ms_toollib 1.4.17

Algorithms for Minesweeper
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
use crate::utils::{
    c, cal_table_minenum_recursion, chunk_matrixes, combine, find_a_border_cell, laymine,
    laymine_op, refresh_board, refresh_matrixs, refresh_matrixses, unsolvable_structure,
};
#[cfg(any(feature = "py", feature = "rs"))]
use crate::utils::{cal_bbbv_exp, legalize_board};

use crate::videos::{GameBoardState, MinesweeperBoard};

use crate::big_number::BigNumber;

#[cfg(feature = "js")]
use crate::utils::JsShuffle;

#[cfg(any(feature = "py", feature = "rs"))]
use crate::obr::ImageBoard;

use itertools::Itertools;

#[cfg(any(feature = "py", feature = "rs"))]
use rand::seq::SliceRandom;
#[cfg(any(feature = "py", feature = "rs"))]
use rand::thread_rng;
// use tract_onnx::tract_hir::ops::array::Flatten;

use std::cmp::{max, min};
#[cfg(any(feature = "py", feature = "rs"))]
use std::sync::mpsc;
#[cfg(any(feature = "py", feature = "rs"))]
use std::sync::{Arc, Mutex};
#[cfg(any(feature = "py", feature = "rs"))]
use std::thread;

#[cfg(any(feature = "py", feature = "rs"))]
use tract_ndarray::Array;

#[cfg(any(feature = "py", feature = "rs"))]
use tract_onnx::prelude::*;

use crate::ENUM_LIMIT;

// 中高级的算法,例如无猜埋雷、判雷引擎、计算概率

/// 双集合判雷引擎。
/// - 输入:3个矩阵、局面。
/// - 返回:是雷、非雷的格子,在传入的局面上标是雷(11)和非雷(12)。  
/// - 注意:会维护系数矩阵、格子矩阵和数字矩阵,删、改、分段。
pub fn solve_minus(
    a_mats: &mut Vec<Vec<Vec<i32>>>,
    xs: &mut Vec<Vec<(usize, usize)>>,
    bs: &mut Vec<Vec<i32>>,
    board_of_game: &mut Vec<Vec<i32>>,
) -> Result<(Vec<(usize, usize)>, Vec<(usize, usize)>), usize> {
    let block_num = bs.len();
    // let mut flag = false;
    let mut not_mine = vec![];
    let mut is_mine = vec![];
    let mut remove_blocks_id = vec![];
    for b in (0..block_num).rev() {
        let mut not_mine_rel = vec![];
        let mut is_mine_rel = vec![];
        let matrix_column = xs[b].len();
        let matrix_row = bs[b].len();
        if matrix_row <= 1 {
            continue; // 整段只有一个数字,比如角落的1
        }
        for i in 1..matrix_row {
            for j in 0..i {
                let mut adval1 = vec![];
                let mut advaln1 = vec![];
                let mut flag_adj = false;
                for k in 0..matrix_column {
                    if a_mats[b][i][k] >= 1 && a_mats[b][j][k] >= 1 {
                        flag_adj = true;
                        continue;
                    }
                    if a_mats[b][i][k] - a_mats[b][j][k] == 1 {
                        adval1.push(k)
                    } else if a_mats[b][i][k] - a_mats[b][j][k] == -1 {
                        advaln1.push(k)
                    }
                }
                if flag_adj {
                    let bdval = bs[b][i] - bs[b][j];
                    if adval1.len() as i32 == bdval {
                        is_mine_rel.append(&mut adval1);
                        not_mine_rel.append(&mut advaln1);
                    } else if advaln1.len() as i32 == -bdval {
                        is_mine_rel.append(&mut advaln1);
                        not_mine_rel.append(&mut adval1);
                    }
                }
            }
        }
        is_mine_rel.sort();
        is_mine_rel.dedup();
        not_mine_rel.sort();
        not_mine_rel.dedup();
        for i in &not_mine_rel {
            not_mine.push(xs[b][*i]);
            board_of_game[xs[b][*i].0][xs[b][*i].1] = 12;
        }
        for i in &is_mine_rel {
            is_mine.push(xs[b][*i]);
            board_of_game[xs[b][*i].0][xs[b][*i].1] = 11;
            for j in 0..a_mats[b].len() {
                bs[b][j] -= a_mats[b][j][*i];
            }
        }
        let mut del_id = not_mine_rel;
        del_id.append(&mut is_mine_rel);
        del_id.sort_by(|a, b| b.cmp(a));
        del_id.dedup();
        for i in del_id {
            xs[b].remove(i);
            for jj in 0..a_mats[b].len() {
                a_mats[b][jj].remove(i);
            }
        }
        if xs[b].is_empty() {
            remove_blocks_id.push(b);
        }
    }

    for b in remove_blocks_id {
        a_mats.remove(b);
        bs.remove(b);
        xs.remove(b);
    }
    let (mut not, mut is) = solve_direct(a_mats, xs, bs, board_of_game)?; // 没错,双集合判雷的最后一步是用单集合再过一轮。理由:(1)这样才不会报错(2)单集合复杂度很低,不费事
    not_mine.append(&mut not);
    is_mine.append(&mut is);
    chunk_matrixes(a_mats, xs, bs);
    Ok((not_mine, is_mine))
}

/// 单集合判雷引擎。
/// - 输入:3个矩阵、局面。
/// - 返回:非雷、是雷的格子,在传入的局面上标是雷(11)和非雷(12)。  
/// - 返回Err(6)表示:比如数字2的周围只有1个格子没打开  
/// - 注意:会维护系数矩阵、格子矩阵和数字矩阵,删、改、分段。
pub fn solve_direct(
    a_mats: &mut Vec<Vec<Vec<i32>>>,
    xs: &mut Vec<Vec<(usize, usize)>>,
    bs: &mut Vec<Vec<i32>>,
    board_of_game: &mut Vec<Vec<i32>>,
) -> Result<(Vec<(usize, usize)>, Vec<(usize, usize)>), usize> {
    let mut is_mine = vec![];
    let mut not_mine = vec![];

    let block_num = bs.len();
    for b in (0..block_num).rev() {
        let mut matrix_column = xs[b].len();
        let mut matrix_row = bs[b].len();
        for i in (0..matrix_row).rev() {
            if a_mats[b][i].iter().sum::<i32>() == bs[b][i] {
                for k in (0..matrix_column).rev() {
                    if a_mats[b][i][k] >= 1 {
                        is_mine.push((xs[b][k].0, xs[b][k].1));
                        board_of_game[xs[b][k].0][xs[b][k].1] = 11;
                        xs[b].remove(k);
                        for t in 0..matrix_row {
                            bs[b][t] -= a_mats[b][t][k];
                            a_mats[b][t].remove(k);
                        }
                        matrix_column -= 1;
                    }
                }
                a_mats[b].remove(i);
                bs[b].remove(i);
                matrix_row -= 1;
            }
        }
        for i in (0..matrix_row).rev() {
            if bs[b][i] == 0 {
                for k in (0..matrix_column).rev() {
                    if a_mats[b][i][k] >= 1 {
                        not_mine.push(xs[b][k]);
                        board_of_game[xs[b][k].0][xs[b][k].1] = 12;
                        xs[b].remove(k);
                        for t in 0..matrix_row {
                            a_mats[b][t].remove(k);
                        }
                        matrix_column -= 1;
                    }
                }
                a_mats[b].remove(i);
                bs[b].remove(i);
                matrix_row -= 1;
            }
        }
        if bs[b].is_empty() {
            a_mats.remove(b);
            bs.remove(b);
            xs.remove(b);
        }
    }
    let ans = bs.iter().find(|&b| match b.iter().find(|&&x| x < 0) {
        Some(_) => return true,
        None => return false,
    });
    match ans {
        Some(_) => return Err(6),
        None => {}
    }
    chunk_matrixes(a_mats, xs, bs);
    Ok((not_mine, is_mine))
}

