1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
use std::cmp::{max, min};
// Optical Cell Recognition
/// 局面光学分割引擎。
/// - 局限:仅实现了扫雷局面的图片的分割,而不包含识别部分。
/// - 原理:使用了索贝尔(Sobel)算子、中值滤波、动态规划求解最短路径、霍夫(Hough)变换等。
/// - 注意:这个类用到的魔法数字太多,源码不宜查阅。建议直接看[obr_board](#obr_board)这个函数。
pub struct ImageBoard {
// data_vec: Vec<usize>,
height: usize,
width: usize,
data: [Vec<Vec<f32>>; 3],
r_1: usize,
c_1: usize,
r0: usize,
c0: usize,
pixelr: f32,
pixelc: f32,
pub c: usize,
pub r: usize,
}
impl ImageBoard {
pub fn new(data_vec: Vec<usize>, height: usize, width: usize) -> ImageBoard {
let mut d: [Vec<Vec<f32>>; 3] = [
vec![vec![0.0; width]; height],
vec![vec![0.0; width]; height],
vec![vec![0.0; width]; height],
];
let c: [usize; 3] = [2, 1, 0];
for k in 0..3 {
for i in 0..height {
for j in 0..width {
d[k][i][j] = data_vec[(i * width + j) * 4 + c[k]] as f32 / 255.0;
}
}
}
ImageBoard {
// data_vec: data_vec,
height,
width,
data: d,
r_1: 0,
c_1: 0,
r0: 0,
c0: 0,
pixelr: 0.0,
pixelc: 0.0,
c: 0,
r: 0,
}
}
pub fn extra_save_cell(&self, x: usize, y: usize, size: usize) -> Vec<f32> {
// 抽取每个cell的彩色像素数据,size为边长
let mut cell: Vec<f32> = vec![0.0; size * size * 3];
for k in 0..3 {
for i in 0..size {
for j in 0..size {
cell[k * size * size + i * size + j] = self.data[k][(self.r_1 as f32
+ self.r0 as f32
+ self.pixelr * x as f32
+ self.pixelr / 2.0 / size as f32 * (i as f32 * 2.0 + 1.0))
as usize][(self.c_1 as f32
+ self.c0 as f32
+ self.pixelc * y as f32
+ self.pixelc / 2.0 / size as f32 * (j as f32 * 2.0 + 1.0))
as usize];
}
}
}
cell
}
pub fn get_gradient(&self) -> Vec<Vec<f32>> {
// println!("{:?}", self.data[0].len());
let row = self.data[0].len() - 2;
let column = self.data[0][0].len() - 2;
let mut x_bw = vec![vec![0.0; column]; row];
// println!("{:?}", self.data[0].len());
for i in 0..row {
for j in 0..column {
for k in 0..3 {
let g = -self.data[k][i][j] - self.data[k][i][j + 1] - self.data[k][i][j + 2]
+ self.data[k][i + 2][j]
+ self.data[k][i + 2][j + 1]
+ self.data[k][i + 2][j + 2];
x_bw[i][j] = if x_bw[i][j] > g.abs() {
x_bw[i][j]
} else {
g.abs()
};
let g = -self.data[k][i][j] - self.data[k][i + 1][j] - self.data[k][i + 2][j]
+ self.data[k][i][j + 2]
+ self.data[k][i + 1][j + 2]
+ self.data[k][i + 2][j + 2];
x_bw[i][j] = if x_bw[i][j] > g.abs() {
x_bw[i][j]
} else {
g.abs()
};
}
}
}
x_bw
}
fn get_r12c12(&self, x_bw2: &Vec<Vec<bool>>) -> [usize; 8] {
let row = x_bw2.len();
let column = x_bw2[0].len();
let mut r_1 = row / 2;
let mut r_2 = row / 2;
let mut c_1 = column / 2;
let mut c_2 = column / 2;
let c_p_1 = column / 3;
let c_p_2 = column * 2 / 3;
let r_p_1 = row / 3;
