llama-cpp-sys-2 0.1.108

Low Level Bindings to llama.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
#include "llama-context.h"

#include "llama-impl.h"
#include "llama-io.h"
#include "llama-mmap.h"
#include "llama-model.h"
#include "llama-kv-cache.h"

#include <cstring>
#include <stdexcept>
#include <cinttypes>

//
// llama_context
//

llama_context::llama_context(
        const llama_model & model,
              llama_context_params params) :
    model(model) {
    LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__);

    t_start_us = model.t_start_us;
    t_load_us  = model.t_load_us;

    const auto & hparams = model.hparams;

    cparams.n_seq_max        = std::max(1u, params.n_seq_max);
    cparams.n_threads        = params.n_threads;
    cparams.n_threads_batch  = params.n_threads_batch;
    cparams.yarn_ext_factor  = params.yarn_ext_factor;
    cparams.yarn_attn_factor = params.yarn_attn_factor;
    cparams.yarn_beta_fast   = params.yarn_beta_fast;
    cparams.yarn_beta_slow   = params.yarn_beta_slow;
    cparams.defrag_thold     = params.defrag_thold;
    cparams.embeddings       = params.embeddings;
    cparams.offload_kqv      = params.offload_kqv;
    cparams.flash_attn       = params.flash_attn;
    cparams.no_perf          = params.no_perf;
    cparams.pooling_type     = params.pooling_type;
    cparams.warmup           = false;

    cparams.n_ctx            = params.n_ctx           == 0    ? hparams.n_ctx_train           : params.n_ctx;
    cparams.rope_freq_base   = params.rope_freq_base  == 0.0f ? hparams.rope_freq_base_train  : params.rope_freq_base;
    cparams.rope_freq_scale  = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;

    cparams.n_ctx_orig_yarn  = params.yarn_orig_ctx    != 0 ? params.yarn_orig_ctx    :
                               hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
                                                              hparams.n_ctx_train;

    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;

    auto rope_scaling_type = params.rope_scaling_type;
    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
        rope_scaling_type = hparams.rope_scaling_type_train;
    }

    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
        cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
    }

    if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
        cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
    }

    cparams.yarn_attn_factor *= hparams.rope_attn_factor;

    if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
        if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
            cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
        } else {
            cparams.pooling_type = hparams.pooling_type;
        }
    }

    if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
        cparams.causal_attn = hparams.causal_attn;
    } else {
        cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
    }

    // with causal attention, the batch size is limited by the context size
    cparams.n_batch = cparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;

    // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
    // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
    // ref: https://github.com/ggerganov/llama.cpp/pull/5021
    // TODO: this padding is not needed for the cache-less context so we should probably move it to llama_context_kv_self
    if (cparams.n_batch < GGML_KQ_MASK_PAD) {
        LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
        cparams.n_batch = GGML_KQ_MASK_PAD;
    }

    cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);

    cparams.op_offload = params.op_offload;

    const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;

    LLAMA_LOG_INFO("%s: n_seq_max     = %u\n",   __func__, cparams.n_seq_max);
    LLAMA_LOG_INFO("%s: n_ctx         = %u\n",   __func__, cparams.n_ctx);
    LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n",   __func__, n_ctx_per_seq);
    LLAMA_LOG_INFO("%s: n_batch       = %u\n",   __func__, cparams.n_batch);
    LLAMA_LOG_INFO("%s: n_ubatch      = %u\n",   __func__, cparams.n_ubatch);
    LLAMA_LOG_INFO("%s: causal_attn   = %d\n",   __func__, cparams.causal_attn);
    LLAMA_LOG_INFO("%s: flash_attn    = %d\n",   __func__, cparams.flash_attn);
    LLAMA_LOG_INFO("%s: freq_base     = %.1f\n", __func__, cparams.rope_freq_base);
    LLAMA_LOG_INFO("%s: freq_scale    = %g\n",   __func__, cparams.rope_freq_scale);

    if (n_ctx_per_seq < hparams.n_ctx_train) {
        LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
                __func__, n_ctx_per_seq, hparams.n_ctx_train);
    }

    if (n_ctx_per_seq > hparams.n_ctx_train) {
        LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
                __func__, n_ctx_per_seq, hparams.n_ctx_train);
    }

    if (!hparams.vocab_only) {
        // GPU backends
        for (auto * dev : model.devices) {
            ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
            if (backend == nullptr) {
                throw std::runtime_error(format("failed to initialize %s backend", ggml_backend_dev_name(dev)));
            }
            backends.emplace_back(backend);
        }

        // add ACCEL backends (such as BLAS)
        for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
            ggml_backend_dev_t dev = ggml_backend_dev_get(i);
            if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
                ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
                if (backend == nullptr) {
                    throw std::runtime_error(format("failed to initialize %s backend", ggml_backend_dev_name(dev)));
                }
                backends.emplace_back(backend);
            }
        }

        // add CPU backend
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
        if (backend_cpu == nullptr) {
            throw std::runtime_error("failed to initialize CPU backend");
        }
        backends.emplace_back(backend_cpu);

        // create a list of the set_n_threads functions in the backends
        for (auto & backend : backends) {
            ggml_backend_dev_t dev = ggml_backend_get_device(backend.get());
            ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
            if (reg) {
                auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
                if (ggml_backend_set_n_threads_fn) {
                    set_n_threads_fns.emplace_back(backend.get(), ggml_backend_set_n_threads_fn);
                }
            }
        }

        llama_set_abort_callback(this, params.abort_callback, params.abort_callback_data);

        // graph outputs buffer
        {
            // resized during inference when a batch uses more outputs
            if ((uint32_t) output_reserve(params.n_seq_max) < params.n_seq_max) {
                throw std::runtime_error("failed to reserve initial output buffer");
            }

            LLAMA_LOG_INFO("%s: %10s  output buffer size = %8.2f MiB\n", __func__,
                    ggml_backend_buffer_name    (buf_output.get()),
                    ggml_backend_buffer_get_size(buf_output.get()) / 1024.0 / 1024.0);
        }
    }

    // init the memory module
    if (!hparams.vocab_only) {
        llama_memory_params params_mem = {
            /*.type_k   =*/ params.type_k,
            /*.type_v   =*/ params.type_v,
            /*.swa_full =*/ params.swa_full,
        };

        memory.reset(model.create_memory(params_mem, cparams));
    }

    // init backends
    if (!hparams.vocab_only) {
        LLAMA_LOG_DEBUG("%s: enumerating backends\n", __func__);

        backend_buft.clear();
        backend_ptrs.clear();

        for (auto & backend : backends) {
            auto * buft = ggml_backend_get_default_buffer_type(backend.get());
            auto backend_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get()));

            if (backend_type == GGML_BACKEND_DEVICE_TYPE_CPU && !model.devices.empty()) {
                // use the host buffer of the first device CPU for faster transfer of the intermediate state
                auto * dev = model.devices[0];
                auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
                if (host_buft) {
                    buft = host_buft;
                }
            }

            backend_buft.push_back(buft);
            backend_ptrs.push_back(backend.get());
        }

        LLAMA_LOG_DEBUG("%s: backend_ptrs.size() = %zu\n", __func__, backend_ptrs.size());

        const size_t max_nodes = this->graph_max_nodes();

        LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes);

        // buffer used to store the computation graph and the tensor meta data
        buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));

        // TODO: move these checks to ggml_backend_sched
        // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
        bool pipeline_parallel =
            model.n_devices() > 1 &&
            model.params.n_gpu_layers > (int) model.hparams.n_layer &&
            model.params.split_mode == LLAMA_SPLIT_MODE_LAYER &&
            cparams.offload_kqv &&
            !model.has_tensor_overrides();

        // pipeline parallelism requires support for async compute and events in all devices
        if (pipeline_parallel) {
            for (auto & backend : backends) {
                auto dev_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get()));
                if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU) {
                    // ignore CPU backend
                    continue;
                }
                auto * dev = ggml_backend_get_device(backend.get());
                ggml_backend_dev_props props;
                ggml_backend_dev_get_props(dev, &props);
                if (!props.caps.async || !props.caps.events) {
                    // device does not support async compute or events
                    pipeline_parallel = false;
                    break;
                }
            }
        }

        sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel, cparams.op_offload));

        if (pipeline_parallel) {
            LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
        }
    }

    // reserve worst-case graph
    if (!hparams.vocab_only && memory) {
        const uint32_t n_seqs = 1; // TODO: worst-case number of sequences
        const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);

        llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph

        // restore later
        // TODO: something cleaner
        const auto n_outputs_save = n_outputs;

        LLAMA_LOG_DEBUG("%s: worst-case: n_tokens = %d, n_seqs = %d, n_outputs = %d\n", __func__, n_tokens, n_seqs, n_outputs);

        int n_splits_pp = -1;
        int n_nodes_pp  = -1;

        int n_splits_tg = -1;
        int n_nodes_tg  = -1;

        // simulate full KV cache
        llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());

        kv_self->set_full();

        cross.v_embd.clear();

        // reserve pp graph first so that buffers are only allocated once
        {
            llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};

            // max number of outputs
            n_outputs = ubatch_pp.n_tokens;

            LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs);

            auto * gf = graph_init();
            graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT);

            if (!ggml_backend_sched_reserve(sched.get(), gf)) {
                throw std::runtime_error("failed to allocate compute pp buffers");
            }

            n_splits_pp = ggml_backend_sched_get_n_splits(sched.get());
            n_nodes_pp  = ggml_graph_n_nodes(gf);
        }

        // reserve with tg graph to get the number of splits and nodes
        {
            llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};

            n_outputs = ubatch_tg.n_tokens;

            LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_tg.n_tokens, ubatch_tg.n_seqs);

            auto * gf = graph_init();
            graph_build(ctx_compute.get(), gf, ubatch_tg, LLM_GRAPH_TYPE_DEFAULT);

            if (!ggml_backend_sched_reserve(sched.get(), gf)) {
                throw std::runtime_error("failed to allocate compute tg buffers");
            }

            n_splits_tg = ggml_backend_sched_get_n_splits(sched.get());
            n_nodes_tg  = ggml_graph_n_nodes(gf);
        }

        // reserve again with pp graph to avoid ggml-alloc reallocations during inference
        {
            llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};

            n_outputs = ubatch_pp.n_tokens;

            LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs);

            auto * gf = graph_init();
            graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT);

            if (!ggml_backend_sched_reserve(sched.get(), gf)) {
                throw std::runtime_error("failed to allocate compute pp buffers");
            }
        }

        n_outputs = n_outputs_save;

        for (size_t i = 0; i < backend_ptrs.size(); ++i) {
            ggml_backend_t             backend = backend_ptrs[i];
            ggml_backend_buffer_type_t buft    = backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(sched.get(), backend);
            if (size > 1) {
                LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
            }
        }

        if (n_nodes_pp == n_nodes_tg) {
            LLAMA_LOG_INFO("%s: graph nodes  = %d\n", __func__, n_nodes_pp);
        } else {
            LLAMA_LOG_INFO("%s: graph nodes  = %d (with bs=%d), %d (with bs=1)\n", __func__, n_nodes_pp, n_tokens, n_nodes_tg);
        }

        if (n_splits_pp == n_splits_tg) {
            LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits_pp);
        } else {
            LLAMA_LOG_INFO("%s: graph splits = %d (with bs=%d), %d (with bs=1)\n", __func__, n_splits_pp, n_tokens, n_splits_tg);
        }
    }
}

llama_context::~llama_context() {
    ggml_opt_free(opt_ctx);
}

void llama_context::synchronize() {
    ggml_backend_sched_synchronize(sched.get());

    // FIXME: if multiple single tokens are evaluated without a synchronization,
    // the stats will be added to the prompt evaluation stats
    // this should only happen when using batch size 1 to evaluate a batch

    // add the evaluation to the stats
    if (n_queued_tokens == 1) {
        if (!cparams.no_perf) {
            t_eval_us += ggml_time_us() - t_compute_start_us;
        }
        n_eval++;
    } else if (n_queued_tokens > 1) {
        if (!cparams.no_perf) {
            t_p_eval_us += ggml_time_us() - t_compute_start_us;
        }
        n_p_eval += n_queued_tokens;
    }

    // get a more accurate load time, upon first eval
    if (n_queued_tokens > 0 && !has_evaluated_once) {
        t_load_us = ggml_time_us() - t_start_us;
        has_evaluated_once = true;
    }

    n_queued_tokens = 0;
    t_compute_start_us = 0;
}

const llama_model & llama_context::get_model() const {
    return model;
}

const llama_cparams & llama_context::get_cparams() const {
    return cparams;
}

ggml_backend_sched_t llama_context::get_sched() const {
    return sched.get();
}

ggml_context * llama_context::get_ctx_compute() const {
    return ctx_compute.get();
}

uint32_t llama_context::n_ctx() const {
    return cparams.n_ctx;
}

uint32_t llama_context::n_ctx_per_seq() const {
    return cparams.n_ctx / cparams.n_seq_max;
}

uint32_t llama_context::n_batch() const {
    return cparams.n_batch;
}

uint32_t llama_context::n_ubatch() const {
    return cparams.n_ubatch;
}

uint32_t llama_context::n_seq_max() const {
    return cparams.n_seq_max;
}

uint32_t llama_context::n_threads() const {
    return cparams.n_threads;
}

uint32_t llama_context::n_threads_batch() const {
    return cparams.n_threads_batch;
}

llama_kv_cache * llama_context::get_kv_self() {
    llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
    return kv_self;
}

const llama_kv_cache * llama_context::get_kv_self() const {
    llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
    return kv_self;
}

void llama_context::kv_self_update() {
    bool need_reserve = false;

    llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());

    need_reserve = kv_self->update(*this);

    // reserve a worst case graph if needed
    if (need_reserve) {
        LLAMA_LOG_DEBUG("%s: reserving a worst case graph\n", __func__);

        // build worst-case graph
        uint32_t n_seqs = 1; // TODO: worst-case number of sequences
        uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);

        // simulate full KV cache
        kv_self->set_full();

        llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
        llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};

        auto * gf = graph_init();
        graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT);

        // initialize scheduler with the worst-case graph
        ggml_backend_sched_reset(sched.get());
        if (!ggml_backend_sched_reserve(sched.get(), gf)) {
            LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
        }
    }
}

enum llama_pooling_type llama_context::pooling_type() const {
    return cparams.pooling_type;
}

float * llama_context::get_logits() {
    return logits;
}

float * llama_context::get_logits_ith(int32_t i) {
    int32_t j = -1;

    try {
        if (logits == nullptr) {
            throw std::runtime_error("no logits");
        }

        if (i < 0) {
            j = n_outputs + i;
            if (j < 0) {
                throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs));
            }
        } else if ((size_t) i >= output_ids.size()) {
            throw std::runtime_error(format("out of range [0, %zu)", output_ids.size()));
        } else {
            j = output_ids[i];
        }

        if (j < 0) {
            throw std::runtime_error(format("batch.logits[%d] != true", i));
        }
        if (j >= n_outputs) {
            // This should not happen
            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs));
        }

        return logits + j*model.vocab.n_tokens();
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
        GGML_ABORT("fatal error");
#else
        return nullptr;
#endif
    }
}

float * llama_context::get_embeddings() {
    return embd;
}

float * llama_context::get_embeddings_ith(int32_t i) {
    int32_t j = -1;

    try {
        if (embd == nullptr) {
            throw std::runtime_error("no embeddings");
        }

        if (i < 0) {
            j = n_outputs + i;
            if (j < 0) {
                throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs));
            }
        } else if ((size_t) i >= output_ids.size()) {
            throw std::runtime_error(format("out of range [0, %zu)", output_ids.size()));
        } else {
            j = output_ids[i];
        }

        if (j < 0) {
            throw std::runtime_error(format("batch.logits[%d] != true", i));
        }
        if (j >= n_outputs) {
            // This should not happen
            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs));
        }

        return embd + j*model.hparams.n_embd;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
        GGML_ABORT("fatal error");
#else
        return nullptr;
#endif
    }
}

float * llama_context::get_embeddings_seq(llama_seq_id seq_id) {
    auto it = embd_seq.find(seq_id);
    if (it == embd_seq.end()) {
        return nullptr;
    }

    return it->second.data();
}

void llama_context::attach_threadpool(
           ggml_threadpool_t threadpool,
           ggml_threadpool_t threadpool_batch) {
    LLAMA_LOG_DEBUG("%s: call\n", __func__);

    this->threadpool       = threadpool;
    this->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool;
}

void llama_context::detach_threadpool() {
    LLAMA_LOG_DEBUG("%s: call\n", __func__);

    this->threadpool       = nullptr;
    this->threadpool_batch = nullptr;
}

void llama_context::set_n_threads(int32_t n_threads, int32_t n_threads_batch) {
    LLAMA_LOG_DEBUG("%s: n_threads = %d, n_threads_batch = %d\n", __func__, n_threads, n_threads_batch);

    cparams.n_threads       = n_threads;
    cparams.n_threads_batch = n_threads_batch;
}

void llama_context::set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data) {
    LLAMA_LOG_DEBUG("%s: call\n", __func__);

    this->abort_callback      = abort_callback;
    this->abort_callback_data = abort_callback_data;

    for (auto & backend : backends) {
        auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get()));
        auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
        if (set_abort_callback_fn) {
            set_abort_callback_fn(backend.get(), this->abort_callback, this->abort_callback_data);
        }
    }
}

void llama_context::set_embeddings(bool value) {
    LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value);

    cparams.embeddings = value;
}

void llama_context::set_causal_attn(bool value) {
    LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value);

    cparams.causal_attn = value;
}

void llama_context::set_warmup(bool value) {
    LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value);

    cparams.warmup = value;
}

void llama_context::set_adapter_lora(
            llama_adapter_lora * adapter,
            float scale) {
    LLAMA_LOG_DEBUG("%s: adapter = %p, scale = %f\n", __func__, (void *) adapter, scale);

    loras[adapter] = scale;
}

bool llama_context::rm_adapter_lora(
            llama_adapter_lora * adapter) {
    LLAMA_LOG_DEBUG("%s: adapter = %p\n", __func__, (void *) adapter);

    auto pos = loras.find(adapter);
    if (pos != loras.end()) {
        loras.erase(pos);
        return true;
    }

    return false;
}

void llama_context::clear_adapter_lora() {
    LLAMA_LOG_DEBUG("%s: call\n", __func__);

    loras.clear();
}

bool llama_context::apply_adapter_cvec(
            const float * data,
                 size_t   len,
                int32_t   n_embd,
                int32_t   il_start,
                int32_t   il_end) {
    LLAMA_LOG_DEBUG("%s: il_start = %d, il_end = %d\n", __func__, il_start, il_end);

    return cvec.apply(model, data, len, n_embd, il_start, il_end);
}

int llama_context::encode(llama_batch & inp_batch) {
    if (inp_batch.n_tokens == 0) {
        LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
        return -1;
    }