/// 游戏局面概率计算引擎。  
/// - 输入:局面、总雷数。总雷数大于等于1时,理解成实际数量;小于1时理解为比例。  
/// - 注意:局面中可以标雷(11)和非类(12),但必须全部标对。  
/// - 注意:若超出枚举长度(固定值55),则该区块的部分返回平均概率,且返回所需的枚举长度。  
/// - 返回:所有边缘格子是雷的概率、内部未知格子是雷的概率、局面中总未知雷数(未知雷数 = 总雷数 - 已经标出的雷)的范围、上述“所需的枚举长度”。  
/// - 注意:若没有内部未知区域,“内部未知格子是雷的概率”返回NaN。
/// - 局限:不能将所有矛盾的局面都检查出来。例如空中间出现一个数字,这种错误的局面,不能检查出来。
pub fn cal_probability(
    board_of_game: &Vec<Vec<i32>>,
    minenum: f64,
) -> Result<(Vec<((usize, usize), f64)>, f64, [usize; 3], usize), usize> {
    // 如果超出枚举长度限制,记录并返回这个长度,以此体现局面的求解难度。
    let mut exceed_len = 0;
    let mut p = vec![];
    let mut table_cell_minenum_s: Vec<Vec<Vec<usize>>> = vec![];
    // 每段每格雷数表:记录了每段每格(或者地位等同的复合格)、每种总雷数下的是雷情况数
    let mut comb_relp_s = vec![]; // 记录了方格的组合关系
                                  // let mut enum_comb_table_s = vec![];
    let mut table_minenum_s: Vec<[Vec<usize>; 2]> = vec![];
    // 每段雷数分布表:记录了每段(不包括内部段)每种总雷数下的是雷总情况数
    // 例如:[[[17, 18, 19, 20, 21, 22, 23, 24], [48, 2144, 16872, 49568, 68975, 48960, 16608, 2046]]]
    let (mut matrix_a_s, mut matrix_x_s, mut matrix_b_s, mut inside_cell, is_minenum) =
        refresh_matrixs(&board_of_game);
    for i in (0..matrix_a_s.len()).rev() {
        let matrix_x_s_len = matrix_x_s[i].len();
        if matrix_x_s_len > exceed_len {
            exceed_len = matrix_x_s_len;
        }
        if matrix_x_s_len > ENUM_LIMIT {
            matrix_a_s.remove(i);
            matrix_x_s.remove(i);
            matrix_b_s.remove(i);
            inside_cell += matrix_x_s_len;
        }
    }

    let block_num = matrix_a_s.len(); // 整个局面被分成的段数
                                      // let mut block_num_calable = 0;

    let mut matrix_a_squeeze_s: Vec<Vec<Vec<i32>>> = vec![];
    let mut matrixx_squeeze_s: Vec<Vec<(usize, usize)>> = vec![];
    // let mut min_max_minenum = [0, 0];
    for i in 0..block_num {
        let (matrix_a_squeeze, matrixx_squeeze, combination_relationship) =
            combine(&matrix_a_s[i], &matrix_x_s[i]);
        comb_relp_s.push(combination_relationship);
        matrix_a_squeeze_s.push(matrix_a_squeeze);
        matrixx_squeeze_s.push(matrixx_squeeze);
    }
    // 分段枚举后,根据雷数限制,删除某些情况
    for i in 0..block_num {
        let (table_minenum_i, table_cell_minenum_i) = cal_table_minenum_recursion(
            &matrix_a_squeeze_s[i],
            &matrixx_squeeze_s[i],
            &matrix_b_s[i],
            &comb_relp_s[i],
        )?;

        // min_max_minenum[0] += table_minenum_i[0][0];
        // min_max_minenum[1] += table_minenum_i[0][table_minenum_i[0].len() - 1];

        table_cell_minenum_s.push(table_cell_minenum_i);
        table_minenum_s.push(table_minenum_i);
    } // 第一步,整理出每段每格雷数情况表、每段雷数分布表、每段雷分布情况总数表
    let mut min_minenum = 0;
    let mut max_minenum = 0;

    // let block_num = block_num_calable;

    for i in 0..block_num {
        min_minenum += table_minenum_s[i][0].iter().min().unwrap();
        max_minenum += table_minenum_s[i][0].iter().max().unwrap();
    }
    let minenum = if minenum < 1.0 {
        let mn = ((board_of_game.len() * board_of_game[0].len()) as f64 * minenum) as usize;
        min(max(mn - is_minenum, min_minenum), max_minenum + inside_cell)
    } else {
        let mm = (minenum as usize).overflowing_sub(is_minenum);
        match mm.1 {
            false => mm.0,
            // 标雷环节没有查出错误,而且标了很多雷,算概率环节会返回17
            true => return Err(17),
        }
    };

    max_minenum = min(max_minenum, minenum);
    if max_minenum < min_minenum {
        return Err(3); // 这种错误,例如一共10个雷,却出现了3个不相邻的5
    }
    let unknow_minenum: Vec<usize> =
        (minenum - max_minenum..min(minenum - min_minenum, inside_cell) + 1).collect();
    // 这里的写法存在极小的风险,例如边缘格雷数分布是0,1,3,而我们直接认为了可能有2
    let mut unknow_mine_s_num = vec![];
    for i in &unknow_minenum {
        unknow_mine_s_num.push(c(inside_cell, *i));
    }
    // 第二步,整理内部未知段雷数分布表,并筛选。这样内部未知雷段和边缘雷段的地位视为几乎等同,但数据结构不同
    table_minenum_s.push([unknow_minenum.clone(), vec![]]);
    // 这里暂时不知道怎么写,目前这样写浪费了几个字节的内存
    // 未知区域的情况数随雷数的分布不能存在表table_minenum中,因为格式不一样,后者是大数类型
    let mut mine_in_each_block = (0..block_num + 1)
        .map(|i| 0..table_minenum_s[i][0].len())
        .multi_cartesian_product()
        .collect::<Vec<_>>();
    for i in (0..mine_in_each_block.len()).rev() {
        let mut total_num = 0;
        for j in 0..block_num + 1 {
            total_num += table_minenum_s[j][0][mine_in_each_block[i][j]];
        }
        if total_num != minenum {
            mine_in_each_block.remove(i);
        }
    }
    // println!("mine_in_each_block: {:?}", mine_in_each_block);
    // 第三步,枚举每段雷数情况索引表:行代表每种情况,列代表每段雷数的索引,最后一列代表未知区域雷数
    let mut table_minenum_other: Vec<Vec<BigNumber>> = vec![];
    for i in 0..block_num + 1 {
        table_minenum_other.push(vec![
            BigNumber { a: 0.0, b: 0 };
            table_minenum_s[i][0].len()
        ]);
    } // 初始化
    for s in mine_in_each_block {
        for i in 0..block_num {
            let mut s_num = BigNumber { a: 1.0, b: 0 };
            let mut s_mn = minenum; // 未知区域中的雷数
            for j in 0..block_num {
                if i != j {
                    s_num *= table_minenum_s[j][1][s[j]] as f64;
                }
                s_mn -= table_minenum_s[j][0][s[j]];
            }
            let ps = unknow_minenum.iter().position(|x| *x == s_mn).unwrap();
            s_num *= &unknow_mine_s_num[ps];
            table_minenum_other[i][s[i]] += &s_num;
        }
        let mut s_num = BigNumber { a: 1.0, b: 0 };
        let mut s_mn = minenum; // 未知区域中的雷数
        for j in 0..block_num {
            s_num *= table_minenum_s[j][1][s[j]] as f64;
            s_mn -= table_minenum_s[j][0][s[j]];
        }
        let ps = unknow_minenum.iter().position(|x| *x == s_mn).unwrap();
        table_minenum_other[block_num][ps] += &s_num;
    }
    // 第四步,计算每段其他雷数情况表
    let mut tt = BigNumber { a: 0.0, b: 0 };
    for i in 0..unknow_mine_s_num.len() {
        let mut t = table_minenum_other[block_num][i].clone();
        t *= &unknow_mine_s_num[i];
        tt += &t;
    }
    // 第五步,计算局面总情况数

    for i in 0..block_num {
        for cells_id in 0..comb_relp_s[i].len() {
            let cells_len = comb_relp_s[i][cells_id].len();
            for cell_id in 0..cells_len {
                let mut s_cell = BigNumber { a: 0.0, b: 0 };
                for s in 0..table_minenum_other[i].len() {
                    let mut o = table_minenum_other[i][s].clone();
                    o *= table_cell_minenum_s[i][s][cells_id] as f64;
                    s_cell += &o;
                }
                let p_cell = (&s_cell / &tt).into();
                let id = comb_relp_s[i][cells_id][cell_id];
                p.push((matrix_x_s[i][id], p_cell));
            }
        }
    }
    // 第六步,计算边缘每格是雷的概率
    let mut u_s = BigNumber { a: 0.0, b: 0 };
    for i in 0..unknow_minenum.len() {
        let mut u = table_minenum_other[block_num][i].clone();
        u *= &unknow_mine_s_num[i];
        u *= unknow_minenum[i] as f64;
        u_s += &u;
    }
    // 第七步,计算内部未知区域是雷的概率
    let temp: f64 = (&u_s / &tt).into();
    let p_unknow: f64 = temp / (inside_cell as f64);