let r_p_2 = row * 2 / 3;
let mut c = c_1;
let mut flag_break = false;
let mut r_pos = r_p_1;
loop {
if c == 0 {
c_1 = 0;
break;
}
if x_bw2[r_pos][c - 1] {
c -= 1;
continue;
} else {
let mut flag_continue = false;
for skip in 1..4 {
if c <= skip {
c_1 = c;
flag_break = true; // 发现都是0了
break;
}
let mut ss = 0;
for n in r_p_1..r_p_2 {
if x_bw2[n][c - skip] {
ss += 1;
if ss >= 5 {
c -= skip;
r_pos = n;
flag_continue = true;
break; // 跨到一半发现了两个1,就跨过去
}
}
}
if flag_continue {
break;
}
}
if flag_continue {
continue;
}
if flag_break {
break;
} else {
c_1 = c; // 顺利跨完5格
break;
}
}
}
c = c_2;
flag_break = false;
r_pos = r_p_1;
while c <= column - 1 {
if c == column - 1 {
c_2 = column - 1;
break;
}
if x_bw2[r_pos][c + 1] {
c += 1;
continue;
} else {
let mut flag_continue = false;
for skip in 1..4 {
if c + skip == column - 1 {
c_2 = c;
flag_break = true; // 发现都是0了
break;
}
let mut ss = 0;
for n in r_p_1..r_p_2 {
if x_bw2[n][c + skip] {
ss += 1;
if ss >= 5 {
c += skip;
r_pos = n;
flag_continue = true;
break; // 跨到一半发现了两个1,就跨过去
}
}
}
if flag_continue {
break;
}
}
if flag_continue {
continue;
}
if flag_break {
break;
} else {
c_2 = c; // 顺利跨完5格
break;
}
}
}
//////////
let mut r = r_1;
flag_break = false;
let mut c_pos = c_p_1;
loop {
if r == 0 {
r_1 = 0;
break;
}
if x_bw2[r - 1][c_pos] {
r -= 1;
continue;
} else {
let mut flag_continue = false;
for skip in 1..4 {
if r <= skip {
r_1 = r;
flag_break = true; // 发现都是0了
break;
}
let mut ss = 0;
for n in c_p_1..c_p_2 {
if x_bw2[r - skip][n] {
ss += 1;
if ss >= 5 {
r -= skip;
c_pos = n;
flag_continue = true;
break; // 跨到一半发现了两个1,就跨过去
}
}
}
if flag_continue {
break;
}
}
if flag_continue {
continue;
}
if flag_break {
break;
} else {
r_1 = r; // 顺利跨完5格
break;
}
}
}
r = r_2;
flag_break = false;
c_pos = c_p_1;
while r <= row - 1 {
if r == row - 1 {
r_2 = row - 1;
break;
}
if x_bw2[r + 1][c_pos] {
r += 1;
continue;
} else {
let mut flag_continue = false;
for skip in 1..4 {
if r + skip == row - 1 {
r_2 = r;
flag_break = true; // 发现都是0了
break;
}
let mut ss = 0;
for n in c_p_1..c_p_2 {
if x_bw2[r + skip][n] {
ss += 1;
if ss >= 5 {
r += skip;
c_pos = n;
flag_continue = true;
break; // 跨到一半发现了两个1,就跨过去
}
}
}
if flag_continue {
break;
}
}
if flag_continue {
continue;
}
if flag_break {
break;
} else {
r_2 = r; // 顺利跨完5格
break;
}
}
}
[r_1, r_2, c_1, c_2, r_p_1, r_p_2, c_p_1, c_p_2]
}
fn binarize_gradient(&self, x: &Vec<Vec<f32>>) -> Vec<Vec<bool>> {
let row = x.len();
let column = x[0].len();
let mut xx = vec![vec![false; column]; row];
let mut ss = vec![];
for i in (row / 4)..(row * 3 / 4) {
for j in (column / 4)..(column * 3 / 4) {
ss.push(x[i][j]);
}
}
