lpc54606-pac 0.1.0

Low-level register mappings for the NXP LPC54606 series of ARM Cortex-M4 microcontrollers
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#[doc = "Reader of register FLASHCFG"]
pub type R = crate::R<u32, super::FLASHCFG>;
#[doc = "Writer for register FLASHCFG"]
pub type W = crate::W<u32, super::FLASHCFG>;
#[doc = "Register FLASHCFG `reset()`'s with value 0x0d1a"]
impl crate::ResetValue for super::FLASHCFG {
    type Type = u32;
    #[inline(always)]
    fn reset_value() -> Self::Type {
        0x0d1a
    }
}
#[doc = "Instruction fetch configuration. This field determines how flash accelerator buffers are used for instruction fetches.\n\nValue on reset: 2"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum FETCHCFG_A {
    #[doc = "0: Instruction fetches from flash are not buffered. Every fetch request from the CPU results in a read of the flash memory. This setting may use significantly more power than when buffering is enabled."]
    NO_BUFFER = 0,
    #[doc = "1: One buffer is used for all instruction fetches."]
    ONE_BUFFER = 1,
    #[doc = "2: All buffers may be used for instruction fetches."]
    ALL_BUFFERS = 2,
}
impl From<FETCHCFG_A> for u8 {
    #[inline(always)]
    fn from(variant: FETCHCFG_A) -> Self {
        variant as _
    }
}
#[doc = "Reader of field `FETCHCFG`"]
pub type FETCHCFG_R = crate::R<u8, FETCHCFG_A>;
impl FETCHCFG_R {
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> crate::Variant<u8, FETCHCFG_A> {
        use crate::Variant::*;
        match self.bits {
            0 => Val(FETCHCFG_A::NO_BUFFER),
            1 => Val(FETCHCFG_A::ONE_BUFFER),
            2 => Val(FETCHCFG_A::ALL_BUFFERS),
            i => Res(i),
        }
    }
    #[doc = "Checks if the value of the field is `NO_BUFFER`"]
    #[inline(always)]
    pub fn is_no_buffer(&self) -> bool {
        *self == FETCHCFG_A::NO_BUFFER
    }
    #[doc = "Checks if the value of the field is `ONE_BUFFER`"]
    #[inline(always)]
    pub fn is_one_buffer(&self) -> bool {
        *self == FETCHCFG_A::ONE_BUFFER
    }
    #[doc = "Checks if the value of the field is `ALL_BUFFERS`"]
    #[inline(always)]
    pub fn is_all_buffers(&self) -> bool {
        *self == FETCHCFG_A::ALL_BUFFERS
    }
}
#[doc = "Write proxy for field `FETCHCFG`"]
pub struct FETCHCFG_W<'a> {
    w: &'a mut W,
}
impl<'a> FETCHCFG_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: FETCHCFG_A) -> &'a mut W {
        unsafe { self.bits(variant.into()) }
    }
    #[doc = "Instruction fetches from flash are not buffered. Every fetch request from the CPU results in a read of the flash memory. This setting may use significantly more power than when buffering is enabled."]
    #[inline(always)]
    pub fn no_buffer(self) -> &'a mut W {
        self.variant(FETCHCFG_A::NO_BUFFER)
    }
    #[doc = "One buffer is used for all instruction fetches."]
    #[inline(always)]
    pub fn one_buffer(self) -> &'a mut W {
        self.variant(FETCHCFG_A::ONE_BUFFER)
    }
    #[doc = "All buffers may be used for instruction fetches."]
    #[inline(always)]
    pub fn all_buffers(self) -> &'a mut W {
        self.variant(FETCHCFG_A::ALL_BUFFERS)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x03) | ((value as u32) & 0x03);
        self.w
    }
}
#[doc = "Data read configuration. This field determines how flash accelerator buffers are used for data accesses.\n\nValue on reset: 2"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum DATACFG_A {
    #[doc = "0: Data accesses from flash are not buffered. Every data access from the CPU results in a read of the flash memory."]
    NOT_BUFFERED = 0,
    #[doc = "1: One buffer is used for all data accesses."]
    ONE_BUFFER = 1,
    #[doc = "2: All buffers may be used for data accesses."]