    Ok((
        p,
        p_unknow,
        [
            min_minenum + is_minenum,
            minenum + is_minenum,
            max_minenum + is_minenum + inside_cell,
        ],
        exceed_len,
    ))
}

/// 计算局面中各位置是雷的概率,按照所在的位置返回。
/// 输入:局面,总雷数
/// # Example
/// - 用rust调用时的示例:
/// ```rust
/// let mut game_board = vec![
///     vec![10, 10, 1, 1, 10, 1, 0, 0],
///     vec![10, 10, 1, 10, 10, 3, 2, 1],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 2, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
/// ];
/// let ans = cal_probability(&game_board, 10.0);
/// print!("设置雷数为10,概率计算引擎的结果为:{:?}", ans);
/// let ans = cal_probability(&game_board, 0.15625);
/// print!("设置雷的比例为15.625%,概率计算引擎的结果为:{:?}", ans);
/// // 对局面预标记,以加速计算
/// mark_board(&mut game_board);
/// let ans = cal_probability_onboard(&game_board, 10.0);
/// print!("设置雷的比例为10,与局面位置对应的概率结果为:{:?}", ans);
/// ```
/// - 用Python调用时的示例:
/// ```python
/// import ms_toollib as ms
///
/// game_board = [
///     [10, 10, 1, 1, 10, 1, 0, 0],
///     [10, 10, 1, 10, 10, 3, 2, 1],
///     [10, 10, 10, 10, 10, 10, 10, 10],
///     [10, 10, 10, 10, 10, 10, 10, 10],
///     [10, 10, 10, 10, 10, 10, 10, 10],
///     [10, 10, 10, 10, 2, 10, 10, 10],
///     [10, 10, 10, 10, 10, 10, 10, 10],
///     [10, 10, 10, 10, 10, 10, 10, 10],
///     ];
/// ans = ms.cal_probability(game_board, 10);
/// print("设置雷数为10,概率计算引擎的结果为:", ans);
/// ans = ms.cal_probability(game_board, 0.15625);
/// print("设置雷的比例为15.625%,概率计算引擎的结果为:", ans);
/// # 对局面预标记,以加速计算
/// ms.mark_board(game_board);
/// ans = ms.cal_probability_onboard(game_board, 10.0);
/// print("设置雷的比例为10,与局面位置对应的概率结果为:", ans);
/// ```
pub fn cal_probability_onboard(
    board_of_game: &Vec<Vec<i32>>,
    minenum: f64,
) -> Result<(Vec<Vec<f64>>, [usize; 3]), usize> {
    let mut p = vec![vec![-1.0; board_of_game[0].len()]; board_of_game.len()];
    let pp = cal_probability(&board_of_game, minenum)?;
    for i in pp.0 {
        p[i.0 .0][i.0 .1] = i.1;
    }
    for r in 0..board_of_game.len() {
        for c in 0..board_of_game[0].len() {
            if board_of_game[r][c] == 11 {
                p[r][c] = 1.0;
            } else if board_of_game[r][c] == 10 && p[r][c] < -0.5 {
                p[r][c] = pp.1;
            } else if board_of_game[r][c] == 12 {
                p[r][c] = 0.0;
            } else if p[r][c] < -0.5 {
                p[r][c] = 0.0;
            }
        }
    }
    Ok((p, pp.2))
}

/// 计算开空概率算法。  
/// - 输入:局面、总雷数、位置(可以同时输入多个)。  
/// - 返回:坐标处开空的概率。  
/// # Example
/// ```
/// use ms_toollib::cal_is_op_probability_cells;
/// let game_board = vec![
///     vec![10, 10,  1,  1, 10,  1,  0,  0],
///     vec![10, 10,  1, 10, 10,  3,  2,  1],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10,  2, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
/// ];
/// let ans = cal_is_op_probability_cells(&game_board, 20.0, &vec![[0, 0], [1, 1], [1, 6], [7, 2]]);
/// print!("{:?}", ans)
/// ```
pub fn cal_probability_cells_is_op(
    board_of_game: &Vec<Vec<i32>>,
    minenum: usize,
    cells: &Vec<(usize, usize)>,
) -> Vec<f64> {
    let mut poss = vec![1.0; cells.len()];
    let row = board_of_game.len();
    let column = board_of_game[0].len();
    for (cell_id, &(x, y)) in cells.iter().enumerate() {
        let mut board_of_game_modified = board_of_game.clone();
        'outer: for m in max(1, x) - 1..min(row, x + 2) {
            for n in max(1, y) - 1..min(column, y + 2) {
                if (board_of_game[m][n] < 10 && m == x && n == y) || board_of_game[m][n] == 11 {
                    poss[cell_id] = 0.0;
                    break 'outer;
                } else if board_of_game[m][n] == 12 || board_of_game[m][n] < 10 {
                    continue;
                } else {
                    let p;
                    match cal_probability_onboard(&board_of_game_modified, minenum as f64) {
                        Ok((ppp, _)) => p = ppp,
                        Err(_) => {
                            poss[cell_id] = 0.0;
                            break 'outer;
                        }
                    };
                    poss[cell_id] *= 1.0 - p[m][n];
                    board_of_game_modified[m][n] = 12;
                }
            }
        }
    }
    poss
}

// 效率不高。最好应该从底层枚举的位置开始
/// 多个格子同时不是雷的概率。和pluck参数的计算有关
/// 雷数必须在合法范围内
/// 输入:局面,总雷数,位置
pub fn cal_probability_cells_not_mine(
    game_board: &Vec<Vec<i32>>,
    minenum: f64,
    cells: &Vec<(usize, usize)>,
) -> f64 {
    let mut poss = 0.0;
    let mut game_board_modified = game_board.clone();
    for &(x, y) in cells.iter() {
        if game_board[x][y] < 10 || game_board[x][y] == 12 {
            continue;
        } else if game_board[x][y] == 11 {
            return 0.0;
        } else {
            let (board_poss, _) = cal_probability_onboard(&game_board_modified, minenum).unwrap();
            poss *= 1.0 - board_poss[x][y];
            game_board_modified[x][y] = 12;
        }
    }
    poss
}

