] + board[row - 2][0] == -3 && board[row - 1][0] == 0
        || board[2][2] == -1 && board[0][1] + board[1][1] == -1 && board[1][0] + board[1][1] == -1
        || board[row - 3][2] == -1
            && board[row - 1][1] + board[row - 2][1] == -1
            && board[row - 2][0] + board[row - 2][1] == -1
        || board[row - 3][column - 3] == -1
            && board[row - 1][column - 2] + board[row - 2][column - 2] == -1
            && board[row - 2][column - 1] + board[row - 2][column - 2] == -1
        || board[2][column - 3] == -1
            && board[0][column - 2] + board[1][column - 2] == -1
            && board[1][column - 1] + board[1][column - 2] == -1
    {
        //检查四个角
        return true;
    }
    for i in 0..row - 2 {
        // 找中间的工、回、器形结构
        for j in 0..column - 2 {
            if j < column - 3 {
                if board[i][j] == -1
                    && board[i + 1][j] == -1
                    && board[i + 2][j] == -1
                    && board[i][j + 3] == -1
                    && board[i + 1][j + 3] == -1
                    && board[i + 2][j + 3] == -1
                    && board[i + 1][j + 1] + board[i + 1][j + 2] == -1
                {
                    return true;
                }
            }
            if i < row - 3 {
                if board[i][j] == -1
                    && board[i][j + 1] == -1
                    && board[i][j + 2] == -1
                    && board[i + 3][j] == -1
                    && board[i + 3][j + 1] == -1
                    && board[i + 3][j + 2] == -1
                    && board[i + 1][j + 1] + board[i + 2][j + 1] == -1
                {
                    return true;
                }
            }
            if board[i][j] == -1
                && board[i + 1][j] == -1
                && board[i + 2][j] == -1
                && board[i][j + 1] == -1
                && board[i + 2][j + 1] == -1
                && board[i][j + 2] == -1
                && board[i + 1][j + 2] == -1
                && board[i + 2][j + 2] == -1
                && board[i + 1][j + 1] == 0
            {
                return true;
            }
            if j < column - 3 && i < row - 3 {
                if board[i][j] == -1
                    && board[i + 3][j] == -1
                    && board[i][j + 3] == -1
                    && board[i + 3][j + 3] == -1
                    && board[i + 1][j + 1] + board[i + 2][j + 1] == -1
                    && board[i + 1][j + 1] + board[i + 1][j + 2] == -1
                    && board[i + 2][j + 1] + board[i + 2][j + 2] == -1
                {
                    return true;
                }
            }
        }
    }
    false
}