    // temporary allocate memory for the input batch if needed
    // note: during encode, we always pass the full sequence starting from pos = 0
    llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : 0);

    const llama_batch & batch = batch_allocr.batch;
    const int32_t n_tokens = batch.n_tokens;

    const auto & hparams = model.hparams;

    GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT

    if (batch.token) {
        for (int32_t i = 0; i < n_tokens; ++i) {
            if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) {
                LLAMA_LOG_ERROR("%s: invalid token[%d] = %d\n", __func__, i, batch.token[i]);
                return -1;
            }
        }
    }

    // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
    GGML_ASSERT(cparams.n_ubatch >= (uint32_t) n_tokens && "encoder requires n_ubatch >= n_tokens");

    if (t_compute_start_us == 0) {
        t_compute_start_us = ggml_time_us();
    }

    embd_seq.clear();

    n_queued_tokens += n_tokens;

    const int64_t n_embd = hparams.n_embd;

    llama_sbatch sbatch = llama_sbatch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);

    const llama_ubatch ubatch = sbatch.split_simple(n_tokens);

    // reserve output buffer
    if (output_reserve(n_tokens) < n_tokens) {
        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
        return -2;
    };

    for (int32_t i = 0; i < n_tokens; ++i) {
        output_ids[i] = i;
    }

    n_outputs = n_tokens;

    //batch_manager->prepare(ubatch);

    ggml_backend_sched_reset(sched.get());
    ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);

    const auto causal_attn_org = cparams.causal_attn;

    // always use non-causal attention for encoder graphs
    // TODO: this is a tmp solution until we have a proper way to support enc-dec models
    //       ref: https://github.com/ggml-org/llama.cpp/pull/12181#issuecomment-2730451223
    cparams.causal_attn = false;

    auto * gf = graph_init();
    auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_ENCODER);

    ggml_backend_sched_alloc_graph(sched.get(), gf);

    res->set_inputs(&ubatch);

    cparams.causal_attn = causal_attn_org;

    const auto compute_status = graph_compute(gf, n_tokens > 1);
    switch (compute_status) {
        case GGML_STATUS_SUCCESS:
            break;
        case GGML_STATUS_ABORTED:
            return 2;
        case GGML_STATUS_ALLOC_FAILED:
            return -2;
        case GGML_STATUS_FAILED:
        default:
            return -3;
    }

    auto * t_embd = res->get_embd_pooled() ? res->get_embd_pooled() : res->get_embd();

    // extract embeddings
    if (t_embd) {
        ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
        GGML_ASSERT(backend_embd != nullptr);

        switch (cparams.pooling_type) {
            case LLAMA_POOLING_TYPE_NONE:
                {
                    // extract token embeddings
                    GGML_ASSERT(embd != nullptr);

                    GGML_ASSERT(n_tokens*n_embd <= (int64_t) embd_size);
                    ggml_backend_tensor_get_async(backend_embd, t_embd, embd, 0, n_tokens*n_embd*sizeof(float));
                } break;
            case LLAMA_POOLING_TYPE_MEAN:
            case LLAMA_POOLING_TYPE_CLS:
            case LLAMA_POOLING_TYPE_LAST:
                {
                    // extract sequence embeddings
                    auto & embd_seq_out = embd_seq;
                    embd_seq_out.clear();

                    GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits

                    for (int32_t i = 0; i < n_tokens; i++) {
                        const llama_seq_id seq_id = ubatch.seq_id[i][0];
                        if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                            continue;
                        }
                        embd_seq_out[seq_id].resize(n_embd);
                        ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
                    }
                } break;
            case LLAMA_POOLING_TYPE_RANK:
                {
                    // extract the rerank score - a single float per sequence
                    auto & embd_seq_out = embd_seq;

                    for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
                        const llama_seq_id seq_id = ubatch.seq_id[s][0];
                        if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                            continue;
                        }
                        embd_seq_out[seq_id].resize(1);
                        ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float));
                    }
                } break;
            case LLAMA_POOLING_TYPE_UNSPECIFIED:
                {
                    GGML_ABORT("unknown pooling type");
                }
        }
    }

    // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
    // overlap with device computation.
    ggml_backend_sched_reset(sched.get());

    // TODO: hacky solution
    if (model.arch == LLM_ARCH_T5 && t_embd) {
        //cross.t_embd = t_embd;

        synchronize();

        cross.n_embd = t_embd->ne[0];
        cross.n_enc  = t_embd->ne[1];
        cross.v_embd.resize(cross.n_embd*cross.n_enc);
        memcpy(cross.v_embd.data(), embd, ggml_nbytes(t_embd));

        // remember the sequence ids used during the encoding - needed for cross attention later
        cross.seq_ids_enc.resize(n_tokens);
        for (int32_t i = 0; i < n_tokens; i++) {
            cross.seq_ids_enc[i].clear();
            for (int s = 0; s < ubatch.n_seq_id[i]; s++) {
                llama_seq_id seq_id = ubatch.seq_id[i][s];
                cross.seq_ids_enc[i].insert(seq_id);
            }
        }
    }

    return 0;
}

int llama_context::decode(llama_batch & inp_batch) {
    if (!memory) {
        LLAMA_LOG_WARN("%s: cannot decode batches with this context (use llama_encode() instead)\n", __func__);
        return encode(inp_batch);
    }

    if (inp_batch.n_tokens == 0) {
        LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
        return -1;
    }

    if (!inp_batch.pos) {
        if (inp_batch.seq_id) {
            LLAMA_LOG_ERROR("%s: pos == NULL, but seq_id != NULL\n", __func__);
            return -1;
        }
    }

    llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());

    // temporary allocate memory for the input batch if needed
    llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->seq_pos_max(0) + 1);

    const llama_batch & batch = batch_allocr.batch;

    const auto & vocab   = model.vocab;
    const auto & hparams = model.hparams;

    const int32_t n_vocab = vocab.n_tokens();

    const int64_t n_tokens_all = batch.n_tokens;
    const int64_t n_embd       = hparams.n_embd;

    llama_kv_cache_guard kv_guard(kv_self);

    GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT

    if (batch.token) {
        for (int64_t i = 0; i < n_tokens_all; ++i) {
            if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) {
                LLAMA_LOG_ERROR("%s: invalid token[%" PRId64 "] = %d\n", __func__, i, batch.token[i]);
                throw std::runtime_error("invalid token");
            }
        }
    }

    GGML_ASSERT(n_tokens_all <= cparams.n_batch);

    GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");

    if (t_compute_start_us == 0) {
        t_compute_start_us = ggml_time_us();
    }
    n_queued_tokens += n_tokens_all;

    // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
    const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;

    embd_seq.clear();

    int64_t n_outputs_all = 0;

    // count outputs
    if (batch.logits && !embd_pooled) {
        for (uint32_t i = 0; i < n_tokens_all; ++i) {
            n_outputs_all += batch.logits[i] != 0;
        }
    } else if (embd_pooled) {
        n_outputs_all = n_tokens_all;
    } else {
        // keep last output only
        n_outputs_all = 1;
    }

    llama_sbatch sbatch = kv_self->sbatch_init(batch, /* logits_all */ n_outputs_all == n_tokens_all);

    // reserve output buffer
    if (output_reserve(n_outputs_all) < n_outputs_all) {
        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %" PRId64 " outputs\n", __func__, n_outputs_all);
        return -2;
    };

    // handle any pending defrags/shifts
    kv_self_update();

    int64_t n_outputs_prev = 0;

    while (sbatch.n_tokens > 0) {
        llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);

        // count the outputs in this u_batch
        {
            int32_t n_outputs_new = 0;

            if (n_outputs_all == n_tokens_all) {
                n_outputs_new = ubatch.n_tokens;
            } else {
                GGML_ASSERT(ubatch.output);
                for (uint32_t i = 0; i < ubatch.n_tokens; i++) {
                    n_outputs_new += (int32_t) (ubatch.output[i] != 0);
                }
            }

            // needs to happen before the graph is built
            n_outputs = n_outputs_new;
        }

        // find KV slot
        if (!kv_self->find_slot(ubatch)) {
            return 1;
        }

        ggml_backend_sched_reset(sched.get());
        ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);

        auto * gf = graph_init();
        auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DECODER);

        // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);

        ggml_backend_sched_alloc_graph(sched.get(), gf);

        res->set_inputs(&ubatch);

        const auto compute_status = graph_compute(gf, ubatch.n_tokens > 1);
        if (compute_status != GGML_STATUS_SUCCESS) {
            switch (compute_status) {
                case GGML_STATUS_ABORTED:
                    return 2;
                case GGML_STATUS_ALLOC_FAILED:
                    return -2;
                case GGML_STATUS_FAILED:
                default:
                    return -3;
            }
        }

        // plot the computation graph in dot format (for debugging purposes)
        //if (n_past%100 == 0) {
        //    ggml_graph_dump_dot(gf, NULL, "llama.dot");
        //}

        auto * t_logits = cparams.embeddings ? nullptr         : res->get_logits();
        auto * t_embd   = cparams.embeddings ? res->get_embd() : nullptr;

        if (t_embd && res->get_embd_pooled()) {
            t_embd = res->get_embd_pooled();
        }

        // extract logits
        if (t_logits && n_outputs > 0) {
            ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(sched.get(), t_logits);
            GGML_ASSERT(backend_res != nullptr);
            GGML_ASSERT(logits != nullptr);

            float * logits_out = logits + n_outputs_prev*n_vocab;

            if (n_outputs) {
                GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all);
                GGML_ASSERT((n_outputs_prev + n_outputs)*n_vocab <= (int64_t) logits_size);
                ggml_backend_tensor_get_async(backend_res, t_logits, logits_out, 0, n_outputs*n_vocab*sizeof(float));
            }
        }

        // extract embeddings
        if (t_embd && n_outputs > 0) {
            ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
            GGML_ASSERT(backend_embd != nullptr);

            switch (cparams.pooling_type) {
                case LLAMA_POOLING_TYPE_NONE:
                    {
                        // extract token embeddings
                        GGML_ASSERT(embd != nullptr);
                        float * embd_out = embd + n_outputs_prev*n_embd;

                        if (n_outputs) {
                            GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all);
                            GGML_ASSERT((n_outputs_prev + n_outputs)*n_embd <= (int64_t) embd_size);
                            ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_outputs*n_embd*sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_MEAN:
                case LLAMA_POOLING_TYPE_CLS:
                case LLAMA_POOLING_TYPE_LAST:
                    {
                        // extract sequence embeddings (cleared before processing each batch)
                        auto & embd_seq_out = embd_seq;

                        for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
                            const llama_seq_id seq_id = ubatch.seq_id[s][0];
                            if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                                continue;
                            }
                            embd_seq_out[seq_id].resize(n_embd);
                            ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_RANK:
                    {
                        // extract the rerank score - a single float per sequence
                        auto & embd_seq_out = embd_seq;

                        for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
                            const llama_seq_id seq_id = ubatch.seq_id[s][0];
                            if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                                continue;
                            }
                            embd_seq_out[seq_id].resize(1);
                            ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_UNSPECIFIED:
                    {
                        GGML_ABORT("unknown pooling type");
                    }
            }
        }

        n_outputs_prev += n_outputs;
    }

    // finalize the batch processing
    kv_guard.commit();

    // set to total number of outputs in the batch, for use in llama_get_logits_ith
    n_outputs = n_outputs_all;

    // set output mappings
    {
        bool sorted_output = true;

        auto & out_ids = sbatch.out_ids;

        GGML_ASSERT(out_ids.size() == (size_t) n_outputs_all);

        for (int64_t i = 0; i < n_outputs_all; ++i) {
            int64_t out_id = out_ids[i];
            output_ids[out_id] = i;
            if (out_id != i) {
                sorted_output = false;
            }
        }

        // make the outputs have the same order they had in the user-provided batch
        // note: this is mostly relevant for recurrent models atm
        if (!sorted_output) {
            const uint32_t n_vocab = model.vocab.n_tokens();
            const uint32_t n_embd  = model.hparams.n_embd;

            GGML_ASSERT((size_t) n_outputs == out_ids.size());

            // TODO: is there something more efficient which also minimizes swaps?
            // selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
            for (int32_t i = 0; i < n_outputs - 1; ++i) {
                int32_t j_min = i;
                for (int32_t j = i + 1; j < n_outputs; ++j) {
                    if (out_ids[j] < out_ids[j_min]) {
                        j_min = j;
                    }
                }
                if (j_min == i) { continue; }
                std::swap(out_ids[i], out_ids[j_min]);
                if (logits_size > 0) {
                    for (uint32_t k = 0; k < n_vocab; k++) {
                        std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
                    }
                }
                if (embd_size > 0) {
                    for (uint32_t k = 0; k < n_embd; k++) {
                        std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
                    }
                }
            }
            std::fill(output_ids.begin(), output_ids.end(), -1);
            for (int32_t i = 0; i < n_outputs; ++i) {
                output_ids[out_ids[i]] = i;
            }
        }
    }

    // wait for the computation to finish (automatically done when obtaining the model output)
    //synchronize();

    // decide if we need to defrag the kv cache
    if (cparams.defrag_thold > 0.0f) {
        kv_self->defrag_sched(cparams.defrag_thold);
    }

    // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
    // overlap with device computation.
    ggml_backend_sched_reset(sched.get());

    return 0;
}

//
// output
//

int32_t llama_context::output_reserve(int32_t n_outputs) {
    const auto & hparams = model.hparams;
    const auto & vocab   = model.vocab;

    const int64_t n_outputs_max = std::max<int64_t>(n_outputs, n_seq_max());

    const auto n_batch = cparams.n_batch;
    const auto n_vocab = vocab.n_tokens();
    const auto n_embd  = hparams.n_embd;

    // TODO: use a per-batch flag for logits presence instead
    bool has_logits = !cparams.embeddings;
    bool has_embd   =  cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);

    // TODO: hacky enc-dec support
    if (model.arch == LLM_ARCH_T5) {
        has_logits = true;
        has_embd   = true;
    }

    logits_size = has_logits ? n_vocab*n_outputs_max : 0;
    embd_size   = has_embd   ?  n_embd*n_outputs_max : 0;

    if (output_ids.empty()) {
        // init, never resized afterwards
        output_ids.resize(n_batch);
    }

    const size_t prev_size = buf_output ? ggml_backend_buffer_get_size(buf_output.get()) : 0;
    const size_t new_size  = (logits_size + embd_size) * sizeof(float);

    // alloc only when more than the current capacity is required
    // TODO: also consider shrinking the buffer
    if (!buf_output || prev_size < new_size) {
        if (buf_output) {
#ifndef NDEBUG
            // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
            LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
            buf_output = nullptr;
            logits = nullptr;
            embd = nullptr;
        }

        auto * buft = ggml_backend_cpu_buffer_type();
        // try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory
        auto * output_dev = model.dev_output();
        auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr;
        if (output_dev_host_buft) {
            buft = output_dev_host_buft;
        }
        buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size));
        if (buf_output == nullptr) {
            LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
            return 0;
        }
    }

    float * output_base = (float *) ggml_backend_buffer_get_base(buf_output.get());

    logits = has_logits ? output_base               : nullptr;
    embd   = has_embd   ? output_base + logits_size : nullptr;

    // set all ids as invalid (negative)
    std::fill(output_ids.begin(), output_ids.end(), -1);

    this->n_outputs     = 0;
    this->n_outputs_max = n_outputs_max;

    return n_outputs_max;
}

//
// graph
//

int32_t llama_context::graph_max_nodes() const {
    return std::max<int32_t>(65536, 5*model.n_tensors());
}

ggml_cgraph * llama_context::graph_init() {
    ggml_init_params params = {
        /*.mem_size   =*/ buf_compute_meta.size(),
        /*.mem_buffer =*/ buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ctx_compute.reset(ggml_init(params));

    return ggml_new_graph_custom(ctx_compute.get(), graph_max_nodes(), false);
}

llm_graph_result_ptr llama_context::graph_build(
            ggml_context * ctx,
             ggml_cgraph * gf,
      const llama_ubatch & ubatch,
            llm_graph_type gtype) {
    return model.build_graph(
            {
                /*.ctx         =*/ ctx,
                /*.arch        =*/ model.arch,
                /*.hparams     =*/ model.hparams,
                /*.cparams     =*/ cparams,
                /*.ubatch      =*/ ubatch,
                /*.sched       =*/ sched.get(),
                /*.backend_cpu =*/ backend_cpu,
                /*.cvec        =*/ &cvec,
                /*.loras       =*/ &loras,
                /*.memory      =*/ memory.get(),
                /*.cross       =*/ &cross,
                /*.n_outputs   =*/ n_outputs,
                /*.cb          =*/ graph_get_cb(),
            }, gf, gtype);
}

ggml_status llama_context::graph_compute(
            ggml_cgraph * gf,
                   bool   batched) {
    int n_threads        = batched ? cparams.n_threads_batch : cparams.n_threads;
    ggml_threadpool_t tp = batched ? threadpool_batch        : threadpool;

    if (backend_cpu != nullptr) {
        auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend_cpu));
        auto * set_threadpool_fn = (decltype(ggml_backend_cpu_set_threadpool) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_set_threadpool");
        set_threadpool_fn(backend_cpu, tp);
    }