/// 枚举法判雷引擎。  
/// - 输入:分段好的矩阵、局面、枚举长度限制。  
/// - 输出:是雷、不是雷的位置。  
/// # Example
/// ```rust
/// let mut game_board = vec![
///     vec![0, 0, 1, 10, 10, 10, 10, 10],
///     vec![0, 0, 2, 10, 10, 10, 10, 10],
///     vec![1, 1, 3, 11, 10, 10, 10, 10],
///     vec![10, 10, 4, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
///     vec![10, 10, 10, 10, 10, 10, 10, 10],
/// ];
/// let (a_mats, xs, bs, _, _) = refresh_matrixs(&game_board);
/// let ans = solve_enumerate(&a_mats, &xs, &bs, 40);
/// print!("{:?}", ans);
/// ```
/// - 注意:不修改输入进来的局面,即不帮助标雷(这个设计后续可能修改);也不维护3个矩阵。因为枚举引擎是最后使用的  
/// - 注意:超出枚举长度限制是未定义的行为,算法不一定会得到足够多的结果  
pub fn solve_enumerate(
    a_mats: &Vec<Vec<Vec<i32>>>,
    xs: &Vec<Vec<(usize, usize)>>,
    bs: &Vec<Vec<i32>>,
) -> (Vec<(usize, usize)>, Vec<(usize, usize)>) {
    if bs.is_empty() {
        return (vec![], vec![]);
    }
    let mut not_mine = vec![];
    let mut is_mine = vec![];
    let block_num = xs.len();

    let mut comb_relp_s = vec![];
    let mut matrix_a_squeeze_s: Vec<Vec<Vec<i32>>> = vec![];
    let mut matrixx_squeeze_s: Vec<Vec<(usize, usize)>> = vec![];
    for i in 0..block_num {
        if xs[i].len() > ENUM_LIMIT {
            return (not_mine, is_mine);
        }
        let (matrix_a_squeeze, matrixx_squeeze, combination_relationship) =
            combine(&a_mats[i], &xs[i]);
        comb_relp_s.push(combination_relationship);
        matrix_a_squeeze_s.push(matrix_a_squeeze);
        matrixx_squeeze_s.push(matrixx_squeeze);
    }
    for i in 0..block_num {
        let (table_minenum_i, table_cell_minenum_i) = cal_table_minenum_recursion(
            &matrix_a_squeeze_s[i],
            &matrixx_squeeze_s[i],
            &bs[i],
            &comb_relp_s[i],
        )
        .unwrap();
        for jj in 0..table_cell_minenum_i[0].len() {
            let mut s_num = 0; // 该合成格子的总情况数
            for ii in 0..table_cell_minenum_i.len() {
                s_num += table_cell_minenum_i[ii][jj];
            }
            if s_num == 0 {
                for kk in &comb_relp_s[i][jj] {
                    not_mine.push(xs[i][*kk]);
                }
            } else if s_num == table_minenum_i[1].iter().sum::<usize>() * comb_relp_s[i][jj].len() {
                for kk in &comb_relp_s[i][jj] {
                    is_mine.push(xs[i][*kk]);
                }
            }
        }
    }
    (not_mine, is_mine)
}

// 判断当前是否获胜,单次
// 游戏局面中必须没有标错的雷
fn is_victory(game_board: &Vec<Vec<i32>>, board: &Vec<Vec<i32>>) -> bool {
    let row = game_board.len();
    let col = game_board[0].len();
    for i in 0..row {
        for j in 0..col {
            if game_board[i][j] == 10 && board[i][j] != -1 {
                return false;
            }
        }
    }
    return true;
}

// 判断当前是否获胜,持续跟踪,提高效率
pub struct IsVictory {
    row: usize,
    column: usize,
    pointer_x: usize,
    pointer_y: usize,
}

impl IsVictory {
    pub fn new(row: usize, column: usize) -> IsVictory {
        IsVictory {
            row,
            column,
            pointer_x: 0,
            pointer_y: 0,
        }
    }
    fn is_victory(&mut self, game_board: &Vec<Vec<i32>>, board: &Vec<Vec<i32>>) -> bool {
        for j in self.pointer_y..self.column {
            if game_board[self.pointer_x][j] < 10 {
                if game_board[self.pointer_x][j] != board[self.pointer_x][j] {
                    return false; // 安全性相关(发生作弊)
                }
            }
            if game_board[self.pointer_x][j] >= 10 && board[self.pointer_x][j] != -1 {
                self.pointer_y = j;
                return false;
            }
        }
        for i in self.pointer_x + 1..self.row {
            for j in 0..self.column {
                if game_board[i][j] < 10 {
                    if game_board[i][j] != board[i][j] {
                        return false; // 安全性相关(发生作弊)
                    }
                }
                if game_board[i][j] >= 10 && board[i][j] != -1 {
                    self.pointer_x = i;
                    self.pointer_y = j;
                    return false;
                }
            }
        }
        true
    }
}

/// <span id="is_solvable">从指定位置开始扫,判断局面是否无猜。  
/// - 注意:周围一圈都是雷,那么若中间是雷不算猜,若中间不是雷算有猜。  
/// - 注意:不考虑剩余雷数。
pub fn is_solvable(board: &Vec<Vec<i32>>, x0: usize, y0: usize) -> bool {
    if board[x0][y0] == -1 {
        // 踩雷肯定是非无猜
        return false;
    }
    if unsolvable_structure(&board) {
        //若包含不可判雷结构,则不是无猜
        return false;
    }
    let row = board.len();
    let column = board[0].len();
    let mut game_board = vec![vec![10; column]; row];
    // 10是未打开,11是标雷
    // 局面大小必须超过6*6
    refresh_board(board, &mut game_board, vec![(x0, y0)]);
    let mut judge = IsVictory::new(row, column);
    if judge.is_victory(&game_board, &board) {
        return true; // 暂且认为点一下就扫开也是可以的
    }
    loop {
        let (mut a_mats, mut xs, mut bs, _, _) = refresh_matrixs(&game_board);
        let ans = solve_direct(&mut a_mats, &mut xs, &mut bs, &mut game_board).unwrap();
        let not_mine;
        if ans.0.is_empty() && ans.1.is_empty() {
            let ans = solve_minus(&mut a_mats, &mut xs, &mut bs, &mut game_board).unwrap();
            if ans.0.is_empty() && ans.1.is_empty() {
                let ans = solve_enumerate(&a_mats, &xs, &bs);
                if ans.0.is_empty() && ans.1.is_empty() {
                    return false;
                } else {
                    not_mine = ans.0
                }
                if !ans.1.is_empty() {
                    for (o, p) in ans.1 {
                        game_board[o][p] = 11;
                    }
                }
            } else {
                not_mine = ans.0
            }
        } else {
            not_mine = ans.0
        }
        refresh_board(board, &mut game_board, not_mine);
        if judge.is_victory(&game_board, &board) {
            return true;
        }
    }
}

/// <span id="is_solvable">从指定位置开始扫。  
/// - 注意:周围一圈都是雷,那么若中间是雷不算猜,若中间不是雷算有猜。  
/// - 注意:不考虑剩余雷数。
/// - 返回:游戏局面的残局、解决的bbbv数
pub fn try_solve(board: &Vec<Vec<i32>>, x0: usize, y0: usize) -> (Vec<Vec<i32>>, usize) {
    let row = board.len();
    let column = board[0].len();
    let mut game_board = vec![vec![10; column]; row];
    if board[x0][y0] == -1 {
        // 踩雷
        game_board[x0][y0] = 15;
        return (game_board, 0);
    }
    let mut minesweeper_board = MinesweeperBoard::<Vec<Vec<i32>>>::new(board.clone());
    let _ = minesweeper_board.step("lc", (x0, y0));
    let _ = minesweeper_board.step("lr", (x0, y0));
    // let mut judge = IsVictory::new(row, column);
    if is_victory(&game_board, &board) {
        return (minesweeper_board.game_board, 1); // 暂且认为点一下就扫开也是可以的
    }
    loop {
        let (mut a_mats, mut xs, mut bs, _, _) = refresh_matrixs(&minesweeper_board.game_board);
        let ans = solve_direct(
            &mut a_mats,
            &mut xs,
            &mut bs,
            &mut minesweeper_board.game_board,
        )
        .unwrap();
        let not_mine;
        if ans.0.is_empty() && ans.1.is_empty() {
            let ans = solve_minus(
                &mut a_mats,
                &mut xs,
                &mut bs,
                &mut minesweeper_board.game_board,
            )
            .unwrap();
            if ans.0.is_empty() && ans.1.is_empty() {
                let ans = solve_enumerate(&a_mats, &xs, &bs);
                if ans.0.is_empty() && ans.1.is_empty() {
                    return (minesweeper_board.game_board, minesweeper_board.bbbv_solved);
                } else {
                    not_mine = ans.0
                }
                if !ans.1.is_empty() {
                    for (o, p) in ans.1 {
                        minesweeper_board.game_board[o][p] = 11;
                    }
                }
            } else {
                not_mine = ans.0
            }
        } else {
            not_mine = ans.0
        }
        let mut operation = vec![];
        for n in not_mine {
            operation.push(("lc".to_string(), n));
            operation.push(("lr".to_string(), n));
        }
        let _ = minesweeper_board.step_flow(&operation);
        if minesweeper_board.game_board_state == GameBoardState::Win {
            return (minesweeper_board.game_board, minesweeper_board.bbbv_solved);
        }
    }
}