ss.sort_by(|a, b| a.partial_cmp(b).unwrap()); // 浮点数从小到大排序
let mut th1 = ss[(ss.len() as f32 * 0.55) as usize];
if th1 > 1.0 {
th1 = 1.0;
} else if th1 < 0.01 {
th1 = 0.01;
}
for i in 0..row {
for j in 0..column {
if x[i][j] >= th1 {
xx[i][j] = true;
}
}
}
xx
}
fn narrow(&mut self, k_in: usize) {
// 用中值滤波,按比例缩小self.data(因为过高的分辨率影响识别),K为2、3等
let row = self.data[0].len() / k_in;
let column = self.data[0][0].len() / k_in;
let mut x_bw: [Vec<Vec<f32>>; 3] = [
vec![vec![0.0; column]; row],
vec![vec![0.0; column]; row],
vec![vec![0.0; column]; row],
];
let mut kk = vec![0.0; k_in * k_in];
let mid = (k_in * k_in) / 2;
for k in 0..3 {
for i in 0..row {
for j in 0..column {
let mut pos = 0;
for ii in i * k_in..(i + 1) * k_in {
for jj in j * k_in..(j + 1) * k_in {
kk[pos] = self.data[k][ii][jj];
pos += 1;
}
}
kk.sort_by(|a, b| a.partial_cmp(b).unwrap());
x_bw[k][i][j] = kk[mid];
}
}
}
self.data = x_bw;
self.height = self.data[0].len();
self.width = self.data[0][0].len();
}
fn get_c_sum(
&self,
data: &Vec<Vec<bool>>,
mut dis: [usize; 5],
c_1: usize,
c_2: usize,
r_1: usize,
r_2: usize,
) -> [usize; 5] {
// c_1, c_2左闭右闭
let mut dis_ = dis;
for i in r_1 + 1..r_2 + 1 {
dis_ = dis;
dis_[0] = min(
dis[0] + (1 - data[i][c_1] as usize),
dis[1] + (1 - data[i][c_1 + 1] as usize) + 1,
);
for j in c_1 + 1..c_2 {
dis_[j - c_1] = min(
min(
dis[j - c_1] + (1 - data[i][j] as usize),
dis[j - c_1 - 1] + (1 - data[i][j - 1] as usize) + 1,
),
dis[j - c_1 + 1] + (1 - data[i][j + 1] as usize) + 1,
);
}
dis_[c_2 - c_1] = min(
dis[c_2 - c_1] + (1 - data[i][c_2] as usize),
dis[c_2 - c_1 - 1] + (1 - data[i][c_2 - 1] as usize) + 1,
);
dis = dis_
}
dis_
}
fn get_r_sum(
&self,
data: &Vec<Vec<bool>>,
mut dis: [usize; 5],
c_1: usize,
c_2: usize,
r_1: usize,
r_2: usize,
) -> [usize; 5] {
// r_1, r_2左闭右闭
let mut dis_ = dis;
for i in c_1 + 1..c_2 + 1 {
dis_ = dis;
dis_[0] = min(
dis[0] + (1 - data[r_1][i] as usize),
dis[1] + (1 - data[r_1 + 1][i] as usize) + 1,
);
for j in r_1 + 1..r_2 {
dis_[j - r_1] = min(
min(
dis[j - r_1] + (1 - data[j][i] as usize),
dis[j - r_1 - 1] + (1 - data[j - 1][i] as usize) + 1,
),
dis[j - r_1 + 1] + (1 - data[j + 1][i] as usize) + 1,
);
}
dis_[r_2 - r_1] = min(
dis[r_2 - r_1] + (1 - data[r_2][i] as usize),
dis[r_2 - r_1 - 1] + (1 - data[r_2 - 1][i] as usize) + 1,
);
dis = dis_;
}
return dis_;
}
fn get_line(&self, x: Vec<usize>) -> (f32, usize, usize) {
// 找线
let lenx = x.len();
let mut xsort = x.clone();
xsort.sort();
let th = (xsort[(0.85 * lenx as f32) as usize] as f32 + xsort[lenx - 1] as f32 * 0.75) / 2.0;
let mut xx = vec![0; lenx];
xx[0] = x[0];
xx[1] = x[1];
xx[2] = x[2];