    // set the number of threads for all the backends
    for (const auto & set_n_threads_fn : set_n_threads_fns) {
        set_n_threads_fn.second(set_n_threads_fn.first, n_threads);
    }

    auto status = ggml_backend_sched_graph_compute_async(sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LLAMA_LOG_ERROR("%s: ggml_backend_sched_graph_compute_async failed with error %d\n", __func__, status);
    }

    // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(sched));

    return status;
}

llm_graph_cb llama_context::graph_get_cb() const {
    return [&](const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il) {
        if (il >= 0) {
            ggml_format_name(cur, "%s-%d", name, il);
        } else {
            ggml_set_name(cur, name);
        }

        if (!cparams.offload_kqv) {
            if (strcmp(name, "kqv_merged_cont") == 0) {
                // all nodes between the KV store and the attention output are run on the CPU
                ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend_cpu);
            }
        }

        // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
        // FIXME: fix in ggml_backend_sched
        const bool full_offload = model.params.n_gpu_layers > (int) model.hparams.n_layer;
        if (ubatch.n_tokens < 32 || full_offload) {
            if (il != -1 && strcmp(name, "norm") == 0) {
                const auto & dev_layer = model.dev_layer(il);
                for (const auto & backend : backends) {
                    if (ggml_backend_get_device(backend.get()) == dev_layer) {
                        if (ggml_backend_supports_op(backend.get(), cur)) {
                            ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend.get());
                        }
                    }
                }
            }
        }
    };
}

//
// state save/load
//

class llama_io_write_dummy : public llama_io_write_i {
public:
    llama_io_write_dummy() = default;

    void write(const void * /* src */, size_t size) override {
        size_written += size;
    }

    void write_tensor(const ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
        size_written += size;
    }

    size_t n_bytes() override {
        return size_written;
    }

private:
    size_t size_written = 0;
};

class llama_io_write_buffer : public llama_io_write_i {
public:
    llama_io_write_buffer(
            uint8_t * p, size_t len) : ptr(p), buf_size(len) {}

    void write(const void * src, size_t size) override {
        if (size > buf_size) {
            throw std::runtime_error("unexpectedly reached end of buffer");
        }
        memcpy(ptr, src, size);
        ptr += size;
        size_written += size;
        buf_size -= size;
    }

    void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override {
        if (size > buf_size) {
            throw std::runtime_error("unexpectedly reached end of buffer");
        }
        ggml_backend_tensor_get(tensor, ptr, offset, size);
        ptr += size;
        size_written += size;
        buf_size -= size;
    }

    size_t n_bytes() override {
        return size_written;
    }

private:
    uint8_t * ptr;
    size_t buf_size = 0;
    size_t size_written = 0;
};

class llama_io_read_buffer : public llama_io_read_i {
public:
    llama_io_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {}

    const uint8_t * read(size_t size) override {
        const uint8_t * base_ptr = ptr;
        if (size > buf_size) {
            throw std::runtime_error("unexpectedly reached end of buffer");
        }
        ptr += size;
        size_read += size;
        buf_size -= size;
        return base_ptr;
    }

    void read_to(void * dst, size_t size) override {
        memcpy(dst, read(size), size);
    }

    size_t n_bytes() override {
        return size_read;
    }

private:
    const uint8_t * ptr;
    size_t buf_size = 0;
    size_t size_read = 0;
};

class llama_io_write_file : public llama_io_write_i {
public:
    llama_io_write_file(llama_file * f) : file(f) {}

    void write(const void * src, size_t size) override {
        file->write_raw(src, size);
        size_written += size;
    }

    void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override {
        temp_buffer.resize(size);
        ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
        write(temp_buffer.data(), temp_buffer.size());
    }

    size_t n_bytes() override {
        return size_written;
    }

private:
    llama_file * file;
    size_t size_written = 0;
    std::vector<uint8_t> temp_buffer;
};

class llama_io_read_file : public llama_io_read_i {
public:
    llama_io_read_file(llama_file * f) : file(f) {}

    void read_to(void * dst, size_t size) override {
        file->read_raw(dst, size);
        size_read += size;
    }

    const uint8_t * read(size_t size) override {
        temp_buffer.resize(size);
        read_to(temp_buffer.data(), size);
        return temp_buffer.data();
    }

    size_t n_bytes() override {
        return size_read;
    }

private:
    llama_file * file;
    size_t size_read = 0;
    std::vector<uint8_t> temp_buffer;
};

size_t llama_context::state_get_size() {
    llama_io_write_dummy io;
    try {
        return state_write_data(io);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what());
        return 0;
    }
}

size_t llama_context::state_get_data(uint8_t * dst, size_t size) {
    llama_io_write_buffer io(dst, size);
    try {
        return state_write_data(io);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what());
        return 0;
    }
}

size_t llama_context::state_set_data(const uint8_t * src, size_t size) {
    llama_io_read_buffer io(src, size);
    try {
        return state_read_data(io);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what());
        return 0;
    }
}

size_t llama_context::state_seq_get_size(llama_seq_id seq_id) {
    llama_io_write_dummy io;
    try {
        return state_seq_write_data(io, seq_id);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what());
        return 0;
    }
}

size_t llama_context::state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) {
    llama_io_write_buffer io(dst, size);
    try {
        return state_seq_write_data(io, seq_id);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what());
        return 0;
    }
}

size_t llama_context::state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) {
    llama_io_read_buffer io(src, size);
    try {
        return state_seq_read_data(io, seq_id);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what());
        return 0;
    }
}

bool llama_context::state_load_file(const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    llama_file file(filepath, "rb");

    // sanity checks
    {
        const uint32_t magic   = file.read_u32();
        const uint32_t version = file.read_u32();

        if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
            LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
            return false;
        }
    }

    // load the prompt
    {
        const uint32_t n_token_count = file.read_u32();

        if (n_token_count > n_token_capacity) {
            LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
            return false;
        }

        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
        *n_token_count_out = n_token_count;
    }

    // restore the context state
    {
        const size_t n_state_size_cur = file.size() - file.tell();

        llama_io_read_file io( &file);
        const size_t n_read = state_read_data(io);

        if (n_read != n_state_size_cur) {
            LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read);
            return false;
        }
    }

    return true;
}

bool llama_context::state_save_file(const char * filepath, const llama_token * tokens, size_t n_token_count) {
    llama_file file(filepath, "wb");

    file.write_u32(LLAMA_SESSION_MAGIC);
    file.write_u32(LLAMA_SESSION_VERSION);

    // save the prompt
    file.write_u32((uint32_t) n_token_count);
    file.write_raw(tokens, sizeof(llama_token) * n_token_count);

    // save the context state using stream saving
    llama_io_write_file io(&file);
    state_write_data(io);

    return true;
}

size_t llama_context::state_seq_load_file(llama_seq_id seq_id, const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    llama_file file(filepath, "rb");

    // version checks
    {
        const uint32_t magic   = file.read_u32();
        const uint32_t version = file.read_u32();

        if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
            LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
            return 0;
        }
    }

    // load the prompt
    {
        const uint32_t n_token_count = file.read_u32();

        if (n_token_count > n_token_capacity) {
            LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
            return 0;
        }

        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
        *n_token_count_out = n_token_count;
    }

    // restore the context state
    {
        const size_t state_size = file.size() - file.tell();
        llama_io_read_file io(&file);
        const size_t nread = state_seq_read_data(io, seq_id);
        if (!nread) {
            LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
            return 0;
        }
        GGML_ASSERT(nread <= state_size);
        GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
    }

    return file.tell();
}

size_t llama_context::state_seq_save_file(llama_seq_id seq_id, const char * filepath, const llama_token * tokens, size_t n_token_count) {
    llama_file file(filepath, "wb");

    file.write_u32(LLAMA_STATE_SEQ_MAGIC);
    file.write_u32(LLAMA_STATE_SEQ_VERSION);

    // save the prompt
    file.write_u32((uint32_t) n_token_count);
    file.write_raw(tokens, sizeof(llama_token) * n_token_count);

    // save the context state using stream saving
    llama_io_write_file io(&file);
    state_seq_write_data(io, seq_id);

    const size_t res = file.tell();
    GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + io.n_bytes());

    return res;
}

size_t llama_context::state_write_data(llama_io_write_i & io) {
    LLAMA_LOG_DEBUG("%s: writing state\n", __func__);

    // write model info
    {
        LLAMA_LOG_DEBUG("%s: - writing model info\n", __func__);

        const std::string arch_str = llm_arch_name(model.arch);
        io.write_string(arch_str);
        // TODO: add more model-specific info which should prevent loading the session file if not identical
    }

    // write output ids
    {
        LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__);

        const auto n_outputs    = this->n_outputs;
        const auto & output_ids = this->output_ids;

        std::vector<int32_t> w_output_pos;

        GGML_ASSERT(n_outputs <= n_outputs_max);

        w_output_pos.resize(n_outputs);