/// 删选法多(8)线程无猜埋雷。对于雷密度很高的局面,多线程比单线程更快。  
/// - 输入:高、宽、雷数、第几行、第几列、最大尝试次数。  
/// - 返回: (是否成功、3BV、该线程的尝试次数)。  
/// - 注意:若不成功返回最后生成的局面,此时则不一定无猜。
/// - 局限:雷的密度无法设得很大。以高级的局面为例,雷数最多设到大约130左右。
/// - 用python调用时的示例:
/// ```python
/// import ms_toollib as ms
/// board = laymine_solvable_thread(16, 30, 99, 3, 20, 100000) # 在第3行、第20列开局
/// ```
#[cfg(any(feature = "py", feature = "rs"))]
pub fn laymine_solvable_thread(
    row: usize,
    column: usize,
    minenum: usize,
    x0: usize,
    y0: usize,
    mut max_times: usize,
) -> (Vec<Vec<i32>>, bool) {
    let mut game_board = vec![vec![0; column]; row];
    let mut handles = vec![];
    let flag_exit = Arc::new(Mutex::new(0));
    let (tx, rx) = mpsc::channel(); // mpsc 是多个发送者,一个接收者
                                    // println!("{:?}", thread::available_parallelism().unwrap());
    for ii in (1..=8).rev() {
        let tx_ = mpsc::Sender::clone(&tx);
        let max_time = max_times / ii;
        max_times -= max_time;
        let flag_exit = Arc::clone(&flag_exit);
        let handle = thread::spawn(move || {
            // let Num3BV;
            let mut counter = 0;
            let mut board = vec![vec![0; column]; row];
            // let mut para = [0, 0, 0];
            while counter < max_time {
                {
                    let f = flag_exit.lock().unwrap();
                    if *f == 1 {
                        break;
                    }
                } // 这段用花括号控制生命周期
                let board_ = laymine_op(row, column, minenum, x0, y0);
                counter += 1;
                if is_solvable(&board_, x0, y0) {
                    for i in 0..row {
                        for j in 0..column {
                            board[i][j] = board_[i][j];
                        }
                    }
                    let mut f = flag_exit.lock().unwrap();
                    *f = 1;
                    tx_.send((board, true)).unwrap();
                    break;
                }
            }
            let board_ = laymine_op(row, column, minenum, x0, y0);
            // Num3BV = cal_bbbv(&board_);
            tx_.send((board_, false)).unwrap();
        });
        handles.push(handle);
    }
    for handle in handles {
        handle.join().unwrap();
    }
    let received = rx.recv().unwrap(); // 尝试次数仅仅为单个线程的次数,并不准
    for i in 0..row {
        for j in 0..column {
            game_board[i][j] = received.0[i][j];
        }
    }
    (game_board, received.1)
}

/// 删选法单线程无猜埋雷。不可以生成任意雷密度的无猜局面。但雷满足均匀分布。  
/// - 输入:高、宽、雷数、起手行数、起手列数、最大尝试次数。  
/// - 返回:是否成功。  
/// - 注意:若不成功返回最后生成的局面,此时则不一定无猜。
/// - 用python调用时的示例:
/// ```python
/// import ms_toollib as ms
/// board = laymine_solvable(16, 30, 99, 3, 20, 100000) # 在第3行、第20列开局
/// ```
pub fn laymine_solvable(
    row: usize,
    column: usize,
    minenum: usize,
    x0: usize,
    y0: usize,
    max_times: usize,
) -> (Vec<Vec<i32>>, bool) {
    let mut times = 0;
    let mut board;
    while times < max_times {
        board = laymine_op(row, column, minenum, x0, y0);
        times += 1;
        if is_solvable(&board, x0, y0) {
            return (board, true);
        }
    }
    board = laymine_op(row, column, minenum, x0, y0);
    (board, false)
}

/// 调整法无猜埋雷。可以生成任意雷密度的无猜局面。但雷不满足均匀分布。  
/// - 输入:高、宽、雷数、起手行数、起手列数  
/// - 返回局面、是否成功  
/// - 性能优越:高级局面上埋200雷时,用时大约100ms以内。  
/// - 可能出现死猜:高级雷数在120-300之间时,约1/10的概率出现死猜  
/// - 用python调用时的示例:  
/// ```python
/// import ms_toollib as ms
/// (board, flag) = laymine_solvable_adjust(16, 30, 200, 3, 20) # flag指示是否成功,极大概率是成功的
/// ```
// 局面中的-10代表还没埋雷。
pub fn laymine_solvable_adjust(
    row: usize,
    column: usize,
    minenum: usize,
    x0: usize,
    y0: usize,
) -> (Vec<Vec<i32>>, bool) {
    // 利用局面调整算法,无猜埋雷
    let mut board;
    let mut area_op = 9;
    if x0 == 0 || y0 == 0 || x0 == row - 1 || y0 == column - 1 {
        if x0 == 0 && y0 == 0
            || x0 == 0 && y0 == column - 1
            || x0 == row - 1 && y0 == 0
            || x0 == row - 1 && y0 == column - 1
        {
            area_op = 4;
        } else {
            area_op = 6;
        }
    }
    if row * column - area_op < minenum {
        // 雷数太多以致起手无法开空,此时放弃无猜,返回任意一种局面
        let t = laymine(row, column, minenum, x0, y0);
        if row * column - minenum == 1 {
            return (t, true);
        } else {
            return (t, false);
        }
    }
    if row * column == area_op + minenum {
        return (laymine_op(row, column, minenum, x0, y0), true);
    }

    board = vec![vec![-10; column]; row];
    let mut board_of_game = vec![vec![10; column]; row];
    board_of_game[x0][y0] = 0;
    let remain_minenum = minenum;
    let remain_not_minenum = row * column - area_op - minenum;
    let mut cells_plan_to_click = vec![];
    // 初始化第一步计划点开的格子
    for j in max(1, x0) - 1..min(row, x0 + 2) {
        for k in max(1, y0) - 1..min(column, y0 + 2) {
            board[j][k] = 0;
            board_of_game[j][k] = 0;
            if j != x0 || k != y0 {
                cells_plan_to_click.push((j, k));
            }
        }
    }
    // 开始递归求解
    let (mut b, flag) = adjust_step(
        &board,
        &board_of_game,
        // &cells_plan_to_click,
        remain_minenum,
        remain_not_minenum,
        remain_not_minenum,
        0,
    );
    if !flag || b.is_empty() {
        return (laymine_op(row, column, minenum, x0, y0), false);
    }
    for i in 0..row {
        for j in 0..column {
            if b[i][j] == -10 {
                b[i][j] = -1;
            }
        }
    }
    // 最后,算数字
    for i in 0..row {
        for j in 0..column {
            if b[i][j] == -1 {
                for m in max(1, i) - 1..min(row, i + 2) {
                    for n in max(1, j) - 1..min(column, j + 2) {
                        if b[m][n] >= 0 {
                            b[m][n] += 1;
                        }
                    }
                }
            }
        }
    }
    (b, flag)
}

// fn print_positions(matrix: &Vec<Vec<i32>>, num: i32) {
//     let mut positions = Vec::new();
//     for (i, row) in matrix.iter().enumerate() {
//         for (j, &element) in row.iter().enumerate() {
//             if element == num {
//                 positions.push((i, j));
//             }
//         }
//     }
//     println!("{:?}", positions);
// }