xx[3] = x[3];
xx[lenx - 1] = x[lenx - 1];
xx[lenx - 2] = x[lenx - 2];
xx[lenx - 3] = x[lenx - 3];
xx[lenx - 4] = x[lenx - 4];
for i in 4..lenx - 4 {
xx[i] = max(
x[i],
min(
max(max(x[i - 4], x[i - 3]), max(x[i - 2], x[i - 1])),
max(max(x[i + 1], x[i + 2]), max(x[i + 3], x[i + 4])),
),
);
}
let mut lines = vec![];
for i in 0..lenx {
if xx[i] as f32 >= th {
let mut left = 0;
let mut right = 0;
let mut max_flag = true;
let max_num = xx[i];
for j in max(7, i)-7..i {
if xx[j] >= xx[i] {
left += 1;
}
if xx[j] > max_num {
max_flag = false;
break;
}
}
for j in i + 1..min(lenx, i + 8) {
if xx[j] >= xx[i] {
right += 1;
}
if xx[j] > max_num {
max_flag = false;
break;
}
}
if max_flag && (left == right || left == right - 1) {
lines.push(i)
}
}
}
let mut delta = vec![];
let lineslen = lines.len();
for i in 1..lineslen {
let dd = lines[i] - lines[i - 1];
if dd > 5 {
delta.push(dd);
}
}
delta.sort();
let size_est = delta[(delta.len() as f32 * 0.4) as usize];
if (lines[1] - lines[0]) as f32 <= size_est as f32 * 0.8 {
lines.remove(0);
}
let lineslen = lines.len();
if (lines[lineslen - 1] - lines[lineslen - 2]) as f32 <= size_est as f32 * 0.8 {
lines.remove(lineslen - 1);
}
let lineslen = lines.len();
// 针对清晰度高的大图,采用霍夫变换定位
let max_size = min(200, size_est + 5);
let min_size = max(8, size_est - 5);
let max_x = lines[0] + 7; // 最大的空的格子像素数
let mut hough = vec![vec![0; max_size * 4 + 1]; max_x + 1];
// 方格边长精度为像素的1/4
for line in &lines {
for y in min_size * 4..max_size * 4 + 1 {
for n in line / max_size..line / min_size + 1 {
// let x_ = line - n * y / 4;
if n * y / 4 <= *line && *line <= max_x + n * y / 4 {
// let x_ = line - n * y / 4;
hough[line - n * y / 4][y] += 1;
}
if n * y / 4 <= *line + 1 && *line + 1 <= max_x + n * y / 4 {
// let x_ = line - n * y / 4;
// println!("{:?}", *line);
// println!("{:?}", n * y / 4);
hough[*line + 1 - n * y / 4][y] += 1;
}
}
}
}
let mut max_num = 0;
let mut max_i = 0;
let mut max_j = 0;
for i in 0..max_x + 1 {
for j in min_size * 4..max_size * 4 + 1 {
if hough[i][j] > max_num {
max_i = i;
max_j = j;
max_num = hough[i][j];
}
}
}
let nn = ((lines[lineslen - 1] - lines[0] + 2) as f32 / (max_j as f32 / 4.0)) as usize;
(max_j as f32 / 4.0, max_i, nn)
}
pub fn get_pos_pixel(&mut self) {
let x = self.data.clone();
let mut row = x[0].len() - 2;
let mut column = x[0][0].len() - 2;
// LoG算子,Prewitt算子,Sobel算子
let mut x_bw2 = self.get_gradient();
let x_bw3 = self.binarize_gradient(&x_bw2);
let [mut r_1, mut r_2, mut c_1, mut c_2, mut r_p_1, mut r_p_2, mut c_p_1, mut c_p_2] =
self.get_r12c12(&x_bw3);
while r_2 - r_1 <= row / 3 || c_2 - c_1 <= column / 3 {
