feanor-math 3.5.8

A library for number theory, providing implementations for arithmetic in various rings and algorithms working on them.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
use std::alloc::*;
use std::borrow::Borrow;

use crate::algorithms::convolution::STANDARD_CONVOLUTION;
use crate::computation::*;
use crate::homomorphism::*;
use crate::matrix::OwnedMatrix;
use crate::rings::extension::galois_field::*;
use crate::rings::extension::number_field::*;
use crate::pid::*;
use crate::primitive_int::StaticRing;
use crate::rings::extension::extension_impl::*;
use crate::rings::extension::*;
use crate::rings::field::{AsField, AsFieldBase};
use crate::rings::finite::FiniteRingStore;
use crate::rings::multivariate::{MultivariatePolyRing, MultivariatePolyRingStore};
use crate::rings::poly::dense_poly::DensePolyRing;
use crate::rings::poly::*;
use crate::divisibility::*;
use crate::field::*;
use crate::seq::sparse::SparseMapVector;
use crate::MAX_PROBABILISTIC_REPETITIONS;
use crate::integer::*;
use crate::seq::*;
use crate::ring::*;
use crate::algorithms::linsolve::*;
use super::poly_factor::FactorPolyField;
use super::poly_gcd::PolyTFracGCDRing;

///
/// Given a number field `K` and an irreducible polynomial `f`, computes a representation of
/// the number field `L = K[X]/(f)`. The result is returned by the inclusion `K -> L` and 
/// the element that corresponds to the coset of `X`, i.e. a root of `f` in `L`. Note that the 
/// canonical generator of `L` does not have to be a root of `f` (this might even be impossible,
/// e.g. if `f in ZZ[X]` but `K != QQ`).
/// 
/// The number field `K` is taken to be the base ring of the given polynomial ring.
/// 
/// As opposed to [`extend_number_field_promise_is_irreducible()`], this checks that `f` is 
/// indeed irreducible.
/// 
#[stability::unstable(feature = "enable")]
pub fn extend_number_field<K, Controller>(poly_ring: DensePolyRing<K>, irred_poly: &El<DensePolyRing<K>>, controller: Controller) -> (
    FreeAlgebraHom<K, NumberField>,
    El<NumberField>
)
    where K: RingStore<Type = NumberFieldBase<DefaultNumberFieldImpl, BigIntRing>>,
        Controller: ComputationController
{
    assert!(!poly_ring.is_zero(&irred_poly));
    assert!(poly_ring.degree(&irred_poly).unwrap() > 1);
    assert!(<NumberFieldBase<_, _> as FactorPolyField>::is_irred(&poly_ring, irred_poly));

    extend_number_field_promise_is_irreducible(poly_ring, irred_poly, controller)
}

///
/// If the powers of `potential_primitive_element` up to `[L : K] [K : k]` generate `L`,
/// this returns the minimal polynomial of `potential_primitive_element`, as well as polynomials
/// `f, g` such that `f(potential_primitive_element)` and `g(potential_primitive_element)` give
/// the canonical generators of `K` resp. `L`.
/// 
fn test_primitive_element<R>(L: R, potential_primitive_element: El<R>) -> Option<(
    DensePolyRing<<<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing>, 
    El<DensePolyRing<<<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing>>,
    El<DensePolyRing<<<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing>>,
    El<DensePolyRing<<<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing>>
)>
    where R: RingStore,
        R::Type: FreeAlgebra,
        <<R::Type as RingExtension>::BaseRing as RingStore>::Type: FreeAlgebra,
        <<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing: Clone,
        <<<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing as RingStore>::Type: LinSolveRing
{
    let K = L.base_ring();
    let k = K.base_ring();
    let total_rank = L.rank() * K.rank();

    // lhs is the matrix whose columns are the powers of `potential_primitive_element`, w.r.t. the tensor basis
    let mut lhs = OwnedMatrix::zero(total_rank, total_rank, k);
    let mut current = L.one();
    for j in 0..total_rank {
        let current_wrt_basis = L.wrt_canonical_basis(&current);
        for i1 in 0..L.rank() {
            let c = current_wrt_basis.at(i1);
            let c_wrt_basis = K.wrt_canonical_basis(&c);
            for i2 in 0..K.rank() {
                *lhs.at_mut(i1 * K.rank() + i2, j) = c_wrt_basis.at(i2);
            }
        }
        drop(current_wrt_basis);
        L.mul_assign_ref(&mut current, &potential_primitive_element);
    }

    // rhs has three columns: 
    // - first the `total_rank`-th power of `x + ka` -> this will later give us the minpoly
    // - second the generator of `K` -> this will give us a repr of this generator in the result field
    // - third the generator of `L` -> this will give us a repr of this generator in the result field
    let mut rhs = OwnedMatrix::zero(total_rank, 3, k);
    let current_wrt_basis = L.wrt_canonical_basis(&current);
    for i1 in 0..L.rank() {
        let c = current_wrt_basis.at(i1);
        let c_wrt_basis = K.wrt_canonical_basis(&c);
        for i2 in 0..K.rank() {
            *rhs.at_mut(i1 * K.rank() + i2, 0) = c_wrt_basis.at(i2);
        }
    }
    if K.rank() > 1 {
        *rhs.at_mut(1, 1) = k.one();
    } else {
        *rhs.at_mut(0, 1) = K.wrt_canonical_basis(&K.canonical_gen()).at(0);
    }
    *rhs.at_mut(K.rank(), 2) = k.one();

    let mut sol = OwnedMatrix::zero(total_rank, 3, k);
    let has_sol = k.solve_right(lhs.data_mut(), rhs.data_mut(), sol.data_mut()).is_solved();

    if has_sol {
        let kX = DensePolyRing::new(k.clone(), "X");
        let gen_poly = kX.from_terms((0..total_rank).map(|i| (k.negate(k.clone_el(sol.at(i, 0))), i)).chain([(k.one(), total_rank)].into_iter()));
        let K_generator = kX.from_terms((0..total_rank).map(|i| (k.clone_el(sol.at(i, 1)), i)));
        let L_generator = kX.from_terms((0..total_rank).map(|i| (k.clone_el(sol.at(i, 2)), i)));
        return Some((
            kX,
            gen_poly,
            K_generator,
            L_generator
        ));
    } else {
        return None;
    }
}