    ALL_BUFFERS = 2,
}
impl From<DATACFG_A> for u8 {
    #[inline(always)]
    fn from(variant: DATACFG_A) -> Self {
        variant as _
    }
}
#[doc = "Reader of field `DATACFG`"]
pub type DATACFG_R = crate::R<u8, DATACFG_A>;
impl DATACFG_R {
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> crate::Variant<u8, DATACFG_A> {
        use crate::Variant::*;
        match self.bits {
            0 => Val(DATACFG_A::NOT_BUFFERED),
            1 => Val(DATACFG_A::ONE_BUFFER),
            2 => Val(DATACFG_A::ALL_BUFFERS),
            i => Res(i),
        }
    }
    #[doc = "Checks if the value of the field is `NOT_BUFFERED`"]
    #[inline(always)]
    pub fn is_not_buffered(&self) -> bool {
        *self == DATACFG_A::NOT_BUFFERED
    }
    #[doc = "Checks if the value of the field is `ONE_BUFFER`"]
    #[inline(always)]
    pub fn is_one_buffer(&self) -> bool {
        *self == DATACFG_A::ONE_BUFFER
    }
    #[doc = "Checks if the value of the field is `ALL_BUFFERS`"]
    #[inline(always)]
    pub fn is_all_buffers(&self) -> bool {
        *self == DATACFG_A::ALL_BUFFERS
    }
}
#[doc = "Write proxy for field `DATACFG`"]
pub struct DATACFG_W<'a> {
    w: &'a mut W,
}
impl<'a> DATACFG_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: DATACFG_A) -> &'a mut W {
        unsafe { self.bits(variant.into()) }
    }
    #[doc = "Data accesses from flash are not buffered. Every data access from the CPU results in a read of the flash memory."]
    #[inline(always)]
    pub fn not_buffered(self) -> &'a mut W {
        self.variant(DATACFG_A::NOT_BUFFERED)
    }
    #[doc = "One buffer is used for all data accesses."]
    #[inline(always)]
    pub fn one_buffer(self) -> &'a mut W {
        self.variant(DATACFG_A::ONE_BUFFER)
    }
    #[doc = "All buffers may be used for data accesses."]
    #[inline(always)]
    pub fn all_buffers(self) -> &'a mut W {
        self.variant(DATACFG_A::ALL_BUFFERS)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x03 << 2)) | (((value as u32) & 0x03) << 2);
        self.w
    }
}
#[doc = "Acceleration enable.\n\nValue on reset: 1"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ACCEL_A {
    #[doc = "0: Flash acceleration is disabled. Every flash read (including those fulfilled from a buffer) takes FLASHTIM + 1 system clocks. This allows more determinism at a cost of performance."]
    DISABLED = 0,
    #[doc = "1: Flash acceleration is enabled. Performance is enhanced, dependent on other FLASHCFG settings."]
    ENABLED = 1,
}
impl From<ACCEL_A> for bool {
    #[inline(always)]
    fn from(variant: ACCEL_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Reader of field `ACCEL`"]
pub type ACCEL_R = crate::R<bool, ACCEL_A>;
impl ACCEL_R {
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> ACCEL_A {
        match self.bits {
            false => ACCEL_A::DISABLED,
            true => ACCEL_A::ENABLED,
        }
    }
    #[doc = "Checks if the value of the field is `DISABLED`"]
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        *self == ACCEL_A::DISABLED
    }
    #[doc = "Checks if the value of the field is `ENABLED`"]
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        *self == ACCEL_A::ENABLED
    }
}
#[doc = "Write proxy for field `ACCEL`"]
pub struct ACCEL_W<'a> {
    w: &'a mut W,
}
impl<'a> ACCEL_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: ACCEL_A) -> &'a mut W {
        {
            self.bit(variant.into())
        }
    }
    #[doc = "Flash acceleration is disabled. Every flash read (including those fulfilled from a buffer) takes FLASHTIM + 1 system clocks. This allows more determinism at a cost of performance."]
    #[inline(always)]
    pub fn disabled(self) -> &'a mut W {
        self.variant(ACCEL_A::DISABLED)
    }
    #[doc = "Flash acceleration is enabled. Performance is enhanced, dependent on other FLASHCFG settings."]