// fn print_matrix(matrix: &Vec<Vec<i32>>) {
//     println!("[");
//     for row in matrix {
//         for num in row {
//             // 使用格式化字符串将数字格式化为宽度为 4 的字符串
//             print!("{:4}", num);
//         }
//         // 每一行结束后换行
//         println!();
//     }
//     println!("]");
// }

// 调整法的递归部分。注意空间复杂度为局面面积乘求解步数。
// 返回没有计算数字的局面和是否成功。
fn adjust_step(
    board: &Vec<Vec<i32>>,         // 当前的board,数字没有计算,只有0,-1,-10
    board_of_game: &Vec<Vec<i32>>, // 当前的board_of_game,只有10,1(没有计算的数字),11,0(起手位置)
    // plan_click: &Vec<(usize, usize)>, // 当前计划点开的格子,递归部分要保证点开后,局面是有解开的可能的
    remain_minenum: usize,     // 当前还要埋的雷数
    remain_not_minenum: usize, // 当前还要埋的非雷数
    remain_not_open: usize,    // 当前game_board上还要成功点开雷数,为0才是成功
    depth: usize,
) -> (Vec<Vec<i32>>, bool) {
    // dbg!(depth);
    // println!(
    //     "remain_minenum: {:?}, remain_not_minenum: {:?}, remain_not_open: {:?}",
    //     remain_minenum, remain_not_minenum, remain_not_open
    // );
    // print_matrix(board);
    // print_matrix(board_of_game);
    let mut board_clone = board.clone(); // 克隆一个board的备份
    let mut game_board_clone = board_of_game.clone(); // 克隆一个board_of_game的备份

    let (a_matses, xses, bses) = refresh_matrixses(&game_board_clone);

    if a_matses.is_empty() {
        return (vec![], false);
    }

    // 剩余需要埋的非雷数量为0,此时若干死猜主导全局,使得算法不容易结束。
    // 则重新将前沿周围的雷和非雷都重摆。但可能出现死猜。
    if remain_not_minenum == 0 {
        let row = board.len();
        let column = board[0].len();
        let mut delta_remain_minenum = 0;
        let mut delta_remain_not_minenum = 0;
        let mut delta_remain_not_open = 0;
        let mut board_mod = vec![];
        for &(x, y) in xses.iter().flatten().flatten() {
            for m in max(1, x) - 1..min(row, x + 2) {
                for n in max(1, y) - 1..min(column, y + 2) {
                    if board_clone[m][n] == -1 && game_board_clone[m][n] != 10 {
                        board_clone[m][n] = -10;
                        board_mod.push((m, n));
                        delta_remain_minenum += 1;
                        game_board_clone[m][n] = 10;
                    }
                    if board_clone[m][n] == 0 && game_board_clone[m][n] != 10 {
                        board_clone[m][n] = -10;
                        board_mod.push((m, n));
                        delta_remain_not_minenum += 1;
                        delta_remain_not_open += 1;
                        game_board_clone[m][n] = 10;
                    }
                }
            }
        }
        for &(x, y) in xses.iter().flatten().flatten() {
            if board_clone[x][y] == -1 {
                board_clone[x][y] = -10;
                delta_remain_minenum += 1;
            }
            if board_clone[x][y] == 0 {
                board_clone[x][y] = -10;
                delta_remain_not_minenum += 1;
            }
        }

        // for &(x, y) in board_mod.iter() {
        //     for m in max(1, x) - 1..min(row, x + 2) {
        //         for n in max(1, y) - 1..min(column, y + 2) {
        //             if game_board_clone[m][n] == 11 {
        //                 game_board_clone[m][n] = 10;
        //             }
        //             if game_board_clone[m][n] == 1 {
        //                 game_board_clone[m][n] = 10;
        //                 delta_remain_not_open += 1;
        //             }
        //         }
        //     }
        // }
        return adjust_step(
            &board_clone,
            &game_board_clone,
            remain_minenum + delta_remain_minenum,
            remain_not_minenum + delta_remain_not_minenum,
            remain_not_open + delta_remain_not_open,
            depth + 1,
        );
    }

    let mut front_xs_0: Vec<(usize, usize)> =
        xses.clone().into_iter().flatten().flatten().collect();
    // board中的-10表示还没有埋雷
    // 保留第一块中每一段的尚未埋雷的格子,即前沿
    front_xs_0.retain(|x| board_clone[x.0][x.1] == -10);
    if front_xs_0.is_empty() {
        return (vec![], false);
    }
    // 前沿格子————此格子在边缘,且是没有埋过雷的。xs_cell_num必然>0
    // let xs_cell_num = front_xs_0.iter().fold(0, |acc, x| acc + x.len());
    let xs_cell_num = front_xs_0.len();
    let mut minenum_except = (xs_cell_num as f64 * remain_minenum as f64
        / (remain_not_minenum + remain_minenum) as f64) as usize;
    let minenum_exp = (xs_cell_num as f64 * 0.25) as usize;
    if minenum_except > minenum_exp {
        minenum_except = minenum_exp;
    }
    let minenum_max = if xs_cell_num > remain_minenum {
        remain_minenum
    } else {
        xs_cell_num
    };
    let minenum_min = if xs_cell_num < remain_not_minenum {
        0
    } else {
        xs_cell_num - remain_not_minenum
    };
    // 对不同雷数循环
    // 此处的优化其实不重要,delta、minenum_min、minenum_max、loop_time等不敏感
    let delta: [isize; 15] = [0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7];
    let mut first_loop_flag = true;
    for minenum in delta.iter().filter_map(|m| {
        let a = m + minenum_except as isize;
        if a < 0 {
            return None;
        }
        let a = a as usize;
        if a >= minenum_min && a <= minenum_max {
            Some(a)
        } else {
            None
        }
    }) {
        // 对每种雷数,重复尝试5次。
        let loop_time = if first_loop_flag { 5 } else { 1 };
        for _ in 0..loop_time {
            adjust_the_area_on_board(&mut board_clone, &front_xs_0, minenum);
            // 以下的循环用来修正b向量
            let mut not_mine = vec![];
            let mut is_mine = vec![];
            for (i, mut b_s) in bses.clone().into_iter().enumerate() {
                let a_s = a_matses.get(i).unwrap();
                let x_s = xses.get(i).unwrap();

                for bb in 0..b_s.len() {
                    for ss in 0..b_s[bb].len() {
                        // ss是第几个方程
                        b_s[bb][ss] = 0;
                        for aa in 0..a_s[bb][0].len() {
                            // aa是第几个格子
                            if a_s[bb][ss][aa] == 1 {
                                if board_clone[x_s[bb][aa].0][x_s[bb][aa].1] == -1
                                    && game_board_clone[x_s[bb][aa].0][x_s[bb][aa].1] != 11
                                {
                                    b_s[bb][ss] += 1;
                                }
                            }
                        }
                    }
                }
                let (mut _not_mine, mut _is_mine) = get_all_not_and_is_mine_on_board(
                    &mut a_s.clone(),
                    &mut x_s.clone(),
                    &mut b_s.clone(),
                    // 此处拷贝一份,防止被篡改
                    &mut game_board_clone.clone(),
                );
                not_mine.append(&mut _not_mine);
                is_mine.append(&mut _is_mine);
            }

            // 如果有非雷,进入下一层。否则再换雷数重复循环。
            if not_mine.len() > 0 {
                not_mine.iter().for_each(|x| game_board_clone[x.0][x.1] = 1);
                is_mine.iter().for_each(|x| game_board_clone[x.0][x.1] = 11);
                // dbg!(not_mine.clone(), is_mine);
                if remain_not_open <= not_mine.len() {
                    board_clone.iter_mut().for_each(|x| {
                        x.iter_mut().for_each(|i| {
                            if *i == -10 {
                                *i = -1;
                            }
                        })
                    });
                    return (board_clone, true);
                }

                let a = adjust_step(
                    &board_clone,
                    &game_board_clone,
                    remain_minenum - minenum,
                    remain_not_minenum + minenum - xs_cell_num,
                    remain_not_open - not_mine.len(),
                    depth + 1,
                );
                if a.1 {
                    if !a.0.is_empty() {
                        return (a.0, true);
                    }
                } else {
                    board_clone = board.clone();
                    game_board_clone = board_of_game.clone();
                    continue;
                }
            }
        }
        first_loop_flag = false;
    }
    return (vec![], false);
}