        // build a more compact representation of the output ids
        for (size_t i = 0; i < n_batch(); ++i) {
            // map an output id to a position in the batch
            int32_t pos = output_ids[i];
            if (pos >= 0) {
                GGML_ASSERT(pos < n_outputs);
                w_output_pos[pos] = i;
            }
        }

        io.write(&n_outputs, sizeof(n_outputs));

        if (n_outputs) {
            io.write(w_output_pos.data(), n_outputs * sizeof(int32_t));
        }
    }

    // write logits
    {
        LLAMA_LOG_DEBUG("%s: - writing logits\n", __func__);

        const uint64_t logits_size = std::min((uint64_t) this->logits_size, (uint64_t) n_outputs * model.vocab.n_tokens());

        io.write(&logits_size, sizeof(logits_size));

        if (logits_size) {
            io.write(logits, logits_size * sizeof(float));
        }
    }

    // write embeddings
    {
        LLAMA_LOG_DEBUG("%s: - writing embeddings\n", __func__);

        const uint64_t embd_size = std::min((uint64_t) this->embd_size, (uint64_t) n_outputs * model.hparams.n_embd);

        io.write(&embd_size, sizeof(embd_size));

        if (embd_size) {
            io.write(embd, embd_size * sizeof(float));
        }
    }

    llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());

    if (kv_self != nullptr) {
        LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
        kv_self->state_write(io);
    }

    return io.n_bytes();
}

size_t llama_context::state_read_data(llama_io_read_i & io) {
    LLAMA_LOG_DEBUG("%s: reading state\n", __func__);

    // read model info
    {
        LLAMA_LOG_DEBUG("%s: - reading model info\n", __func__);

        const std::string cur_arch_str = llm_arch_name(model.arch);

        std::string arch_str;
        io.read_string(arch_str);
        if (cur_arch_str != arch_str) {
            throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str()));
        }
        // TODO: add more info which needs to be identical but which is not verified otherwise
    }

    // read output ids
    {
        LLAMA_LOG_DEBUG("%s: - reading output ids\n", __func__);

        auto n_outputs = this->n_outputs;
        io.read_to(&n_outputs, sizeof(n_outputs));

        if (n_outputs > output_reserve(n_outputs)) {
            throw std::runtime_error("could not reserve outputs");
        }

        std::vector<int32_t> output_pos;

        if (n_outputs) {
            output_pos.resize(n_outputs);
            io.read_to(output_pos.data(), n_outputs * sizeof(int32_t));

            for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
                int32_t id = output_pos[i];
                if ((uint32_t) id >= n_batch()) {
                    throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, n_batch()));
                }
                this->output_ids[id] = i;
            }

            this->n_outputs = n_outputs;
        }
    }

    // read logits
    {
        LLAMA_LOG_DEBUG("%s: - reading logits\n", __func__);

        uint64_t logits_size;
        io.read_to(&logits_size, sizeof(logits_size));

        if (this->logits_size < logits_size) {
            throw std::runtime_error("logits buffer too small");
        }

        if (logits_size) {
            io.read_to(this->logits, logits_size * sizeof(float));
        }
    }

    // read embeddings
    {
        LLAMA_LOG_DEBUG("%s: - reading embeddings\n", __func__);

        uint64_t embd_size;
        io.read_to(&embd_size, sizeof(embd_size));

        if (this->embd_size < embd_size) {
            throw std::runtime_error("embeddings buffer too small");
        }

        if (embd_size) {
            io.read_to(this->embd, embd_size * sizeof(float));
        }
    }

    if (memory) {
        LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);

        llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());

        kv_self->state_read(io);
    }

    return io.n_bytes();
}

size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
    GGML_UNUSED(seq_id);

    if (memory) {
        llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());

        kv_self->state_write(io, seq_id);
    }

    return io.n_bytes();
}

size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
    GGML_UNUSED(seq_id);

    if (memory) {
        llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());

        kv_self->state_read(io, seq_id);
    }

    return io.n_bytes();
}

//
// perf
//

llama_perf_context_data llama_context::perf_get_data() const {
    llama_perf_context_data data = {};

    data.t_start_ms  = 1e-3 * t_start_us;
    data.t_load_ms   = 1e-3 * t_load_us;
    data.t_p_eval_ms = 1e-3 * t_p_eval_us;
    data.t_eval_ms   = 1e-3 * t_eval_us;
    data.n_p_eval    = std::max(1, n_p_eval);
    data.n_eval      = std::max(1, n_eval);

    return data;
}

void llama_context::perf_reset() {
    t_start_us  = ggml_time_us();
    t_eval_us   = n_eval = 0;
    t_p_eval_us = n_p_eval = 0;
}

//
// training
//

static void llama_set_param(struct ggml_tensor * tensor, llama_opt_param_filter param_filter, void * userdata) {
    if (!tensor || tensor->type != GGML_TYPE_F32) {
        return;
    }
    if (!param_filter(tensor, userdata)) {
        return;
    }
    if (strcmp(tensor->name, "token_embd.weight") == 0) {
        return; // FIXME
    }
    if (strcmp(tensor->name, "rope_freqs.weight") == 0) {
        return; // FIXME
    }
    ggml_set_param(tensor);
}

void llama_context::opt_init(struct llama_model * model, struct llama_opt_params lopt_params) {
    GGML_ASSERT(!opt_ctx);
    model->hparams.n_ctx_train = lopt_params.n_ctx_train > 0 ? lopt_params.n_ctx_train : n_ctx();
    const uint32_t n_batch     = std::min(this->n_batch(),  model->hparams.n_ctx_train);
    const uint32_t n_ubatch    = std::min(this->n_ubatch(), n_batch);
    GGML_ASSERT(model->hparams.n_ctx_train % n_batch  == 0);
    GGML_ASSERT(n_batch                    % n_ubatch == 0);

    ggml_opt_params opt_params = ggml_opt_default_params(sched.get(), GGML_OPT_LOSS_TYPE_CROSS_ENTROPY);
    opt_params.opt_period      = n_batch / n_ubatch;
    opt_params.get_opt_pars    = lopt_params.get_opt_pars;
    opt_params.get_opt_pars_ud = lopt_params.get_opt_pars_ud;

    opt_ctx = ggml_opt_init(opt_params);

    llama_opt_param_filter param_filter = lopt_params.param_filter;
    void * param_filter_ud              = lopt_params.param_filter_ud;

  //llama_set_param(model->tok_embd,        param_filter, param_filter_ud); // FIXME
    llama_set_param(model->type_embd,       param_filter, param_filter_ud);
    llama_set_param(model->pos_embd,        param_filter, param_filter_ud);
    llama_set_param(model->tok_norm,        param_filter, param_filter_ud);
    llama_set_param(model->tok_norm_b,      param_filter, param_filter_ud);
    llama_set_param(model->output_norm,     param_filter, param_filter_ud);
    llama_set_param(model->output_norm_b,   param_filter, param_filter_ud);
    llama_set_param(model->output,          param_filter, param_filter_ud);
    llama_set_param(model->output_b,        param_filter, param_filter_ud);
    llama_set_param(model->output_norm_enc, param_filter, param_filter_ud);
    llama_set_param(model->cls,             param_filter, param_filter_ud);
    llama_set_param(model->cls_b,           param_filter, param_filter_ud);
    llama_set_param(model->cls_out,         param_filter, param_filter_ud);
    llama_set_param(model->cls_out_b,       param_filter, param_filter_ud);

    for (struct llama_layer & layer : model->layers) {
        for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
            llama_set_param(reinterpret_cast<struct ggml_tensor **>(&layer)[i], param_filter, param_filter_ud);
        }
    }
}

void llama_context::opt_epoch_iter(
        ggml_opt_dataset_t               dataset,
        ggml_opt_result_t                result,
        const std::vector<llama_token> & tokens,
        const std::vector<llama_token> & labels_sparse,
        llama_batch                    & batch,
        ggml_opt_epoch_callback          callback,
        bool                             train,
        int64_t                          idata_in_loop,
        int64_t                          ndata_in_loop,
        int64_t                          t_loop_start) {
    GGML_ASSERT(opt_ctx);
    const uint32_t n_ctx    = llama_model_n_ctx_train(&model);
    const uint32_t n_batch  = std::min(this->n_batch(),  n_ctx);
    const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch);

    llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());

    kv_self->clear();
    llama_kv_cache_guard kv_guard(kv_self);

    for (uint32_t pos_ctx = 0; pos_ctx < n_ctx; pos_ctx += n_batch) {
        batch.n_tokens = n_batch;
        for (uint32_t pos_batch = 0; pos_batch < n_batch; ++pos_batch) {
            batch.token   [pos_batch]    = tokens[pos_ctx + pos_batch];
            batch.pos     [pos_batch]    = pos_ctx + pos_batch;
            batch.n_seq_id[pos_batch]    = 1;
            batch.seq_id  [pos_batch][0] = 0;
            batch.logits  [pos_batch]    = true;
        }

        const auto n_tokens_all = batch.n_tokens;

        n_queued_tokens += n_tokens_all;

        // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
        const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;

        embd_seq.clear();

        int64_t n_outputs_all = n_tokens_all;

        llama_sbatch sbatch = kv_self->sbatch_init(batch, /*logits_all =*/ true);

