llama-cpp-sys-2 0.1.108

Low Level Bindings to llama.cpp
#pragma once

#include "llama.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-graph.h"
#include "llama-adapter.h"

#include "ggml-cpp.h"
#include "ggml-opt.h"

#include <map>
#include <vector>

struct llama_model;
struct llama_kv_cache;

class llama_io_read_i;
class llama_io_write_i;

struct llama_context {
    // init scheduler and compute buffers, reserve worst-case graphs
    llama_context(
            const llama_model & model,
                  llama_context_params params);

    ~llama_context();

    void synchronize();

    const llama_model   & get_model()   const;
    const llama_cparams & get_cparams() const;

    ggml_backend_sched_t get_sched() const;

    ggml_context * get_ctx_compute() const;

    uint32_t n_ctx()         const;
    uint32_t n_ctx_per_seq() const;
    uint32_t n_batch()       const;
    uint32_t n_ubatch()      const;
    uint32_t n_seq_max()     const;

    uint32_t n_threads()       const;
    uint32_t n_threads_batch() const;

          llama_kv_cache * get_kv_self();
    const llama_kv_cache * get_kv_self() const;

    void kv_self_update();

    enum llama_pooling_type pooling_type() const;

    float * get_logits();
    float * get_logits_ith(int32_t i);

    float * get_embeddings();
    float * get_embeddings_ith(int32_t i);
    float * get_embeddings_seq(llama_seq_id seq_id);

    void attach_threadpool(
            ggml_threadpool_t threadpool,
            ggml_threadpool_t threadpool_batch);

    void detach_threadpool();

    void set_n_threads(int32_t n_threads, int32_t n_threads_batch);

    void set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data);

    void set_embeddings (bool value);
    void set_causal_attn(bool value);
    void set_warmup(bool value);

    void set_adapter_lora(
            llama_adapter_lora * adapter,
            float scale);

    bool rm_adapter_lora(
            llama_adapter_lora * adapter);

    void clear_adapter_lora();

    bool apply_adapter_cvec(
            const float * data,
                 size_t   len,
                int32_t   n_embd,
                int32_t   il_start,
                int32_t   il_end);

    int encode(llama_batch & inp_batch);
    int decode(llama_batch & inp_batch);

    //
    // state save/load
    //

    size_t state_get_size();
    size_t state_get_data(      uint8_t * dst, size_t size);
    size_t state_set_data(const uint8_t * src, size_t size);

    size_t state_seq_get_size(llama_seq_id seq_id);
    size_t state_seq_get_data(llama_seq_id seq_id,       uint8_t * dst, size_t size);
    size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size);

    bool state_load_file(
            const char * filepath,
           llama_token * tokens_out,
                size_t   n_token_capacity,
                size_t * n_token_count_out);

    bool state_save_file(
            const char * filepath,
     const llama_token * tokens,
                size_t   n_token_count);

    size_t state_seq_load_file(
          llama_seq_id   seq_id,
            const char * filepath,
           llama_token * tokens_out,
                size_t   n_token_capacity,
                size_t * n_token_count_out);

    size_t state_seq_save_file(
          llama_seq_id   seq_id,
            const char * filepath,
     const llama_token * tokens,
                size_t   n_token_count);

    //
    // perf
    //

    llama_perf_context_data perf_get_data() const;
    void perf_reset();

    //
    // training
    //

    void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);

    void opt_epoch(
            ggml_opt_dataset_t      dataset,
            ggml_opt_result_t       result_train,
            ggml_opt_result_t       result_eval,
            int64_t                 idata_split,
            ggml_opt_epoch_callback callback_train,
            ggml_opt_epoch_callback callback_eval);

    void opt_epoch_iter(
            ggml_opt_dataset_t               dataset,
            ggml_opt_result_t                result,
            const std::vector<llama_token> & tokens,
            const std::vector<llama_token> & labels_sparse,
            llama_batch                    & batch,
            ggml_opt_epoch_callback          callback,
            bool                             train,
            int64_t                          idata_in_loop,
            int64_t                          ndata_in_loop,
            int64_t                          t_loop_start);

private:
    //
    // output
    //

    // Make sure enough space is available for outputs.
    // Returns max number of outputs for which space was reserved.
    int32_t output_reserve(int32_t n_outputs);

    //
    // graph
    //

public:
    int32_t graph_max_nodes() const;

    // zero-out inputs and create the ctx_compute for the compute graph
    ggml_cgraph * graph_init();

    // returns the result of ggml_backend_sched_graph_compute_async execution
    ggml_status graph_compute(
            ggml_cgraph * gf,
                   bool   batched);

private:
    llm_graph_result_ptr graph_build(
            ggml_context * ctx,
             ggml_cgraph * gf,
      const llama_ubatch & ubatch,
          llm_graph_type   gtype);

    llm_graph_cb graph_get_cb() const;

    // TODO: read/write lora adapters and cvec
    size_t state_write_data(llama_io_write_i & io);
    size_t state_read_data (llama_io_read_i  & io);

    size_t state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id);
    size_t state_seq_read_data (llama_io_read_i  & io, llama_seq_id seq_id);

    //
    // members
    //

    const llama_model & model;

    llama_cparams       cparams;
    llama_adapter_cvec  cvec;
    llama_adapter_loras loras;

    llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably

    std::unique_ptr<llama_memory_i> memory;

    // decode output (2-dimensional array: [n_outputs][n_vocab])
    size_t  logits_size = 0; // capacity (of floats) for logits
    float * logits      = nullptr;

    // embeddings output (2-dimensional array: [n_outputs][n_embd])
    // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
    size_t  embd_size = 0; // capacity (of floats) for embeddings
    float * embd      = nullptr;

    // sequence embeddings output (map of [n_embd] vectors)
    // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
    std::map<llama_seq_id, std::vector<float>> embd_seq;

    int32_t n_outputs     = 0; // number of actually-used outputs in the current ubatch or last logical batch
    int32_t n_outputs_max = 0; // capacity (of tokens positions) for the output buffers

    std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers

    ggml_backend_sched_ptr sched;

    ggml_backend_t backend_cpu = nullptr;
    std::vector<ggml_backend_ptr> backends;

    ggml_context_ptr ctx_compute;

    // training
    ggml_opt_context_t opt_ctx = nullptr;

    ggml_threadpool_t threadpool       = nullptr;
    ggml_threadpool_t threadpool_batch = nullptr;

    ggml_abort_callback abort_callback      = nullptr;
    void *              abort_callback_data = nullptr;

    std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;

    // buffer types used for the compute buffer of each backend
    std::vector<ggml_backend_t>             backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

    // memory buffers used to evaluate the model
    std::vector<uint8_t> buf_compute_meta;

    // host buffer for the model output (logits and embeddings)
    ggml_backend_buffer_ptr buf_output;

    bool has_evaluated_once = false;

    // perf
    mutable int64_t t_start_us  = 0;
    mutable int64_t t_load_us   = 0;
    mutable int64_t t_p_eval_us = 0;
    mutable int64_t t_eval_us   = 0;

    mutable int64_t t_compute_start_us = 0;
    mutable int64_t n_queued_tokens    = 0;

    mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
    mutable int32_t n_eval   = 0; // number of eval calls
};