    #[inline(always)]
    pub fn enabled(self) -> &'a mut W {
        self.variant(ACCEL_A::ENABLED)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 4)) | (((value as u32) & 0x01) << 4);
        self.w
    }
}
#[doc = "Prefetch enable.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PREFEN_A {
    #[doc = "0: No instruction prefetch is performed."]
    NO_PREFETCH = 0,
    #[doc = "1: If the FETCHCFG field is not 0, the next flash line following the current execution address is automatically prefetched if it is not already buffered."]
    PREFETCH = 1,
}
impl From<PREFEN_A> for bool {
    #[inline(always)]
    fn from(variant: PREFEN_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Reader of field `PREFEN`"]
pub type PREFEN_R = crate::R<bool, PREFEN_A>;
impl PREFEN_R {
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> PREFEN_A {
        match self.bits {
            false => PREFEN_A::NO_PREFETCH,
            true => PREFEN_A::PREFETCH,
        }
    }
    #[doc = "Checks if the value of the field is `NO_PREFETCH`"]
    #[inline(always)]
    pub fn is_no_prefetch(&self) -> bool {
        *self == PREFEN_A::NO_PREFETCH
    }
    #[doc = "Checks if the value of the field is `PREFETCH`"]
    #[inline(always)]
    pub fn is_prefetch(&self) -> bool {
        *self == PREFEN_A::PREFETCH
    }
}
#[doc = "Write proxy for field `PREFEN`"]
pub struct PREFEN_W<'a> {
    w: &'a mut W,
}
impl<'a> PREFEN_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: PREFEN_A) -> &'a mut W {
        {
            self.bit(variant.into())
        }
    }
    #[doc = "No instruction prefetch is performed."]
    #[inline(always)]
    pub fn no_prefetch(self) -> &'a mut W {
        self.variant(PREFEN_A::NO_PREFETCH)
    }
    #[doc = "If the FETCHCFG field is not 0, the next flash line following the current execution address is automatically prefetched if it is not already buffered."]
    #[inline(always)]
    pub fn prefetch(self) -> &'a mut W {
        self.variant(PREFEN_A::PREFETCH)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 5)) | (((value as u32) & 0x01) << 5);
        self.w
    }
}
#[doc = "Prefetch override. This bit only applies when PREFEN = 1 and a buffered instruction is completing for which the next flash line is not already buffered or being prefetched.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PREFOVR_A {
    #[doc = "0: Any previously initiated prefetch will be completed."]
    PREFETCH_COMPLETED = 0,
    #[doc = "1: Any previously initiated prefetch will be aborted, and the next flash line following the current execution address will be prefetched if not already buffered."]
    PREFETCH_ABORT = 1,
}
impl From<PREFOVR_A> for bool {
    #[inline(always)]
    fn from(variant: PREFOVR_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Reader of field `PREFOVR`"]
pub type PREFOVR_R = crate::R<bool, PREFOVR_A>;
impl PREFOVR_R {
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> PREFOVR_A {
        match self.bits {
            false => PREFOVR_A::PREFETCH_COMPLETED,
            true => PREFOVR_A::PREFETCH_ABORT,
        }
    }
    #[doc = "Checks if the value of the field is `PREFETCH_COMPLETED`"]
    #[inline(always)]
    pub fn is_prefetch_completed(&self) -> bool {
        *self == PREFOVR_A::PREFETCH_COMPLETED
    }
    #[doc = "Checks if the value of the field is `PREFETCH_ABORT`"]
    #[inline(always)]
    pub fn is_prefetch_abort(&self) -> bool {
        *self == PREFOVR_A::PREFETCH_ABORT
    }
}
#[doc = "Write proxy for field `PREFOVR`"]
pub struct PREFOVR_W<'a> {
    w: &'a mut W,
}
impl<'a> PREFOVR_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: PREFOVR_A) -> &'a mut W {
        {
            self.bit(variant.into())
        }
    }
    #[doc = "Any previously initiated prefetch will be completed."]
    #[inline(always)]
    pub fn prefetch_completed(self) -> &'a mut W {
        self.variant(PREFOVR_A::PREFETCH_COMPLETED)
    }
    #[doc = "Any previously initiated prefetch will be aborted, and the next flash line following the current execution address will be prefetched if not already buffered."]