        // reserve output buffer
        if (output_reserve(n_outputs_all) < n_outputs_all) {
            LLAMA_LOG_ERROR("%s: could not reserve space for batch with %" PRId64 " outputs\n", __func__, n_outputs_all);
            GGML_ABORT("TODO: handle this error");
        };

        for (uint32_t pos_batch = 0; pos_batch < n_batch; pos_batch += n_ubatch) {
            llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);

            n_outputs = ubatch.n_tokens;

            // TODO: not sure if this is needed
            if (!kv_self->find_slot(ubatch)) {
                LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);

                GGML_ABORT("TODO: handle this error");
            }

            auto * gf = graph_init();
            auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT);

            struct ggml_context * ctx_compute_opt;
            {
                const size_t size_gf = ggml_graph_size(gf);
                const size_t size_meta = 4*size_gf*ggml_tensor_overhead() + 2*ggml_graph_overhead_custom(size_gf, /*grads = */ true);
                struct ggml_init_params params = {
                    /*.mem_size   =*/ size_meta,
                    /*.mem_buffer =*/ nullptr,
                    /*.no_alloc   =*/ true,
                };
                ctx_compute_opt = ggml_init(params);
            }
            ggml_opt_prepare_alloc(opt_ctx, ctx_compute_opt, gf, res->get_tokens(), res->get_logits());
            ggml_opt_alloc(opt_ctx, train);
            res->set_inputs(&ubatch);
            {
                struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
                GGML_ASSERT(labels->ne[1] == n_ubatch);
                ggml_set_zero(labels);
                const float onef = 1.0f;
                for (uint32_t pos_ubatch = 0; pos_ubatch < n_ubatch; ++pos_ubatch) {
                    const uint32_t ilabel = pos_ctx + pos_batch + pos_ubatch;
                    GGML_ASSERT(labels_sparse[ilabel] < labels->ne[0]);
                    ggml_backend_tensor_set(labels, &onef, (pos_ubatch*labels->ne[0] + labels_sparse[ilabel])*sizeof(float), sizeof(float));
                }
            }
            ggml_opt_eval(opt_ctx, result);
            if (callback) {
                callback(train, opt_ctx, dataset, result, idata_in_loop + (pos_ctx + pos_batch)/n_ubatch + 1, ndata_in_loop, t_loop_start);
            }
            ggml_free(ctx_compute_opt);
        }
    }

    kv_guard.commit();
}

void llama_context::opt_epoch(
        ggml_opt_dataset_t        dataset,
        ggml_opt_result_t         result_train,
        ggml_opt_result_t         result_eval,
        int64_t                   idata_split,
        ggml_opt_epoch_callback   callback_train,
        ggml_opt_epoch_callback   callback_eval) {
    const uint32_t n_ctx    = this->n_ctx();
    const uint32_t n_batch  = std::min(cparams.n_batch,  n_ctx);
    const uint32_t n_ubatch = std::min(cparams.n_ubatch, n_batch);
    const  int64_t ndata    = ggml_opt_dataset_ndata(dataset);

    GGML_ASSERT(idata_split >= 0);
    GGML_ASSERT(idata_split <= ndata);

    const uint32_t ubatch_per_ctx = n_ctx / n_ubatch;

    struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
    std::vector<llama_token>        tokens(n_ctx);
    std::vector<llama_token> labels_sparse(n_ctx);

    int64_t idata = 0;

    int64_t t_loop_start = ggml_time_us();
    int64_t ndata_in_loop = idata_split*ubatch_per_ctx;
    for (; idata < idata_split; ++idata) {
        constexpr bool train = true;
        const int64_t idata_in_loop = idata*ubatch_per_ctx;

        ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata);
        opt_epoch_iter(dataset, result_train, tokens, labels_sparse, batch,
            callback_train, train, idata_in_loop, ndata_in_loop, t_loop_start);
    }

    t_loop_start = ggml_time_us();
    ndata_in_loop = (ndata - idata_split)*ubatch_per_ctx;
    for (; idata < ndata; ++idata) {
        constexpr bool train = false;
        const int64_t idata_in_loop = (idata - idata_split)*ubatch_per_ctx;

        ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata);
        opt_epoch_iter(dataset, result_eval, tokens, labels_sparse, batch,
            callback_eval, train, idata_in_loop, ndata_in_loop, t_loop_start);
    }

    llama_batch_free(batch);
}

//
// interface implementation
//

llama_context_params llama_context_default_params() {
    llama_context_params result = {
        /*.n_ctx                       =*/ 512,
        /*.n_batch                     =*/ 2048,
        /*.n_ubatch                    =*/ 512,
        /*.n_seq_max                   =*/ 1,
        /*.n_threads                   =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
        /*.n_threads_batch             =*/ GGML_DEFAULT_N_THREADS,
        /*.rope_scaling_type           =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
        /*.pooling_type                =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
        /*.attention_type              =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
        /*.rope_freq_base              =*/ 0.0f,
        /*.rope_freq_scale             =*/ 0.0f,
        /*.yarn_ext_factor             =*/ -1.0f,
        /*.yarn_attn_factor            =*/ 1.0f,
        /*.yarn_beta_fast              =*/ 32.0f,
        /*.yarn_beta_slow              =*/ 1.0f,
        /*.yarn_orig_ctx               =*/ 0,
        /*.defrag_thold                =*/ -1.0f,
        /*.cb_eval                     =*/ nullptr,
        /*.cb_eval_user_data           =*/ nullptr,
        /*.type_k                      =*/ GGML_TYPE_F16,
        /*.type_v                      =*/ GGML_TYPE_F16,
        /*.abort_callback              =*/ nullptr,
        /*.abort_callback_data         =*/ nullptr,
        /*.embeddings                  =*/ false,
        /*.offload_kqv                 =*/ true,
        /*.flash_attn                  =*/ false,
        /*.no_perf                     =*/ true,
        /*.op_offload                  =*/ true,
        /*.swa_full                    =*/ true,
    };

    return result;
}

llama_context * llama_init_from_model(
                 llama_model * model,
        llama_context_params   params) {
    if (!model) {
        LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
        return nullptr;
    }

    if (params.n_batch == 0 && params.n_ubatch == 0) {
        LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
        return nullptr;
    }

    if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
        LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
        return nullptr;
    }

    if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
        LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
        params.flash_attn = false;
    }

    if (ggml_is_quantized(params.type_v) && !params.flash_attn) {
        LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
        return nullptr;
    }

    try {
        auto * ctx = new llama_context(*model, params);
        return ctx;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: failed to initialize the context: %s\n", __func__, err.what());
    }

    return nullptr;
}

// deprecated
llama_context * llama_new_context_with_model(
                 llama_model * model,
        llama_context_params   params) {
    return llama_init_from_model(model, params);
}

void llama_free(llama_context * ctx) {
    delete ctx;
}

uint32_t llama_n_ctx(const llama_context * ctx) {
    return ctx->n_ctx();
}

uint32_t llama_n_batch(const llama_context * ctx) {
    return ctx->n_batch();
}

uint32_t llama_n_ubatch(const llama_context * ctx) {
    return ctx->n_ubatch();
}

uint32_t llama_n_seq_max(const llama_context * ctx) {
    return ctx->n_seq_max();
}

const llama_model * llama_get_model(const llama_context * ctx) {
    return &ctx->get_model();
}

llama_kv_cache * llama_get_kv_self(llama_context * ctx) {
    return ctx->get_kv_self();
}

void llama_kv_self_update(llama_context * ctx) {
    ctx->kv_self_update();
}

enum llama_pooling_type llama_pooling_type(const llama_context * ctx) {
    return ctx->pooling_type();
}

void llama_attach_threadpool(
            llama_context * ctx,
        ggml_threadpool_t   threadpool,
        ggml_threadpool_t   threadpool_batch) {
    ctx->attach_threadpool(threadpool, threadpool_batch);
}

void llama_detach_threadpool(llama_context * ctx) {
    ctx->detach_threadpool();
}

void llama_set_n_threads(llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) {
    ctx->set_n_threads(n_threads, n_threads_batch);
}

int32_t llama_n_threads(llama_context * ctx) {
    return ctx->n_threads();
}

int32_t llama_n_threads_batch(llama_context * ctx) {
    return ctx->n_threads_batch();
}

void llama_set_abort_callback(llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
    ctx->set_abort_callback(abort_callback, abort_callback_data);
}

void llama_set_embeddings(llama_context * ctx, bool embeddings) {
    ctx->set_embeddings(embeddings);
}

void llama_set_causal_attn(llama_context * ctx, bool causal_attn) {
    ctx->set_causal_attn(causal_attn);
}

void llama_set_warmup(llama_context * ctx, bool warmup) {
    ctx->set_warmup(warmup);
}

void llama_synchronize(llama_context * ctx) {
    ctx->synchronize();
}

float * llama_get_logits(llama_context * ctx) {
    ctx->synchronize();

    return ctx->get_logits();
}

float * llama_get_logits_ith(llama_context * ctx, int32_t i) {
    ctx->synchronize();