// 专用于高级局面的3BV快速计算
#[cfg(any(feature = "py", feature = "rs"))]
pub fn cal_bbbv_exp(board_in: &Vec<Vec<i32>>) -> usize {
    let mut board = board_in.clone();
    let mut op_id = 0;
    let mut op_list = [false; 200];
    let mut bv = 0;
    for x in 0..16 {
        for y in 0..30 {
            if board[x][y] > 0 {
                board[x][y] = 1000000;
                bv += 1;
            } else if board[x][y] == 0 {
                let mut min_op_id = 1000;
                let mut flag_op = false; // 该空周围有无空的标志位
                if x >= 1 {
                    for j in max(1, y) - 1..min(30, y + 2) {
                        if board[x - 1][j] > 999999 {
                            board[x - 1][j] = 1;
                            bv -= 1;
                        } else if board_in[x - 1][j] == 0 {
                            if board[x - 1][j] < min_op_id {
                                if flag_op {
                                    op_list[min_op_id as usize] = false;
                                } else {
                                    flag_op = true;
                                }
                                min_op_id = board[x - 1][j];
                            }
                        }
                    }
                }
                if y >= 1 {
                    if board[x][y - 1] > 999999 {
                        board[x][y - 1] = 1;
                        bv -= 1;
                    } else if board_in[x][y - 1] == 0 {
                        if board[x][y - 1] < min_op_id {
                            if flag_op {
                                op_list[min_op_id as usize] = false;
                            } else {
                                flag_op = true;
                            }
                        }
                    }
                }
                if !flag_op {
                    op_id += 1;
                    op_list[op_id as usize] = true;
                }
            }
        }
    }
    for x in (0..16).rev() {
        for y in (0..30).rev() {
            if board[x][y] == 0 {
                if x <= 14 {
                    for j in max(1, y) - 1..min(30, y + 2) {
                        if board[x + 1][j] > 999999 {
                            board[x + 1][j] = 1;
                            bv -= 1;
                        } else if board_in[x + 1][j] == 0 {
                            if board[x + 1][j] < board[x][y] {
                                op_list[board[x][y] as usize] = false;
                                board[x][y] = board[x + 1][j];
                            }
                        }
                    }
                }
                if y <= 28 {
                    if board[x][y + 1] > 999999 {
                        board[x][y + 1] = 1;
                        bv -= 1;
                    } else if board_in[x][y + 1] == 0 {
                        if board[x][y + 1] < board[x][y] {
                            op_list[board[x][y] as usize] = false;
                            board[x][y] = board[x][y + 1];
                        }
                    }
                }
            }
        }
    }
    for i in 0..op_id + 1 {
        if op_list[i] {
            bv += 1;
        }
    }
    bv
}

// 把局面合法化:只能合法化简单的情况,不能应付所有的情况!因为检查一个局面是否合法也是NP难的
// 配合局面光学识别算法
// 局面中标记的标准是10为待判的雷,1到8,没有11、12
#[cfg(any(feature = "py", feature = "rs"))]
pub fn legalize_board(board: &mut Vec<Vec<i32>>) {
    let row = board.len();
    let column = board[0].len();
    for x in 0..row {
        for y in 0..column {
            if board[x][y] <= -1 || board[x][y] >= 13 || board[x][y] == 9 {
                // 把局面中明显未定义的数字改成未打开
                board[x][y] = 10;
            } else if board[x][y] >= 1 && board[x][y] <= 8 {
                let mut minenum_limit = 0;
                for i in max(1, x) - 1..min(row, x + 2) {
                    for j in max(1, y) - 1..min(column, y + 2) {
                        if board[i][j] == 10 || board[i][j] == 11 {
                            // 局面中的数字不能大于周围的未知格数
                            minenum_limit += 1;
                        }
                    }
                }
                board[x][y] = min(board[x][y], minenum_limit);
            }
        }
    }
}

// 重新分块矩阵
// 这些矩阵必须非空、没有空的块、没有b=0的情况
pub fn chunk_matrixes(
    matrix_as: &mut Vec<Vec<Vec<i32>>>,
    matrix_xs: &mut Vec<Vec<(usize, usize)>>,
    matrix_bs: &mut Vec<Vec<i32>>,
) {
    let block_num = matrix_bs.len();
    let mut aas = vec![];
    let mut xxs = vec![];
    let mut bbs = vec![];
    for _ in 0..block_num {
        let aa = matrix_as.pop().unwrap();
        let xx = matrix_xs.pop().unwrap();
        let bb = matrix_bs.pop().unwrap();
        let (mut a_, mut x_, mut b_) = chunk_matrix(aa, xx, bb);
        aas.append(&mut a_);
        xxs.append(&mut x_);
        bbs.append(&mut b_);
    }
    *matrix_as = aas;
    *matrix_xs = xxs;
    *matrix_bs = bbs;
}