// 在指定的局部(area_current_adjust)埋雷,不刷新board上的数字
fn adjust_the_area_on_board(
    board: &mut Vec<Vec<i32>>,
    area_current_adjust: &Vec<(usize, usize)>,
    minenum: usize,
) {
    // let row = board.len();
    // let column = board[0].len();
    // let cell_num = area_current_adjust.iter().fold(0, |acc, x| acc + x.len());
    let cell_num = area_current_adjust.len();
    let mut b = vec![0; cell_num - minenum];
    b.append(&mut vec![-1; minenum]);

    #[cfg(any(feature = "py", feature = "rs"))]
    let mut rng = thread_rng();
    // let mut rng = StdRng::seed_from_u64(532);
    #[cfg(any(feature = "py", feature = "rs"))]
    b.shuffle(&mut rng);

    #[cfg(feature = "js")]
    b.shuffle_();

    let mut id = 0;
    // for i in area_current_adjust {
    //     for &(x, y) in i {
    //         board[x][y] = b[id];
    //         id += 1;
    //     }
    // }
    for &(x, y) in area_current_adjust {
        board[x][y] = b[id];
        id += 1;
    }
}

/// 埋雷并计算高级局面3BV的引擎,用于研究高级3BV的分布。16线程。传入局数,例如1000 000。试一下你的电脑算的有多块吧。  
#[cfg(any(feature = "py", feature = "rs"))]
pub fn sample_bbbvs_exp(x0: usize, y0: usize, n: usize) -> [usize; 382] {
    // 从标准高级中采样计算3BV
    // 16线程计算
    let n0 = n / 16;
    let mut threads = vec![];
    for _i in 0..16 {
        let join_item = thread::spawn(move || -> [usize; 382] { laymine_study_exp(x0, y0, n0) });
        threads.push(join_item);
    }
    let mut aa = [0; 382];
    for i in threads.into_iter().map(|c| c.join().unwrap()) {
        for ii in 0..382 {
            aa[ii] += i[ii];
        }
    }
    aa
}

#[cfg(any(feature = "py", feature = "rs"))]
fn laymine_study_exp(x0: usize, y0: usize, n: usize) -> [usize; 382] {
    let mut rng = thread_rng();
    // let area: usize = 16 * 30 - 1;
    let pointer = x0 + y0 * 16;
    let mut bv_record = [0; 382];
    for _id in 0..n {
        let mut board1_dim = [0; 479];
        for i in 380..479 {
            board1_dim[i] = -1;
        }

        board1_dim.shuffle(&mut rng);
        let mut board1_dim_2 = [0; 480];
        // Board1Dim_2.reserve(area + 1);

        for i in 0..pointer {
            board1_dim_2[i] = board1_dim[i];
        }
        board1_dim_2[pointer] = 0;
        for i in pointer..479 {
            board1_dim_2[i + 1] = board1_dim[i];
        }
        let mut board: Vec<Vec<i32>> = vec![vec![0; 30]; 16];
        for i in 0..480 {
            if board1_dim_2[i] < 0 {
                let x = i % 16;
                let y = i / 16;
                board[x][y] = -1;
                for j in max(1, x) - 1..min(16, x + 2) {
                    for k in max(1, y) - 1..min(30, y + 2) {
                        if board[j][k] >= 0 {
                            board[j][k] += 1;
                        }
                    }
                }
            }
        }
        bv_record[cal_bbbv_exp(&board)] += 1;
    }
    bv_record
}

#[cfg(any(feature = "py", feature = "rs"))]
fn obr_cell(
    cell_image: &Vec<f32>,
    model: &tract_onnx::prelude::SimplePlan<
        tract_onnx::prelude::TypedFact,
        std::boxed::Box<dyn tract_onnx::prelude::TypedOp>,
        tract_onnx::prelude::Graph<
            tract_onnx::prelude::TypedFact,
            std::boxed::Box<dyn tract_onnx::prelude::TypedOp>,
        >,
    >,
) -> TractResult<i32> {
    // 光学识别单个cell

    let image: Tensor = Array::from_shape_vec((1, 3, 16, 16), (*cell_image).clone())
        .unwrap()
        .into();
    let result = model.run(tvec!(image.into()))?;

    let best = result[0]
        .to_array_view::<f32>()?
        .iter()
        .cloned()
        .zip(1..)
        .max_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
    match best.unwrap().1 {
        1 => Ok(0),
        2 => Ok(1),
        3 => Ok(2),
        4 => Ok(3),
        5 => Ok(4),
        6 => Ok(5),
        7 => Ok(6),
        8 => Ok(7),
        9 => Ok(8),
        10 => Ok(10),
        _ => Ok(11),
    }
}

/// <span id="obr_board">光学局面识别引擎。
/// - 输入:依次为列向量形式的三通道的像素数据、图像的高度、宽度。  
/// - 性能:识别的成功率不是百分之百。识别失败时,甚至可能出现不可恢复的错误。想提高成功率,需要满足:图片清晰、格子的宽度在8到300像素之间、图片中没有鼠标遮挡。  
/// - 以下提供一段用python调用时的示例:  
/// ```python
/// # pip install ms_toollib
/// import ms_toollib
/// import matplotlib.image as mpimg
/// import numpy as np
/// file = r'C:\Users\jia32\Desktop\无标题.png'# 彩色图片
/// lena = mpimg.imread(file)
/// (height, width) = lena.shape[:2]
/// lena = np.concatenate((lena, 255.0 * np.ones((height, width, 1))), 2)
/// lena = (np.reshape(lena, -1) * 255).astype(np.uint32)
/// board = ms_toollib.obr_board(lena, height, width)
/// print(np.array(board))# 打印识别出的局面
/// poss = ms_toollib.cal_probability(board, 99)
/// print(poss)# 用雷的总数计算概率
/// poss_onboard = ms_toollib.cal_probability_onboard(board, 99)
/// print(poss_onboard)# 用雷的总数计算概率,输出局面对应的位置
/// poss_ = ms_toollib.cal_probability_onboard(board, 0.20625)
/// print(poss_)# 用雷的密度计算概率
/// ```
/// 细节:对于标雷、游戏结束后的红雷、叉雷,一律识别成10,即没有打开。
/// 注意:必须配合“params.onnx”参数文件调用。  
/// 注意:由于利用了神经网络技术,可能发生识别错误,此时输出是不一定合法的局面。
#[cfg(any(feature = "py", feature = "rs"))]
pub fn obr_board(
    data_vec: Vec<usize>,
    height: usize,
    width: usize,
) -> Result<Vec<Vec<i32>>, String> {
    // 为什么输入形式这么奇怪呢?主要是为了适配python截图出来的原始数据格式
    if height <= 24 || width <= 24 {
        return Err("one input size of the board is smaller than 3".to_string());
    }
    let mut image_board = ImageBoard::new(data_vec, height, width);
    image_board.get_pos_pixel();
    if image_board.r <= 3 || image_board.c <= 3 {
        return Err("one size of the board seems to be smaller than 3".to_string());
    }
    let mut board = vec![vec![0i32; image_board.c]; image_board.r];
    let model = (tract_onnx::onnx()
        .model_for_path("params.onnx")
        .unwrap()
        .with_input_fact(
            0,
            InferenceFact::dt_shape(f32::datum_type(), tvec!(1, 3, 16, 16)),
        )
        .unwrap()
        .into_optimized()
        .unwrap()
        .into_runnable())
    .unwrap();
    for i in 0..image_board.r {
        for j in 0..image_board.c {
            let cell = obr_cell(&image_board.extra_save_cell(i, j, 16), &model).unwrap();
            board[i][j] = cell;
        }
    }
    legalize_board(&mut board);
    Ok(board)
}