    return ctx->get_logits_ith(i);
}

float * llama_get_embeddings(llama_context * ctx) {
    ctx->synchronize();

    return ctx->get_embeddings();
}

float * llama_get_embeddings_ith(llama_context * ctx, int32_t i) {
    ctx->synchronize();

    return ctx->get_embeddings_ith(i);
}

float * llama_get_embeddings_seq(llama_context * ctx, llama_seq_id seq_id) {
    ctx->synchronize();

    return ctx->get_embeddings_seq(seq_id);
}

// llama adapter API

int32_t llama_set_adapter_lora(
            llama_context * ctx,
            llama_adapter_lora * adapter,
            float scale) {
    ctx->set_adapter_lora(adapter, scale);

    return 0;
}

int32_t llama_rm_adapter_lora(
            llama_context * ctx,
            llama_adapter_lora * adapter) {
    bool res = ctx->rm_adapter_lora(adapter);

    return res ? 0 : -1;
}

void llama_clear_adapter_lora(llama_context * ctx) {
    ctx->clear_adapter_lora();
}

int32_t llama_apply_adapter_cvec(
        llama_context * ctx,
                 const float * data,
                      size_t   len,
                     int32_t   n_embd,
                     int32_t   il_start,
                     int32_t   il_end) {
    bool res = ctx->apply_adapter_cvec(data, len, n_embd, il_start, il_end);

    return res ? 0 : -1;
}

//
// kv cache
//

// deprecated
int32_t llama_kv_self_n_tokens(const llama_context * ctx) {
    const auto * kv = ctx->get_kv_self();
    if (!kv) {
        return 0;
    }

    int32_t res = 0;

    for (uint32_t s = 0; s < ctx->get_cparams().n_seq_max; s++) {
        const llama_pos p0 = kv->seq_pos_min(s);
        const llama_pos p1 = kv->seq_pos_max(s);

        if (p0 >= 0) {
            res += (p1 - p0) + 1;
        }
    }

    return res;
}

// deprecated
// note: this is the same as above - will be removed anyway, so it's ok
int32_t llama_kv_self_used_cells(const llama_context * ctx) {
    const auto * kv = ctx->get_kv_self();
    if (!kv) {
        return 0;
    }

    int32_t res = 0;

    for (uint32_t s = 0; s < ctx->get_cparams().n_seq_max; s++) {
        const llama_pos p0 = kv->seq_pos_min(s);
        const llama_pos p1 = kv->seq_pos_max(s);

        if (p0 >= 0) {
            res += (p1 - p0) + 1;
        }
    }

    return res;
}

void llama_kv_self_clear(llama_context * ctx) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    kv->clear();
}

bool llama_kv_self_seq_rm(
        llama_context * ctx,
         llama_seq_id   seq_id,
            llama_pos   p0,
            llama_pos   p1) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return true;
    }

    return kv->seq_rm(seq_id, p0, p1);
}

void llama_kv_self_seq_cp(
        llama_context * ctx,
         llama_seq_id   seq_id_src,
         llama_seq_id   seq_id_dst,
            llama_pos   p0,
            llama_pos   p1) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
}

void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    kv->seq_keep(seq_id);
}

void llama_kv_self_seq_add(
        llama_context * ctx,
         llama_seq_id   seq_id,
            llama_pos   p0,
            llama_pos   p1,
            llama_pos   delta) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    kv->seq_add(seq_id, p0, p1, delta);
}

void llama_kv_self_seq_div(
        llama_context * ctx,
         llama_seq_id   seq_id,
            llama_pos   p0,
            llama_pos   p1,
                  int   d) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    kv->seq_div(seq_id, p0, p1, d);
}

llama_pos llama_kv_self_seq_pos_min(llama_context * ctx, llama_seq_id seq_id) {
    const auto * kv = ctx->get_kv_self();
    if (!kv) {
        return -1;
    }

    return kv->seq_pos_min(seq_id);
}

llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) {
    const auto * kv = ctx->get_kv_self();
    if (!kv) {
        return -1;
    }

    return kv->seq_pos_max(seq_id);
}

void llama_kv_self_defrag(llama_context * ctx) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    // force defrag
    kv->defrag_sched(-1.0f);
}

bool llama_kv_self_can_shift(const llama_context * ctx) {
    const auto * kv = ctx->get_kv_self();
    if (!kv) {
        return false;
    }

    return kv->get_can_shift();
}

// llama state API

// deprecated
size_t llama_get_state_size(llama_context * ctx) {
    return llama_state_get_size(ctx);
}

// deprecated
size_t llama_copy_state_data(llama_context * ctx, uint8_t * dst) {
    return llama_state_get_data(ctx, dst, -1);
}

// deprecated
size_t llama_set_state_data(llama_context * ctx, const uint8_t * src) {
    return llama_state_set_data(ctx, src, -1);
}

// deprecated
bool llama_load_session_file(llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
}

// deprecated
bool llama_save_session_file(llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    return llama_state_save_file(ctx, path_session, tokens, n_token_count);
}

// Returns the *actual* size of the state.
// Intended to be used when saving to state to a buffer.
size_t llama_state_get_size(llama_context * ctx) {
    return ctx->state_get_size();
}

size_t llama_state_get_data(llama_context * ctx, uint8_t * dst, size_t size) {
    ctx->synchronize();

    return ctx->state_get_data(dst, size);
}

// Sets the state reading from the specified source address
size_t llama_state_set_data(llama_context * ctx, const uint8_t * src, size_t size) {
    ctx->synchronize();

    return ctx->state_set_data(src, size);
}

bool llama_state_load_file(llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    ctx->synchronize();

    try {
        return ctx->state_load_file(path_session, tokens_out, n_token_capacity, n_token_count_out);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what());
        return false;
    }
}

bool llama_state_save_file(llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    ctx->synchronize();

    try {
        return ctx->state_save_file(path_session, tokens, n_token_count);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what());
        return false;
    }
}

size_t llama_state_seq_get_size(llama_context * ctx, llama_seq_id seq_id) {
    return ctx->state_seq_get_size(seq_id);
}

size_t llama_state_seq_get_data(llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) {
    ctx->synchronize();

    return ctx->state_seq_get_data(seq_id, dst, size);
}

size_t llama_state_seq_set_data(llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id seq_id) {
    ctx->synchronize();

    return ctx->state_seq_set_data(seq_id, src, size);
}

size_t llama_state_seq_save_file(llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
    ctx->synchronize();

    try {
        return ctx->state_seq_save_file(seq_id, filepath, tokens, n_token_count);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what());
        return 0;
    }
}

size_t llama_state_seq_load_file(llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    ctx->synchronize();

    try {
        return ctx->state_seq_load_file(dest_seq_id, filepath, tokens_out, n_token_capacity, n_token_count_out);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what());
        return 0;
    }
}

///

int32_t llama_encode(
        llama_context * ctx,
          llama_batch   batch) {
    const int ret = ctx->encode(batch);
    if (ret != 0) {
        LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
    }

    return ret;
}

int32_t llama_decode(
        llama_context * ctx,
          llama_batch   batch) {
    int ret = ctx->decode(batch);

    // defrag and try again
    // TODO: distinguish return code when we are sure that even after defrag there is no space available
    if (ret == 1) {
        llama_kv_self_defrag(ctx);
        ret = ctx->decode(batch);

        if (ret == 1) {
            LLAMA_LOG_WARN("%s: failed to find KV cache slot for batch of size %d\n", __func__, batch.n_tokens);

            return ret;
        }
    }

    if (ret != 0) {
        LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
    }

    return ret;
}

//
// perf
//

llama_perf_context_data llama_perf_context(const llama_context * ctx) {
    llama_perf_context_data data = {};

    if (ctx == nullptr) {
        return data;
    }

    data = ctx->perf_get_data();

    return data;
}

void llama_perf_context_print(const llama_context * ctx) {
    const auto data = llama_perf_context(ctx);

    const double t_end_ms = 1e-3 * ggml_time_us();

    LLAMA_LOG_INFO("%s:        load time = %10.2f ms\n", __func__, data.t_load_ms);
    LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
    LLAMA_LOG_INFO("%s:        eval time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
    LLAMA_LOG_INFO("%s:       total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
}

void llama_perf_context_reset(llama_context * ctx) {
    ctx->perf_reset();
}

//
// training
//

bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata) {
    GGML_UNUSED(tensor);
    GGML_UNUSED(userdata);
    return true;
}

void llama_opt_init(struct llama_context * ctx, struct llama_model * model, struct llama_opt_params lopt_params) {
    ctx->opt_init(model, lopt_params);
}

void llama_opt_epoch(
        struct llama_context    * ctx,
        ggml_opt_dataset_t        dataset,
        ggml_opt_result_t         result_train,
        ggml_opt_result_t         result_eval,
        int64_t                   idata_split,
        ggml_opt_epoch_callback   callback_train,
        ggml_opt_epoch_callback   callback_eval) {
    ctx->opt_epoch(
        dataset,
        result_train,
        result_eval,
        idata_split,
        callback_train,
        callback_eval);
}