// 重新分块一个矩阵
pub fn chunk_matrix(
    mut matrix_a: Vec<Vec<i32>>,
    mut matrix_x: Vec<(usize, usize)>,
    mut matrix_b: Vec<i32>,
) -> (Vec<Vec<Vec<i32>>>, Vec<Vec<(usize, usize)>>, Vec<Vec<i32>>) {
    let mut block_id = 0;
    let mut matrix_as = vec![];
    let mut matrix_xs = vec![];
    let mut matrix_bs = vec![];

    loop {
        let row_num = matrix_a.len();
        let column_num = matrix_a[0].len();
        let mut current_rows_bool = vec![false; row_num];
        let mut current_columns_bool = vec![false; column_num];
        current_columns_bool[0] = true;
        let mut column_buffer = vec![0];
        loop {
            let mut row_buffer = vec![];
            if column_buffer.is_empty() {
                break;
            }
            for i in &column_buffer {
                for idr in 0..matrix_a.len() {
                    if matrix_a[idr][*i] >= 1 && !current_rows_bool[idr] {
                        row_buffer.push(idr);
                        current_rows_bool[idr] = true;
                    }
                }
            }
            column_buffer.clear();
            if row_buffer.is_empty() {
                break;
            }
            for i in row_buffer {
                for (idc, &c) in matrix_a[i].iter().enumerate() {
                    if c >= 1 && !current_columns_bool[idc] {
                        column_buffer.push(idc);
                        current_columns_bool[idc] = true;
                    }
                }
            }
        }
        let mut current_rows = vec![];
        let mut current_columns = vec![];
        for (idx, &x) in current_columns_bool.iter().enumerate() {
            if x {
                current_columns.push(idx)
            }
        }
        for (idx, &x) in current_rows_bool.iter().enumerate() {
            if x {
                current_rows.push(idx)
            }
        }
        current_rows.sort_by(|a, b| b.cmp(a));
        current_rows.dedup();
        current_columns.sort_by(|a, b| b.cmp(a));
        current_columns.dedup();
        matrix_as.push(vec![vec![0; current_columns.len()]; current_rows.len()]);
        matrix_bs.push(vec![0; current_rows.len()]);
        matrix_xs.push(vec![(0, 0); current_columns.len()]);
        for (idx, x) in current_rows.iter().enumerate() {
            for (idy, y) in current_columns.iter().enumerate() {
                matrix_as[block_id][idx][idy] = matrix_a[*x][*y];
            }
        }
        for (idx, x) in current_rows.iter().enumerate() {
            matrix_bs[block_id][idx] = matrix_b[*x];
        }
        for (idy, y) in current_columns.iter().enumerate() {
            matrix_xs[block_id][idy] = matrix_x[*y];
        }
        for i in current_rows {
            matrix_a.remove(i);
            matrix_b.remove(i);
        }
        for j in current_columns {
            for k in 0..matrix_a.len() {
                matrix_a[k].remove(j);
            }
            matrix_x.remove(j);
        }

        if matrix_b.is_empty() {
            break;
        }
        block_id += 1;
    }
    (matrix_as, matrix_xs, matrix_bs)
}

#[test]
fn chunk_matrix_works() {
    let a = vec![
        vec![1, 1, 0, 0],
        vec![0, 0, 1, 1],
        vec![0, 1, 0, 0],
        vec![0, 0, 0, 1],
    ];
    let x = vec![(1, 2), (3, 4), (5, 6), (7, 8)];
    let b = vec![1, 2, 3, 4];
    let (_aa, xx, _bb) = chunk_matrix(a, x, b);
    println!("{:?}", xx);
}