// 扫雷AI
// 看不懂,拟废弃
// #[cfg(any(feature = "py", feature = "rs"))]
// pub fn agent_step(board_of_game: Vec<Vec<i32>>, _pos: (usize, usize)) -> Result<usize, String> {
//     let _board_of_game_input: Vec<Vec<f32>> = board_of_game
//         .into_iter()
//         .map(|x| x.into_iter().map(|y| y as f32).collect::<Vec<f32>>())
//         .collect_vec();
//     let model = (tract_onnx::onnx()
//         .model_for_path("ppo_agent.onnx")
//         .unwrap()
//         .with_input_fact(
//             0,
//             InferenceFact::dt_shape(f32::datum_type(), tvec!(1i32, 16, 30)),
//         )
//         .unwrap()
//         .with_input_fact(
//             1,
//             InferenceFact::dt_shape(f32::datum_type(), tvec!(1i32, 2)),
//         )
//         .unwrap()
//         .into_optimized()
//         .unwrap()
//         .into_runnable())
//     .unwrap();

//     let cell_image = vec![10f32; 480];
//     let image: Tensor = Array::from_shape_vec((1, 16, 30), cell_image.clone())
//         .unwrap()
//         .into();
//     let image_2: Tensor = Array::from_shape_vec((1, 2), vec![0f32; 2]).unwrap().into();
//     let ans = model.run(tvec!(image, image_2)).unwrap();
//     let _aaa = ans[0].to_array_view::<i32>().unwrap();
//     Ok(30)
// }

/// 对局面用单集合、双集合判雷引擎,快速标雷、标非雷,以供概率计算引擎处理。这是非常重要的加速。  
/// 相当于一种预处理,即先标出容易计算的。mark可能因为无解而报错,此时返回错误码。  
/// 若不合法,直接中断,不继续标记。  
/// 输入:游戏局面、是否全部重新标记(用户的游戏局面需要全部重标,或者需要统计数量)  
/// 返回:成功为标记的非雷数、是雷数;失败为错误代码  
/// - 注意:在rust中,cal_probability往往需要和mark_board搭配使用,而在其他语言(python)中可能不需要如此!这是由于其ffi不支持原地操作。
pub fn mark_board(game_board: &mut Vec<Vec<i32>>, remark: bool) -> Result<(usize, usize), usize> {
    if remark {
        for row in game_board.iter_mut() {
            for num in row.iter_mut() {
                if *num == 11 || *num == 12 {
                    *num = 10;
                }
            }
        }
    }
    let (mut a_mats, mut xs, mut bs, _, _) = refresh_matrixs(&game_board);
    let mut not_mine_num = 0;
    let mut is_mine_num = 0;
    let (not, is) = solve_direct(&mut a_mats, &mut xs, &mut bs, game_board)?;
    not_mine_num += not.len();
    is_mine_num += is.len();
    let (not, is) = solve_minus(&mut a_mats, &mut xs, &mut bs, game_board)?;
    not_mine_num += not.len();
    is_mine_num += is.len();
    Ok((not_mine_num, is_mine_num))
}

/// 求出游戏局面中所有非雷、是雷的位置。  
/// - 注意:局面中可以有标雷,但不能有错误!
pub fn get_all_not_and_is_mine_on_board(
    a_mats: &mut Vec<Vec<Vec<i32>>>,
    xs: &mut Vec<Vec<(usize, usize)>>,
    bs: &mut Vec<Vec<i32>>,
    board_of_game: &mut Vec<Vec<i32>>,
) -> (Vec<(usize, usize)>, Vec<(usize, usize)>) {
    let mut ans = solve_direct(a_mats, xs, bs, board_of_game).unwrap();
    let mut is_mine = vec![];
    let mut not_mine = vec![];
    not_mine.append(&mut ans.0);
    is_mine.append(&mut ans.1);
    let mut ans = solve_minus(a_mats, xs, bs, board_of_game).unwrap();
    not_mine.append(&mut ans.0);
    is_mine.append(&mut ans.1);
    let mut ans = solve_enumerate(a_mats, xs, bs);
    not_mine.append(&mut ans.0);
    is_mine.append(&mut ans.1);
    (not_mine, is_mine)
}

/// 判断是否为可能可以(区别于必然可以)判雷时的猜雷;
/// 对应弱无猜、准无猜规则。
/// - 前提:点在未知格上,即10。  
/// - 约定:1 -> 正确的判雷。  
///  - 注意:不可以处理14、15等标记(全当成10)。输入为玩家维护的游戏局面,因此会首先清干净玩家标的雷。  
/// 2 -> 必要的猜雷。(由于全局或局部不可判而猜雷)  
/// 3 -> 不必要的猜雷。  
/// 4 -> 踩到必然的雷。  
/// 5 -> 没有结果。因为此处已经被点开了。
pub fn is_guess_while_needless(board_of_game: &mut Vec<Vec<i32>>, xy: &(usize, usize)) -> i32 {
    board_of_game.iter_mut().for_each(|x| {
        x.iter_mut().for_each(|xx| {
            if *xx > 10 {
                *xx = 10
            }
        })
    });
    if board_of_game[xy.0][xy.1] < 10 {
        return 5;
    }
    let mut flag_need;
    let (mut a_matses, mut xses, mut bses) = refresh_matrixses(&board_of_game);
    if let (Some(xy), flag_border) = find_a_border_cell(board_of_game, xy) {
        let t = xses
            .iter()
            .position(|r| r.iter().any(|x| x.contains(&xy)))
            .unwrap();
        let a_mats = &mut a_matses[t];
        let xs = &mut xses[t];
        let bs = &mut bses[t];
        let (n, _) = solve_direct(a_mats, xs, bs, board_of_game).unwrap();
        if !flag_border && !n.is_empty() {
            return 3;
        }
        flag_need = n.is_empty();
        match board_of_game[xy.0][xy.1] {
            12 => return 1,
            11 => return 4,
            _ => {
                let (n, _) = solve_minus(a_mats, xs, bs, board_of_game).unwrap();
                if !flag_border && !n.is_empty() {
                    return 3;
                }
                flag_need = flag_need && n.is_empty();
                match board_of_game[xy.0][xy.1] {
                    12 => return 1,
                    11 => return 4,
                    _ => {
                        let (n, i) = solve_enumerate(a_mats, xs, bs);
                        if !flag_border && !n.is_empty() {
                            return 3;
                        }
                        flag_need = flag_need && n.is_empty();
                        if n.contains(&xy) {
                            return 1;
                        } else if i.contains(&xy) {
                            return 4;
                        } else if flag_need {
                            return 2;
                        } else {
                            return 3;
                        }
                    }
                }
            }
        }
    } else {
        return 2; // 无论何时,包心雷,是合理的猜雷。
    }
}

/// 判断是否为判雷;对应强无猜规则。
/// - 前提:对打开非雷或标记是雷的行为判断。   
/// - 不仅可以判断是雷,也可以判断非雷。  
/// - 注意:不可以处理14、15等标记(当成10处理)。输入为玩家维护的游戏局面,因此会首先清干净玩家标的雷。  
pub fn is_able_to_solve(board_of_game: &mut Vec<Vec<i32>>, xy: &(usize, usize)) -> bool {
    board_of_game.iter_mut().for_each(|x| {
        x.iter_mut().for_each(|xx| {
            if *xx > 10 {
                *xx = 10
            }
        })
    });
    let (mut a_mats, mut xs, mut bs, _, _) = refresh_matrixs(&board_of_game);
    let _ = solve_direct(&mut a_mats, &mut xs, &mut bs, board_of_game);
    if board_of_game[xy.0][xy.1] == 11 || board_of_game[xy.0][xy.1] == 12 {
        return true;
    }
    let _ = solve_minus(&mut a_mats, &mut xs, &mut bs, board_of_game);
    if board_of_game[xy.0][xy.1] == 11 || board_of_game[xy.0][xy.1] == 12 {
        return true;
    }
    let (n, i) = solve_enumerate(&a_mats, &xs, &bs);
    if i.contains(xy) || n.contains(xy) {
        return true;
    }
    false
}