llama-cpp-sys-2 0.1.108

Low Level Bindings to llama.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
#include "llama-graph.h"

#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-kv-cache.h"

#include <cassert>
#include <cmath>
#include <cstring>

void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
    if (ubatch->token) {
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
    }

    if (ubatch->embd) {
        const int64_t n_embd   = embd->ne[0];
        const int64_t n_tokens = ubatch->n_tokens;

        ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
    }
}

void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && pos) {
        const int64_t n_tokens = ubatch->n_tokens;

        if (ubatch->token && n_pos_per_embd == 4) {
            // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
            // the 3 first dims are the same, and 4th dim is all 0
            std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
            // copy the first dimension
            for (int i = 0; i < n_tokens; ++i) {
                pos_data[               i] = ubatch->pos[i];
                pos_data[    n_tokens + i] = ubatch->pos[i];
                pos_data[2 * n_tokens + i] = ubatch->pos[i];
                pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
            }
            ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
        } else {
            ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
        }
    }
}

void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
    if (ubatch->pos && attn_scale) {
        const int64_t n_tokens = ubatch->n_tokens;

        std::vector<float> attn_scale_data(n_tokens, 0.0f);
        for (int i = 0; i < n_tokens; ++i) {
            const float pos = ubatch->pos[i];
            attn_scale_data[i] = std::log(
                std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
            ) * f_attn_temp_scale + 1.0;
        }

        ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
    }
}

void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
        const int64_t n_tokens = ubatch->n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
        GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing

        int32_t * data = (int32_t *) pos_bucket->data;

        for (int h = 0; h < 1; ++h) {
            for (int j = 0; j < n_tokens; ++j) {
                for (int i = 0; i < n_tokens; ++i) {
                    data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
                }
            }
        }
    }
}

void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
    if (pos_bucket) {
        kv_self->set_input_pos_bucket(pos_bucket, ubatch);
    }
}

void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
    if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
        //GGML_ASSERT(out_ids && "every model that can must skip unused outputs");

        if (!out_ids) {
            LLAMA_LOG_WARN("%s: 'out_ids' is not created\n", __func__);
        } else {
            const int64_t n_tokens = ubatch->n_tokens;

            GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
            int32_t * data = (int32_t *) out_ids->data;

            if (n_outputs == n_tokens) {
                for (int i = 0; i < n_tokens; ++i) {
                    data[i] = i;
                }
            } else if (ubatch->output) {
                int32_t n_outputs = 0;
                for (int i = 0; i < n_tokens; ++i) {
                    if (ubatch->output[i]) {
                        data[n_outputs++] = i;
                    }
                }
                // the graph needs to have been passed the correct number of outputs
                GGML_ASSERT(n_outputs == n_outputs);
            } else if (n_outputs == 1) {
                // only keep last output
                data[0] = n_tokens - 1;
            } else {
                GGML_ASSERT(n_outputs == 0);
            }
        }
    }
}

void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
        const int64_t n_tokens     = ubatch->n_tokens;
        const int64_t n_seq_tokens = ubatch->n_seq_tokens;
        const int64_t n_seqs       = ubatch->n_seqs;

        GGML_ASSERT(mean);
        GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));

        float * data = (float *) mean->data;
        memset(mean->data, 0, n_tokens * n_tokens * ggml_element_size(mean));

        std::vector<uint64_t> sum(n_tokens, 0);

        for (int s = 0; s < n_seqs; ++s) {
            const llama_seq_id seq_id = ubatch->seq_id[s][0];

            // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");

            sum[seq_id] += ubatch->n_seq_tokens;
        }

        std::vector<float> div(n_tokens, 0.0f);
        for (int i = 0; i < n_tokens; ++i) {
            const uint64_t s = sum[i];
            if (s > 0) {
                div[i] = 1.0f/float(s);
            }
        }

        for (int s = 0; s < n_seqs; ++s) {
            const llama_seq_id seq_id = ubatch->seq_id[s][0];

            for (int i = 0; i < n_seq_tokens; ++i) {
                data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
            }
        }
    }
}

void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
    if (cparams.embeddings && (
                cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
                cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
        const int64_t n_tokens     = ubatch->n_tokens;
        const int64_t n_seq_tokens = ubatch->n_seq_tokens;
        const int64_t n_seqs       = ubatch->n_seqs;

        GGML_ASSERT(cls);
        GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));

        uint32_t * data = (uint32_t *) cls->data;
        memset(cls->data, 0, n_tokens * ggml_element_size(cls));

        for (int s = 0; s < n_seqs; ++s) {
            const llama_seq_id seq_id = ubatch->seq_id[s][0];

            // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");

            for (int i = 0; i < n_seq_tokens; ++i) {
                const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];

                if (pos == 0) {
                    data[seq_id] = s*n_seq_tokens + i;
                }
            }
        }
    }

    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
        const int64_t n_tokens     = ubatch->n_tokens;
        const int64_t n_seq_tokens = ubatch->n_seq_tokens;
        const int64_t n_seqs       = ubatch->n_seqs;

        GGML_ASSERT(cls);
        GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));

        uint32_t * data = (uint32_t *) cls->data;
        memset(cls->data, 0, n_tokens * ggml_element_size(cls));

        std::vector<int> last_pos(n_tokens, -1);
        std::vector<int> last_row(n_tokens, -1);

        for (int s = 0; s < n_seqs; ++s) {
            const llama_seq_id seq_id = ubatch->seq_id[s][0];

            // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");

            for (int i = 0; i < n_seq_tokens; ++i) {
                const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];

                if (pos >= last_pos[seq_id]) {
                    last_pos[seq_id] = pos;
                    last_row[seq_id] = s*n_seq_tokens + i;
                }
            }
        }

        for (int i = 0; i < n_tokens; ++i) {
            if (last_row[i] >= 0) {
                data[i] = last_row[i];
            }
        }
    }
}

void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    const int64_t n_kv = kv_self->n;

    if (s_copy) {
        GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
        int32_t * data = (int32_t *) s_copy->data;

        // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
        for (uint32_t i = 0; i < n_kv; ++i) {
            data[i] = kv_self->s_copy(i);
        }
    }
}

void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    const int64_t n_kv = kv_self->n;

    if (s_mask) {
        GGML_ASSERT(ggml_backend_buffer_is_host(s_mask->buffer));
        float * data = (float *) s_mask->data;

        // clear unused states
        for (int i = 0; i < n_kv; ++i) {
            data[i] = kv_self->s_mask(i);
        }
    }
}

void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    if (cross_embd && !cross->v_embd.empty()) {
        assert(cross_embd->type == GGML_TYPE_F32);

        ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
    }
}

void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
    if (kq_mask) {
        if (cparams.causal_attn) {
            const int64_t n_kv         = ubatch->n_tokens;
            const int64_t n_tokens     = ubatch->n_tokens;
            const int64_t n_seq_tokens = ubatch->n_seq_tokens;
            const int64_t n_seqs       = ubatch->n_seqs;

            GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
            float * data = (float *) kq_mask->data;

            for (int h = 0; h < 1; ++h) {
                for (int s1 = 0; s1 < n_seqs; ++s1) {
                    const llama_seq_id seq_id = ubatch->seq_id[s1][0];

                    for (int j = 0; j < n_seq_tokens; ++j) {
                        const int32_t tj = s1*n_seq_tokens + j;

                        for (int s0 = 0; s0 < n_seqs; ++s0) {
                            for (int i = 0; i < n_seq_tokens; ++i) {
                                const int32_t ti = s0*n_seq_tokens + i;
                                float f = -INFINITY;

                                for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
                                    if (ubatch->seq_id[s0][s] == seq_id && ubatch->pos[ti] <= ubatch->pos[tj]) {
                                        if (hparams.use_alibi) {
                                            f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
                                        } else {
                                            f = 0.0f;
                                        }
                                        break;
                                    }
                                }

                                data[h*(n_kv*n_tokens) + tj*n_kv + ti] = f;
                            }
                        }
                    }
                }
            }
        } else {
            const int64_t n_tokens     = ubatch->n_tokens;
            const int64_t n_seq_tokens = ubatch->n_seq_tokens;
            const int64_t n_seqs       = ubatch->n_seqs;
            const int64_t n_stride     = ubatch->n_tokens;

            GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));

            float * data = (float *) kq_mask->data;

            for (int h = 0; h < 1; ++h) {
                for (int s1 = 0; s1 < n_seqs; ++s1) {
                    const llama_seq_id seq_id = ubatch->seq_id[s1][0];

                    for (int j = 0; j < n_seq_tokens; ++j) {
                        const int32_t tj = s1*n_seq_tokens + j;

                        for (int s0 = 0; s0 < n_seqs; ++s0) {
                            for (int i = 0; i < n_seq_tokens; ++i) {
                                const int32_t ti = s0*n_seq_tokens + i;
                                float f = -INFINITY;

                                for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
                                    if (ubatch->seq_id[s0][s] == seq_id) {
                                        if (hparams.use_alibi) {
                                            f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
                                        } else {
                                            f = 0.0f;
                                        }
                                        break;
                                    }
                                }