    #[inline(always)]
    pub fn prefetch_abort(self) -> &'a mut W {
        self.variant(PREFOVR_A::PREFETCH_ABORT)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 6)) | (((value as u32) & 0x01) << 6);
        self.w
    }
}
#[doc = "Flash memory access time. The number of system clocks used for flash accesses is equal to FLASHTIM +1.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum FLASHTIM_A {
    #[doc = "0: 1 system clock flash access time (for system clock rates up to 12 MHz)."]
    N_1_CLOCK_CYCLE = 0,
    #[doc = "1: 2 system clocks flash access time (for system clock rates up to 30 MHz)."]
    N_2_CLOCK_CYCLES = 1,
    #[doc = "2: 3 system clocks flash access time (for system clock rates up to 60 MHz)."]
    N_3_CLOCK_CYCLES = 2,
    #[doc = "3: 4 system clocks flash access time (for system clock rates up to 85 MHz)."]
    N_4_CLOCK_CYCLES = 3,
    #[doc = "4: 5 system clocks flash access time (for system clock rates up to 100 MHz)."]
    N_5_CLOCK_CYCLES = 4,
}
impl From<FLASHTIM_A> for u8 {
    #[inline(always)]
    fn from(variant: FLASHTIM_A) -> Self {
        variant as _
    }
}
#[doc = "Reader of field `FLASHTIM`"]
pub type FLASHTIM_R = crate::R<u8, FLASHTIM_A>;
impl FLASHTIM_R {
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> crate::Variant<u8, FLASHTIM_A> {
        use crate::Variant::*;
        match self.bits {
            0 => Val(FLASHTIM_A::N_1_CLOCK_CYCLE),
            1 => Val(FLASHTIM_A::N_2_CLOCK_CYCLES),
            2 => Val(FLASHTIM_A::N_3_CLOCK_CYCLES),
            3 => Val(FLASHTIM_A::N_4_CLOCK_CYCLES),
            4 => Val(FLASHTIM_A::N_5_CLOCK_CYCLES),
            i => Res(i),
        }
    }
    #[doc = "Checks if the value of the field is `N_1_CLOCK_CYCLE`"]
    #[inline(always)]
    pub fn is_n_1_clock_cycle(&self) -> bool {
        *self == FLASHTIM_A::N_1_CLOCK_CYCLE
    }
    #[doc = "Checks if the value of the field is `N_2_CLOCK_CYCLES`"]
    #[inline(always)]
    pub fn is_n_2_clock_cycles(&self) -> bool {
        *self == FLASHTIM_A::N_2_CLOCK_CYCLES
    }
    #[doc = "Checks if the value of the field is `N_3_CLOCK_CYCLES`"]
    #[inline(always)]
    pub fn is_n_3_clock_cycles(&self) -> bool {
        *self == FLASHTIM_A::N_3_CLOCK_CYCLES
    }
    #[doc = "Checks if the value of the field is `N_4_CLOCK_CYCLES`"]
    #[inline(always)]
    pub fn is_n_4_clock_cycles(&self) -> bool {
        *self == FLASHTIM_A::N_4_CLOCK_CYCLES
    }
    #[doc = "Checks if the value of the field is `N_5_CLOCK_CYCLES`"]
    #[inline(always)]
    pub fn is_n_5_clock_cycles(&self) -> bool {
        *self == FLASHTIM_A::N_5_CLOCK_CYCLES
    }
}
#[doc = "Write proxy for field `FLASHTIM`"]
pub struct FLASHTIM_W<'a> {
    w: &'a mut W,
}
impl<'a> FLASHTIM_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: FLASHTIM_A) -> &'a mut W {
        unsafe { self.bits(variant.into()) }
    }
    #[doc = "1 system clock flash access time (for system clock rates up to 12 MHz)."]
    #[inline(always)]
    pub fn n_1_clock_cycle(self) -> &'a mut W {
        self.variant(FLASHTIM_A::N_1_CLOCK_CYCLE)
    }
    #[doc = "2 system clocks flash access time (for system clock rates up to 30 MHz)."]
    #[inline(always)]
    pub fn n_2_clock_cycles(self) -> &'a mut W {
        self.variant(FLASHTIM_A::N_2_CLOCK_CYCLES)
    }
    #[doc = "3 system clocks flash access time (for system clock rates up to 60 MHz)."]