self.narrow(3);
x_bw2 = self.get_gradient();
let x_bw3 = self.binarize_gradient(&x_bw2);
let [r_1_, r_2_, c_1_, c_2_, r_p_1_, r_p_2_, c_p_1_, c_p_2_] = self.get_r12c12(&x_bw3);
r_1 = r_1_;
r_2 = r_2_;
c_1 = c_1_;
c_2 = c_2_;
r_p_1 = r_p_1_;
r_p_2 = r_p_2_;
c_p_1 = c_p_1_;
c_p_2 = c_p_2_;
row = self.data[0].len() - 2;
column = self.data[0][0].len() - 2;
if row <= 64 || column <= 64 {
return;
}
}
// println!("{:?}", self.data[0].len());
// println!("{:?}", self.data[0][0].len());
// println!("{:?}", x_bw2.len());
// println!("{:?}", x_bw2[0].len());
// println!("{:?}", x_bw3.len());
// println!("{:?}", x_bw3[0].len());
for c in (1..c_1 + 1).rev() {
let mut ss = 0;
for r in r_p_1..r_p_2 {
ss += x_bw3[r][c] as i32;
ss += x_bw3[r - 1][c] as i32;
if ss > 2 {
break;
}
}
if ss <= 2 {
c_1 = c;
break;
}
c_1 = c;
}
for c in c_2..column - 1 {
let mut ss = 0;
for r in r_p_1..r_p_2 {
ss += x_bw3[r][c] as i32;
ss += x_bw3[r][c + 1] as i32;
if ss > 2 {
break;
}
}
if ss <= 2 {
c_2 = c;
break;
}
c_2 = c;
}
for r in (1..r_1 + 1).rev() {
let mut ss = 0;
for c in c_p_1..c_p_2 {
ss += x_bw3[r][c] as i32;
ss += x_bw3[r - 1][c] as i32;
if ss > 2 {
break;
}
}
if ss <= 2 {
r_1 = r;
break;
}
r_1 = r
}
for r in r_2..row - 1 {
let mut ss = 0;
for c in c_p_1..c_p_2 {
ss += x_bw3[r][c] as i32;
ss += x_bw3[r + 1][c] as i32;
if ss > 2 {
break;
}
}
if ss <= 2 {
r_2 = r;
break;
}
r_2 = r;
}
let mut c_sum = vec![];
c_sum.push(r_2 - r_1 - self.get_c_sum(&x_bw3, [0, 1, 2, 3, 4], c_1, c_1 + 4, r_1, r_2)[0]);
c_sum.push(r_2 - r_1 - self.get_c_sum(&x_bw3, [1, 0, 1, 2, 3], c_1, c_1 + 4, r_1, r_2)[1]);
for c in c_1..c_2 - 4 {
c_sum.push(r_2 - r_1 - self.get_c_sum(&x_bw3, [2, 1, 0, 1, 2], c, c + 4, r_1, r_2)[2]);
}
c_sum.push(r_2 - r_1 - self.get_c_sum(&x_bw3, [3, 2, 1, 0, 1], c_2 - 4, c_2, r_1, r_2)[3]);
c_sum.push(r_2 - r_1 - self.get_c_sum(&x_bw3, [4, 3, 2, 1, 0], c_2 - 4, c_2, r_1, r_2)[4]);
let mut r_sum = vec![];
r_sum.push(c_2 - c_1 - self.get_r_sum(&x_bw3, [0, 1, 2, 3, 4], c_1, c_2, r_1, r_1 + 4)[0]);
r_sum.push(c_2 - c_1 - self.get_r_sum(&x_bw3, [1, 0, 1, 2, 3], c_1, c_2, r_1, r_1 + 4)[1]);
for r in r_1..r_2 - 4 {
r_sum.push(c_2 - c_1 - self.get_r_sum(&x_bw3, [2, 1, 0, 1, 2], c_1, c_2, r, r + 4)[2]);
}
r_sum.push(c_2 - c_1 - self.get_r_sum(&x_bw3, [3, 2, 1, 0, 1], c_1, c_2, r_2 - 4, r_2)[3]);
r_sum.push(c_2 - c_1 - self.get_r_sum(&x_bw3, [4, 3, 2, 1, 0], c_1, c_2, r_2 - 4, r_2)[4]);
let (pixelc, c0, c) = self.get_line(c_sum);
let (pixelr, r0, r) = self.get_line(r_sum);
self.pixelc = pixelc;
self.c0 = c0;
self.c = c;
self.pixelr = pixelr;
self.r0 = r0;
self.r = r;
self.c_1 = c_1;
self.r_1 = r_1;
}
}