                                data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
                            }
                        }

                        for (int i = n_tokens; i < n_stride; ++i) {
                            data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
                        }
                    }
                }
            }
        }
    }
}

void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
    if (self_kq_mask) {
        kv_self->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
    }
}

void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) {
    if (self_kq_mask) {
        kv_self->get_kv_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
    }

    if (self_kq_mask_swa) {
        kv_self->get_kv_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
    }
}

void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
    if (cross_kq_mask) {
        const int64_t n_enc    = cross_kq_mask->ne[0];
        const int64_t n_tokens = ubatch->n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
        GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing

        float * data = (float *) cross_kq_mask->data;

        for (int h = 0; h < 1; ++h) {
            for (int j = 0; j < n_tokens; ++j) {
                for (int i = 0; i < n_enc; ++i) {
                    float f = -INFINITY;
                    for (int s = 0; s < ubatch->n_seq_id[j]; ++s) {
                        const llama_seq_id seq_id = ubatch->seq_id[j][s];
                        if (cross->seq_ids_enc[i].find(seq_id) != cross->seq_ids_enc[i].end()) {
                            f = 0.0f;
                        }
                    }
                    data[h*(n_enc*n_tokens) + j*n_enc + i] = f;
                }
            }

            for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
                for (int j = 0; j < n_enc; ++j) {
                    data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
                }
            }
        }
    }
}

//
// llm_graph_context
//

llm_graph_context::llm_graph_context(const llm_graph_params & params) :
    arch             (params.arch),
    hparams          (params.hparams),
    cparams          (params.cparams),
    ubatch           (params.ubatch),
    n_embd           (hparams.n_embd),
    n_layer          (hparams.n_layer),
    n_rot            (hparams.n_rot),
    n_ctx            (cparams.n_ctx),
    n_head           (hparams.n_head()),
    n_head_kv        (hparams.n_head_kv()),
    n_embd_head_k    (hparams.n_embd_head_k),
    n_embd_k_gqa     (hparams.n_embd_k_gqa()),
    n_embd_head_v    (hparams.n_embd_head_v),
    n_embd_v_gqa     (hparams.n_embd_v_gqa()),
    n_expert         (hparams.n_expert),
    n_expert_used    (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
    freq_base        (cparams.rope_freq_base),
    freq_scale       (cparams.rope_freq_scale),
    ext_factor       (cparams.yarn_ext_factor),
    attn_factor      (cparams.yarn_attn_factor),
    beta_fast        (cparams.yarn_beta_fast),
    beta_slow        (cparams.yarn_beta_slow),
    norm_eps         (hparams.f_norm_eps),
    norm_rms_eps     (hparams.f_norm_rms_eps),
    n_tokens         (ubatch.n_tokens),
    n_outputs        (params.n_outputs),
    n_ctx_orig       (cparams.n_ctx_orig_yarn),
    pooling_type     (cparams.pooling_type),
    rope_type        (hparams.rope_type),
    ctx0             (params.ctx),
    sched            (params.sched),
    backend_cpu      (params.backend_cpu),
    cvec             (params.cvec),
    loras            (params.loras),
    memory           (params.memory),
    cross            (params.cross),
    cb_func          (params.cb),
    res              (std::make_unique<llm_graph_result>()) {
    }

int64_t llm_graph_context::n_pos_per_embd() const {
    return arch == LLM_ARCH_QWEN2VL ? 4 : 1;
}

void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
    if (cb_func) {
        cb_func(ubatch, cur, name, il);
    }
}

ggml_tensor * llm_graph_context::build_cvec(
         ggml_tensor * cur,
                 int   il) const {
    return cvec->apply_to(ctx0, cur, il);
}

ggml_tensor * llm_graph_context::build_lora_mm(
          ggml_tensor * w,
          ggml_tensor * cur) const {
    ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);

    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float adapter_scale = lora.second;
        const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

        ggml_tensor * ab_cur = ggml_mul_mat(
                ctx0, lw->b,
                ggml_mul_mat(ctx0, lw->a, cur)
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_lora_mm_id(
          ggml_tensor * w,   // ggml_tensor * as
          ggml_tensor * cur, // ggml_tensor * b
          ggml_tensor * ids) const {
    ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
    for (const auto & lora : *loras) {
        llama_adapter_lora_weight * lw = lora.first->get_weight(w);
        if (lw == nullptr) {
            continue;
        }

        const float alpha = lora.first->alpha;
        const float rank  = (float) lw->b->ne[0];
        const float scale = alpha ? lora.second * alpha / rank : lora.second;

        ggml_tensor * ab_cur = ggml_mul_mat_id(
                ctx0, lw->b,
                ggml_mul_mat_id(ctx0, lw->a, cur, ids),
                ids
                );