    #[inline(always)]
    pub fn n_3_clock_cycles(self) -> &'a mut W {
        self.variant(FLASHTIM_A::N_3_CLOCK_CYCLES)
    }
    #[doc = "4 system clocks flash access time (for system clock rates up to 85 MHz)."]
    #[inline(always)]
    pub fn n_4_clock_cycles(self) -> &'a mut W {
        self.variant(FLASHTIM_A::N_4_CLOCK_CYCLES)
    }
    #[doc = "5 system clocks flash access time (for system clock rates up to 100 MHz)."]
    #[inline(always)]
    pub fn n_5_clock_cycles(self) -> &'a mut W {
        self.variant(FLASHTIM_A::N_5_CLOCK_CYCLES)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x0f << 12)) | (((value as u32) & 0x0f) << 12);
        self.w
    }
}
impl R {
    #[doc = "Bits 0:1 - Instruction fetch configuration. This field determines how flash accelerator buffers are used for instruction fetches."]
    #[inline(always)]
    pub fn fetchcfg(&self) -> FETCHCFG_R {
        FETCHCFG_R::new((self.bits & 0x03) as u8)
    }
    #[doc = "Bits 2:3 - Data read configuration. This field determines how flash accelerator buffers are used for data accesses."]
    #[inline(always)]
    pub fn datacfg(&self) -> DATACFG_R {
        DATACFG_R::new(((self.bits >> 2) & 0x03) as u8)
    }
    #[doc = "Bit 4 - Acceleration enable."]
    #[inline(always)]
    pub fn accel(&self) -> ACCEL_R {
        ACCEL_R::new(((self.bits >> 4) & 0x01) != 0)
    }
    #[doc = "Bit 5 - Prefetch enable."]
    #[inline(always)]
    pub fn prefen(&self) -> PREFEN_R {
        PREFEN_R::new(((self.bits >> 5) & 0x01) != 0)
    }
    #[doc = "Bit 6 - Prefetch override. This bit only applies when PREFEN = 1 and a buffered instruction is completing for which the next flash line is not already buffered or being prefetched."]
    #[inline(always)]
    pub fn prefovr(&self) -> PREFOVR_R {
        PREFOVR_R::new(((self.bits >> 6) & 0x01) != 0)
    }
    #[doc = "Bits 12:15 - Flash memory access time. The number of system clocks used for flash accesses is equal to FLASHTIM +1."]
    #[inline(always)]
    pub fn flashtim(&self) -> FLASHTIM_R {
        FLASHTIM_R::new(((self.bits >> 12) & 0x0f) as u8)
    }
}
impl W {
    #[doc = "Bits 0:1 - Instruction fetch configuration. This field determines how flash accelerator buffers are used for instruction fetches."]
    #[inline(always)]
    pub fn fetchcfg(&mut self) -> FETCHCFG_W {
        FETCHCFG_W { w: self }
    }
    #[doc = "Bits 2:3 - Data read configuration. This field determines how flash accelerator buffers are used for data accesses."]
    #[inline(always)]
    pub fn datacfg(&mut self) -> DATACFG_W {
        DATACFG_W { w: self }
    }
    #[doc = "Bit 4 - Acceleration enable."]
    #[inline(always)]
    pub fn accel(&mut self) -> ACCEL_W {
        ACCEL_W { w: self }
    }
    #[doc = "Bit 5 - Prefetch enable."]
    #[inline(always)]
    pub fn prefen(&mut self) -> PREFEN_W {
        PREFEN_W { w: self }
    }
    #[doc = "Bit 6 - Prefetch override. This bit only applies when PREFEN = 1 and a buffered instruction is completing for which the next flash line is not already buffered or being prefetched."]
    #[inline(always)]
    pub fn prefovr(&mut self) -> PREFOVR_W {
        PREFOVR_W { w: self }
    }
    #[doc = "Bits 12:15 - Flash memory access time. The number of system clocks used for flash accesses is equal to FLASHTIM +1."]
    #[inline(always)]
    pub fn flashtim(&mut self) -> FLASHTIM_W {
        FLASHTIM_W { w: self }
    }
}