// 找局面中间的格子的所在块的任意一个边界的格子。(可能不严格)
// 与弱无猜、准无猜有关。涉及判断是否为“必要的猜雷”。
// 点中间时,需要判断整块无猜以后,才能判定是合理的猜雷。
// xy处必须是10。第二个返回值true代表xy在边界,false代表在内部。
pub fn find_a_border_cell(
    board_of_game: &Vec<Vec<i32>>,
    xy: &(usize, usize),
) -> (Option<(usize, usize)>, bool) {
    let row = board_of_game.len();
    let column = board_of_game[0].len();
    for m in max(1, xy.0) - 1..min(row, xy.0 + 2) {
        for n in max(1, xy.1) - 1..min(column, xy.1 + 2) {
            if board_of_game[m][n] < 10 {
                return (Some(*xy), true);
            }
        }
    }
    let mut board_of_game_clone = board_of_game.clone();
    board_of_game_clone[xy.0][xy.1] = 100;
    let mut buffer = vec![(xy.0, xy.1)];
    while let Some(top) = buffer.pop() {
        let (i, j) = top;
        for m in max(1, i) - 1..min(row, i + 2) {
            for n in max(1, j) - 1..min(column, j + 2) {
                if (i != m || j != n) && board_of_game_clone[m][n] == 10 {
                    for mm in max(1, m) - 1..min(row, m + 2) {
                        for nn in max(1, n) - 1..min(column, n + 2) {
                            if board_of_game_clone[mm][nn] < 10 {
                                return (Some((m, n)), false);
                            }
                        }
                    }
                    buffer.push((m, n));
                    board_of_game_clone[m][n] = 100;
                }
            }
        }
    }
    (None, false)
}

/// 是局部最好的双击返回真,否则为假。方法是向四周试探一个位置,好的双击应该不能打开更多的格子。
/// - 不检查,但要保证pos位置处一定是合法、有效的双击,否则没意义。
/// - board_of_game必须是没有标错的雷的,如果分析录像,必须不是尸体。
pub fn is_good_chording(board_of_game: &Vec<Vec<i32>>, pos: (usize, usize)) -> bool {
    let row = board_of_game.len();
    let column = board_of_game[0].len();
    let mid_num = surround_cell_num(board_of_game, pos);
    if pos.0 > 0 {
        if mid_num < surround_cell_num(board_of_game, (pos.0 - 1, pos.1)) {
            return false;
        }
    }
    if pos.1 > 0 {
        if mid_num < surround_cell_num(board_of_game, (pos.0, pos.1 - 1)) {
            return false;
        }
    }
    if pos.0 + 1 < row {
        if mid_num < surround_cell_num(board_of_game, (pos.0 + 1, pos.1)) {
            return false;
        }
    }
    if pos.1 < column + 1 {
        if mid_num < surround_cell_num(board_of_game, (pos.0, pos.1 + 1)) {
            return false;
        }
    }
    return mid_num > 0;
}

// (双击位置)周围的格子(10)数,不合法则返回-1。
// - board_of_game必须是没有标错的雷的,如果分析录像,必须不是尸体。
fn surround_cell_num(board_of_game: &Vec<Vec<i32>>, pos: (usize, usize)) -> i8 {
    let row = board_of_game.len();
    let column = board_of_game[0].len();
    if board_of_game[pos.0][pos.1] > 8 || board_of_game[pos.0][pos.1] < 1 {
        return -1;
    }
    let mut flag_num = 0;
    let mut num = 0;
    for m in max(1, pos.0) - 1..min(row, pos.0 + 2) {
        for n in max(1, pos.1) - 1..min(column, pos.1 + 2) {
            if board_of_game[m][n] == 10 {
                num += 1;
            } else if board_of_game[m][n] == 11 {
                flag_num += 1;
            }
        }
    }
    if board_of_game[pos.0][pos.1] as i8 == flag_num {
        return num;
    } else {
        return -1;
    }
}

/// 算数字。局面上只有0和-1时,计算其他的数字。不具备幂等性!!!
pub fn cal_board_numbers(board: &mut Vec<Vec<i32>>) {
    let height = board.len();
    let width = board[0].len();
    for x in 0..height {
        for y in 0..width {
            if board[x][y] == -1 {
                for j in max(1, x) - 1..min(height, x + 2) {
                    for k in max(1, y) - 1..min(width, y + 2) {
                        if board[j][k] >= 0 {
                            board[j][k] += 1;
                        }
                    }
                }
            }
        }
    }
}