        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }

    return res;
}

ggml_tensor * llm_graph_context::build_norm(
         ggml_tensor * cur,
         ggml_tensor * mw,
         ggml_tensor * mb,
       llm_norm_type   type,
                 int   il) const {
    switch (type) {
        case LLM_NORM:       cur = ggml_norm    (ctx0, cur, hparams.f_norm_eps);     break;
        case LLM_NORM_RMS:   cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
        case LLM_NORM_GROUP:
            {
                cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
                cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
                cur = ggml_reshape_2d(ctx0, cur, cur->ne[0],    cur->ne[2]);
            } break;
    }

    if (mw || mb) {
        cb(cur, "norm", il);
    }

    if (mw) {
        cur = ggml_mul(ctx0, cur, mw);
        if (mb) {
            cb(cur, "norm_w", il);
        }
    }

    if (mb) {
        cur = ggml_add(ctx0, cur, mb);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_ffn(
         ggml_tensor * cur,
         ggml_tensor * up,
         ggml_tensor * up_b,
         ggml_tensor * up_s,
         ggml_tensor * gate,
         ggml_tensor * gate_b,
         ggml_tensor * gate_s,
         ggml_tensor * down,
         ggml_tensor * down_b,
         ggml_tensor * down_s,
         ggml_tensor * act_scales,
     llm_ffn_op_type   type_op,
   llm_ffn_gate_type   type_gate,
                 int   il) const {
    ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
    cb(tmp, "ffn_up", il);

    if (up_b) {
        tmp = ggml_add(ctx0, tmp, up_b);
        cb(tmp, "ffn_up_b", il);
    }

    if (up_s) {
        tmp = ggml_mul(ctx0, tmp, up_s);
        cb(tmp, "ffn_up_s", il);
    }

    if (gate) {
        switch (type_gate) {
            case LLM_FFN_SEQ:
                {
                    cur = build_lora_mm(gate, tmp);
                    cb(cur, "ffn_gate", il);
                } break;
            case LLM_FFN_PAR:
                {
                    cur = build_lora_mm(gate, cur);
                    cb(cur, "ffn_gate", il);
                } break;
        }

        if (gate_b) {
            cur = ggml_add(ctx0, cur, gate_b);
            cb(cur, "ffn_gate_b", il);
        }

        if (gate_s) {
            cur = ggml_mul(ctx0, cur, gate_s);
            cb(cur, "ffn_gate_s", il);
        }

    } else {
        cur = tmp;
    }

    switch (type_op) {
        case LLM_FFN_SILU:
            {
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_silu", il);
            } break;
        case LLM_FFN_GELU:
            {
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_gelu", il);
                if (act_scales != NULL) {
                    cur = ggml_div(ctx0, cur, act_scales);
                    cb(cur, "ffn_act", il);
                }
            } break;
        case LLM_FFN_RELU:
            {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);
            } break;
        case LLM_FFN_RELU_SQR:
            {
                cur = ggml_relu(ctx0, cur);
                cb(cur, "ffn_relu", il);

                cur = ggml_sqr(ctx0, cur);
                cb(cur, "ffn_sqr(relu)", il);
            } break;
        case LLM_FFN_SWIGLU:
            {
                // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
                int64_t split_point = cur->ne[0] / 2;
                ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
                ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));

                x0 = ggml_silu(ctx0, x0);
                cb(cur, "ffn_silu", il);

                cur = ggml_mul(ctx0, x0, x1);
                cb(cur, "ffn_mul", il);
            } break;
    }

    if (gate && type_gate == LLM_FFN_PAR) {
        cur = ggml_mul(ctx0, cur, tmp);
        cb(cur, "ffn_gate_par", il);
    }

    if (down) {
        cur = build_lora_mm(down, cur);
        if (arch == LLM_ARCH_GLM4) {
            // GLM4 seems to have numerical issues with half-precision accumulators
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
    }

    if (down_b) {
        cb(cur, "ffn_down", il);
    }

    if (down_b) {
        cur = ggml_add(ctx0, cur, down_b);
    }

    if (down_s) {
        cur = ggml_mul(ctx0, cur, down_s);
        cb(cur, "ffn_down_s", il);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * cur,
         ggml_tensor * gate_inp,
         ggml_tensor * up_exps,
         ggml_tensor * gate_exps,
         ggml_tensor * down_exps,
         ggml_tensor * exp_probs_b,
             int64_t   n_expert,
             int64_t   n_expert_used,
     llm_ffn_op_type   type_op,
                bool   norm_w,
                bool   scale_w,
               float   w_scale,
         llama_expert_gating_func_type gating_op,
                 int   il) const {
    const int64_t n_embd   = cur->ne[0];
    const int64_t n_tokens = cur->ne[1];
    const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN

    ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
    cb(logits, "ffn_moe_logits", il);

    ggml_tensor * probs = nullptr;
    switch (gating_op) {
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
            {
                probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
            } break;
        case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
            {
                probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
            } break;
        default:
            GGML_ABORT("fatal error");
    }
    cb(probs, "ffn_moe_probs", il);

    // add experts selection bias - introduced in DeepSeek V3
    // leave probs unbiased as it's later used to get expert weights
    ggml_tensor * selection_probs = probs;
    if (exp_probs_b != nullptr) {
        selection_probs = ggml_add(ctx0, probs, exp_probs_b);
        cb(selection_probs, "ffn_moe_probs_biased", il);
    }

    // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
    // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
    if (arch == LLM_ARCH_LLAMA4) {
        selection_probs = logits;
    }

    // select experts
    ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
    cb(selected_experts->src[0], "ffn_moe_argsort", il);
    cb(selected_experts, "ffn_moe_topk", il);

    ggml_tensor * weights = ggml_get_rows(ctx0,
            ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
    cb(weights, "ffn_moe_weights", il);

    if (norm_w) {
        weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);

        ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
        cb(weights_sum, "ffn_moe_weights_sum", il);

        weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
        cb(weights, "ffn_moe_weights_norm", il);

        weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
    }
    if (scale_w) {
        weights = ggml_scale(ctx0, weights, w_scale);
        cb(weights, "ffn_moe_weights_scaled", il);
    }

    cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);

    if (weight_before_ffn) {
        // TODO: this is a workaround as we don't yet have a repeat op that takes custom dim (ggml_repeat_4d)
        ggml_tensor * repeated = ggml_new_tensor_3d(ctx0, cur->type, n_embd, n_expert_used, n_tokens);
        repeated = ggml_repeat(ctx0, cur, repeated); // [n_embd, n_expert_used, n_tokens]
        cur = ggml_mul(ctx0, repeated, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

    ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
    cb(up, "ffn_moe_up", il);

    ggml_tensor * experts = nullptr;
    if (gate_exps) {
        cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
        cb(cur, "ffn_moe_gate", il);
    } else {
        cur = up;
    }

    switch (type_op) {
        case LLM_FFN_SILU:
            {
                cur = ggml_silu(ctx0, cur);
                cb(cur, "ffn_moe_silu", il);
            } break;
        case LLM_FFN_GELU:
            {
                cur = ggml_gelu(ctx0, cur);
                cb(cur, "ffn_moe_gelu", il);
            } break;
        default:
            GGML_ABORT("fatal error");
    }

    if (gate_exps) {
        cur = ggml_mul(ctx0, cur, up); // [n_ff, n_expert_used, n_tokens]
        cb(cur, "ffn_moe_gate_par", il);
    }

    experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
    cb(experts, "ffn_moe_down", il);

    if (!weight_before_ffn) {
        experts = ggml_mul(ctx0, experts, weights);
        cb(cur, "ffn_moe_weighted", il);
    }

    // aggregate experts
    ggml_tensor * moe_out = nullptr;
    for (int i = 0; i < n_expert_used; ++i) {
        ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens,
                experts->nb[2], i*experts->nb[1]);

        if (i == 0) {
            moe_out = cur_expert;
        } else {
            moe_out = ggml_add(ctx0, moe_out, cur_expert);
        }
    }

    if (n_expert_used == 1) {
        // avoid returning a non-contiguous tensor
        moe_out = ggml_cont(ctx0, moe_out);
    }

    cb(moe_out, "ffn_moe_out", il);

    return moe_out;
}

// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
    const int64_t n_embd = hparams.n_embd;

    auto inp = std::make_unique<llm_graph_input_embd>();

    ggml_tensor * cur = nullptr;

    if (ubatch.token) {
        inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
        //cb(inp->tokens, "inp_tokens", -1);
        ggml_set_input(inp->tokens);
        res->t_tokens = inp->tokens;

        cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);

        // apply lora for embedding tokens if needed
        for (const auto & lora : *loras) {
            llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
            if (lw == nullptr) {
                continue;
            }

            const float adapter_scale = lora.second;
            const float scale = lw->get_scale(lora.first->alpha, adapter_scale);

            ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
                        ctx0, lw->b, // non-transposed lora_b
                        ggml_get_rows(ctx0, lw->a, inp->tokens)
                        ), scale);

            cur = ggml_add(ctx0, cur, inpL_delta);
        }
    } else {
        inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
        ggml_set_input(inp->embd);

        cur = inp->embd;
    }

    // For Granite architecture
    if (hparams.f_embedding_scale != 0.0f) {
        cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
    }

    cb(cur, "inp_embd", -1);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos() const {
    auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_embd());

    auto & cur = inp->pos;

    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_embd());
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
    auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);

    auto & cur = inp->attn_scale;

    // this need to be 1x1xN for broadcasting
    cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_out_ids() const {
    auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);

    auto & cur = inp->out_ids;

    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_mean() const {
    auto inp = std::make_unique<llm_graph_input_mean>(cparams);

    auto & cur = inp->mean;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cls() const {
    auto inp = std::make_unique<llm_graph_input_cls>(cparams);

    auto & cur = inp->cls;

    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_s_copy() const {
    const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);

    auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);

    const auto n_kv = kv_self->n;

    auto & cur = inp->s_copy;

    cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_s_mask() const {
    const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);

    auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);

    const auto n_kv = kv_self->n;

    auto & cur = inp->s_mask;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
    auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);

    auto & cur = inp->cross_embd;

    // if we have the output embeddings from the encoder, use them directly
    // TODO: needs more work to be correct, for now just use the tensor shape
    //if (cross->t_embd) {
    //    cur = ggml_view_tensor(ctx0, cross->t_embd);

    //    return cur;
    //}

    const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
    const auto n_enc  = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
    auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
    const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);

    auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, kv_self);

    const auto n_kv = kv_self->get_n();

    auto & cur = inp->pos_bucket;

    cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
    ggml_set_input(cur);

    res->add_input(std::move(inp));

    return cur;
}

ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
    ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
    cb(pos_bucket_1d, "pos_bucket_1d", -1);

    ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);

    pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
    pos_bias = ggml_permute   (ctx0, pos_bias, 2, 0, 1, 3);
    pos_bias = ggml_cont      (ctx0, pos_bias);

    cb(pos_bias, "pos_bias", -1);

    return pos_bias;
}

ggml_tensor * llm_graph_context::build_attn_mha(
         ggml_cgraph * gf,
         ggml_tensor * q,
         ggml_tensor * k,
         ggml_tensor * v,
         ggml_tensor * kq_b,
         ggml_tensor * kq_mask,
         ggml_tensor * v_mla,
             float     kq_scale) const {
    const bool v_trans = v->nb[1] > v->nb[2];

    q = ggml_permute(ctx0, q, 0, 2, 1, 3);
    k = ggml_permute(ctx0, k, 0, 2, 1, 3);
    v = ggml_permute(ctx0, v, 0, 2, 1, 3);

    const auto n_tokens = q->ne[1];
    const auto n_head   = q->ne[2];
    const auto n_kv     = k->ne[1];

    ggml_tensor * cur;

    // TODO: replace hardcoded padding with ggml-provided padding
    if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
        GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");

        if (v_trans) {
            v = ggml_transpose(ctx0, v);
        }

        // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
        if (k->type == GGML_TYPE_F32) {
            k = ggml_cast(ctx0, k, GGML_TYPE_F16);
        }

        if (v->type == GGML_TYPE_F32) {
            v = ggml_cast(ctx0, v, GGML_TYPE_F16);
        }

        cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
                                  hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);

        ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);

        if (v_mla) {
#if 0
            // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
            // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
            cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
#else
            // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
            // The permutations are noops and only change how the tensor data is interpreted.
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_mul_mat(ctx0, v_mla, cur);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
        }

        cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
    } else {
        ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);

        // note: this op tends to require high floating point range
        //       while for some models F16 is enough, for others it is not, so we default to F32 here
        ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

        if (arch == LLM_ARCH_GROK) {
            // need to do the following:
            // multiply by attn_output_multiplyer of 0.08838834764831845
            // and then :
            // kq = 30 * tanh(kq / 30)
            // before the softmax below

            kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
            kq = ggml_scale(ctx0, kq, 30);
        }

        if (hparams.attn_soft_cap) {
            kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
            kq = ggml_tanh (ctx0, kq);
            kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
        }

        if (kq_b) {
            kq = ggml_add(ctx0, kq, kq_b);
        }

        kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);

        if (!v_trans) {
            // note: avoid this branch
            v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
        }

        ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);

        // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
        if (v_mla) {
            kqv = ggml_mul_mat(ctx0, v_mla, kqv);
        }

        cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);

        cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);

        if (!cparams.offload_kqv) {
            // all nodes between the KV store and the attention output are run on the CPU
            ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
        }
    }

    ggml_build_forward_expand(gf, cur);

    return cur;
}

llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
    auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);

    // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
    inp->kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
    //cb(inp_kq_mask, "KQ_mask", -1);
    ggml_set_input(inp->kq_mask);

    inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;

    return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_no_cache * inp,
        ggml_cgraph * gf,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
        ggml_tensor * v_mla,
            float     kq_scale,
            int       il) const {
    GGML_UNUSED(n_tokens);

    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const auto & kq_mask = inp->get_kq_mask();

    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;

    ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
    const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);

    auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, kv_self);

    {
        GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified_iswa for SWA");

        const auto n_kv = kv_self->get_n();

        inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
        //cb(inp->self_kq_mask, "KQ_mask", -1);
        ggml_set_input(inp->self_kq_mask);

        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
    }

    return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_kv_unified * inp,
        ggml_cgraph * gf,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
        ggml_tensor * v_mla,
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);

    // store to KV cache
    {
        ggml_build_forward_expand(gf, kv_self->cpy_k(ctx0, k_cur, il));
        ggml_build_forward_expand(gf, kv_self->cpy_v(ctx0, v_cur, il));
    }

    const auto & kq_mask = inp->get_kq_mask();

    ggml_tensor * q = q_cur;
    ggml_tensor * k = kv_self->get_k(ctx0, il);
    ggml_tensor * v = kv_self->get_v(ctx0, il);

    ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
        if (arch == LLM_ARCH_GLM4) {
            // GLM4 seems to have numerical issues with half-precision accumulators
            ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
        }
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const {
    const llama_kv_cache_unified_iswa * kv_self = static_cast<const llama_kv_cache_unified_iswa *>(memory);

    auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, kv_self);

    {
        const auto n_kv = kv_self->get_kv_base()->get_n();

        inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
        //cb(inp->self_kq_mask, "KQ_mask", -1);
        ggml_set_input(inp->self_kq_mask);

        inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
    }

    {
        GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA");

        const auto n_kv = kv_self->get_kv_swa()->get_n();

        inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
        //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
        ggml_set_input(inp->self_kq_mask_swa);

        inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
    }

    return (llm_graph_input_attn_kv_unified_iswa *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_kv_unified_iswa * inp,
        ggml_cgraph * gf,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
        ggml_tensor * v_mla,
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const bool is_swa = hparams.is_swa(il);

    const llama_kv_cache_unified_iswa * kv_self = static_cast<const llama_kv_cache_unified_iswa *>(memory);

    const auto * kv = is_swa ? kv_self->get_kv_swa() : kv_self->get_kv_base();

    // store to KV cache
    {
        ggml_build_forward_expand(gf, kv->cpy_k(ctx0, k_cur, il));
        ggml_build_forward_expand(gf, kv->cpy_v(ctx0, v_cur, il));
    }

    const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();

    ggml_tensor * q = q_cur;
    ggml_tensor * k = kv->get_k(ctx0, il);
    ggml_tensor * v = kv->get_v(ctx0, il);

    ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
    auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);

    const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;

    inp->cross_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
    ggml_set_input(inp->cross_kq_mask);

    inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;

    return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}

ggml_tensor * llm_graph_context::build_attn(
        llm_graph_input_attn_cross * inp,
        ggml_cgraph * gf,
        ggml_tensor * wo,
        ggml_tensor * wo_b,
        ggml_tensor * q_cur,
        ggml_tensor * k_cur,
        ggml_tensor * v_cur,
        ggml_tensor * kq_b,
        ggml_tensor * v_mla,
            float     kq_scale,
            int       il) const {
    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(gf, q_cur);
    ggml_build_forward_expand(gf, k_cur);
    ggml_build_forward_expand(gf, v_cur);

    const auto & kq_mask = inp->get_kq_mask_cross();

    ggml_tensor * q = q_cur;
    ggml_tensor * k = k_cur;
    ggml_tensor * v = v_cur;

    ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
    cb(cur, "kqv_out", il);

    if (wo) {
        cur = build_lora_mm(wo, cur);
    }

    if (wo_b) {
        //cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx0, cur, wo_b);
    }

    return cur;
}

ggml_tensor * llm_graph_context::build_copy_mask_state(
         ggml_cgraph * gf,
         ggml_tensor * s,
         ggml_tensor * state_copy,
         ggml_tensor * state_mask,
             int32_t   n_state,
             int32_t   n_seqs) const {
    const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);

    const auto n_kv    = kv_self->n;
    const auto kv_head = kv_self->head;

    ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_self->size);

    // copy states
    // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
    // this shrinks the tensors's ne[1] to n_kv
    states = ggml_get_rows(ctx0, states, state_copy);

    // clear states of sequences which are starting at the beginning of this batch
    // FIXME: zero-out NANs?
    states = ggml_mul(ctx0, states, state_mask);

    // copy states which won't be changed further (between n_seqs and n_kv)
    ggml_build_forward_expand(gf,
        ggml_cpy(ctx0,
            ggml_view_1d(ctx0, states, n_state*(n_kv - n_seqs), (n_seqs          )*n_state*ggml_element_size(states)),
            ggml_view_1d(ctx0, s,      n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));

    // the part of the states that will be used and modified
    return ggml_view_2d(ctx0, states, n_state, n_seqs, states->nb[1], 0);
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
         ggml_cgraph * gf,
         ggml_tensor * state_copy,
         ggml_tensor * state_mask,
  const llama_ubatch & ubatch,
                 int   il) const {
    const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);

    const auto token_shift_count = hparams.token_shift_count;

    const int64_t n_seqs  = ubatch.n_seqs;

    ggml_tensor * token_shift_all = kv_self->k_l[il];

    ggml_tensor * token_shift = build_copy_mask_state(
            gf, token_shift_all, state_copy, state_mask,
            hparams.n_embd_k_s(), n_seqs);

    token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);

    return token_shift;
}

ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
         ggml_tensor * token_shift,
  const llama_ubatch & ubatch,
                 int   il) const {
    const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);

    const auto token_shift_count = hparams.token_shift_count;
    const auto n_embd = hparams.n_embd;

    const int64_t n_seqs = ubatch.n_seqs;

    const auto kv_head = kv_self->head;

    return ggml_cpy(
        ctx0,
        ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
        ggml_view_1d(ctx0, kv_self->k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self->k_l[il]))
    );
}

void llm_graph_context::build_pooling(
        ggml_cgraph * gf,
        ggml_tensor * cls,
        ggml_tensor * cls_b,
        ggml_tensor * cls_out,
        ggml_tensor * cls_out_b) const {
    if (!cparams.embeddings) {
        return;
    }

    ggml_tensor * inp = res->t_embd;

    //// find result_norm tensor for input
    //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
    //    inp = ggml_graph_node(gf, i);
    //    if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
    //        break;
    //    }

    //    inp = nullptr;
    //}

    GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");

    ggml_tensor * cur;

    switch (pooling_type) {
        case LLAMA_POOLING_TYPE_NONE:
            {
                cur = inp;
            } break;
        case LLAMA_POOLING_TYPE_MEAN:
            {
                ggml_tensor * inp_mean = build_inp_mean();
                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
            } break;
        case LLAMA_POOLING_TYPE_CLS:
        case LLAMA_POOLING_TYPE_LAST:
            {
                ggml_tensor * inp_cls = build_inp_cls();
                cur = ggml_get_rows(ctx0, inp, inp_cls);
            } break;
        case LLAMA_POOLING_TYPE_RANK:
            {
                ggml_tensor * inp_cls = build_inp_cls();
                inp = ggml_get_rows(ctx0, inp, inp_cls);

                // classification head
                // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
                GGML_ASSERT(cls   != nullptr);
                GGML_ASSERT(cls_b != nullptr);

                cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls, inp), cls_b);
                cur = ggml_tanh(ctx0, cur);

                // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
                // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
                if (cls_out) {
                    GGML_ASSERT(cls_out_b != nullptr);

                    cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls_out, cur), cls_out_b);
                }
            } break;
        default:
            {
                GGML_ABORT("unknown pooling type");
            }
    }

    cb(cur, "result_embd_pooled", -1);
    res->t_embd_pooled = cur;

    ggml_build_forward_expand(gf, cur);
}

int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
    // TODO move to hparams if a T5 variant appears that uses a different value
    const int64_t max_distance = 128;

    if (bidirectional) {
        n_buckets >>= 1;
    }

    const int64_t max_exact = n_buckets >> 1;

    int32_t relative_position = x - y;
    int32_t relative_bucket = 0;

    if (bidirectional) {
        relative_bucket += (relative_position > 0) * n_buckets;
        relative_position = abs(relative_position);
    } else {
        relative_position = -std::min<int32_t>(relative_position, 0);
    }

    int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
    relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
    relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);

    return relative_bucket;
}