#[stability::unstable(feature = "enable")]
pub fn extend_galois_field<K>(poly_ring: DensePolyRing<K>, irred_poly: &El<DensePolyRing<K>>) -> (
    FreeAlgebraHom<K, GaloisField>,
    El<GaloisField>
)
    where K: RingStore<Type = GaloisFieldBase<DefaultGaloisFieldImpl>>
{
    
    assert!(!poly_ring.is_zero(&irred_poly));
    assert!(poly_ring.degree(&irred_poly).unwrap() > 1);

    // I wonder what is the better method: Either factoring the polynomial (taking `O(d^3 log(q))`
    // operations in `GF(q)`, or up to `d/log(d)` less with better convolution algorithms), or solving
    // the linear system (taking `O(d^3)` operations in `GF(q)`, or up to `d^(3 - omega)` less with
    // better matrix inversion algirhtms). I decide for solving the system, it feels better.

    let K = poly_ring.base_ring();
    let Fp = K.base_ring();
    
    let L = AsField::from(
        AsFieldBase::promise_is_perfect_field(
            FreeAlgebraImpl::new_with_convolution(
                K, 
                poly_ring.degree(&irred_poly).unwrap(), 
                (0..poly_ring.degree(&irred_poly).unwrap()).map(|i| K.negate(K.clone_el(poly_ring.coefficient_at(&irred_poly, i)))).collect::<Vec<_>>(),
                "X",
                Global,
                STANDARD_CONVOLUTION
            )
        )
    );
    let total_rank = L.rank() * K.rank();

    let mut rng = oorandom::Rand64::new(1);

    for _ in 0..MAX_PROBABILISTIC_REPETITIONS {
        let potential_primitive_element = L.random_element(|| rng.rand_u64());

        if let Some((FpX, gen_poly, K_gen, L_gen)) = test_primitive_element(&L, potential_primitive_element) {

            let mut modulus = SparseMapVector::new(total_rank, Fp.clone());
            for (x, i) in FpX.terms(&gen_poly).filter(|(_, i)| *i < total_rank) {
                *modulus.at_mut(i) = Fp.clone_el(x);
            }
            _ = modulus.at_mut(0);
            let potential_result = FreeAlgebraImpl::new(
                Fp.clone(),
                total_rank,
                modulus
            );

            if let Ok(result) = potential_result.as_field() {
                let result = GaloisField::create(result);

                // note that `sol` contains coefficients w.r.t. `x` and not `result.canonical_gen()`
                let K_generator = result.from_canonical_basis((0..total_rank).map(|i| Fp.clone_el(FpX.coefficient_at(&K_gen, i))));
                let L_generator = result.from_canonical_basis((0..total_rank).map(|i| Fp.clone_el(FpX.coefficient_at(&L_gen, i))));

                let result = FreeAlgebraHom::promise_is_well_defined(poly_ring.into().into_base_ring(), result, K_generator);
                return (result, L_generator);
            }
        }
    }
    unreachable!()
}

///
/// Given a number field `K` and an irreducible polynomial `f`, computes a representation of
/// the number field `L = K[X]/(f)`. The result is returned by the inclusion `K -> L` and 
/// the element that corresponds to the coset of `X`, i.e. a root of `f` in `L`. Note that the 
/// canonical generator of `L` does not have to be a root of `f` (this might even be impossible,
/// e.g. if `f in ZZ[X]` but `K != QQ`).
/// 
/// The number field `K` is taken to be the base ring of the given polynomial ring.
/// 
/// This function assumes that the given polynomial is irreducible. If it is not, the results
/// may be nonsensical (but of course not UB).
/// 
#[stability::unstable(feature = "enable")]
pub fn extend_number_field_promise_is_irreducible<K, Controller>(poly_ring: DensePolyRing<K>, irred_poly: &El<DensePolyRing<K>>, controller: Controller) -> (
    FreeAlgebraHom<K, NumberField>,
    El<NumberField>
)
    where K: RingStore<Type = NumberFieldBase<DefaultNumberFieldImpl, BigIntRing>>,
        Controller: ComputationController
{
    static_assert_impls!(NumberFieldBase<DefaultNumberFieldImpl, BigIntRing>: FactorPolyField);
    static_assert_impls!(NumberFieldBase<DefaultNumberFieldImpl, BigIntRing>: PolyTFracGCDRing);

    assert!(!poly_ring.is_zero(&irred_poly));
    assert!(poly_ring.degree(&irred_poly).unwrap() > 1);

    controller.run_computation(format_args!("extend_number_field(deg={}, extdeg={})", poly_ring.base_ring().rank(), poly_ring.degree(irred_poly).unwrap()), |controller| {

        let K = poly_ring.base_ring();

        let L = AsField::from(
            AsFieldBase::promise_is_perfect_field(
                FreeAlgebraImpl::new_with_convolution(
                    K, 
                    poly_ring.degree(&irred_poly).unwrap(), 
                    (0..poly_ring.degree(&irred_poly).unwrap()).map(|i| K.negate(K.clone_el(poly_ring.coefficient_at(&irred_poly, i)))).collect::<Vec<_>>(),
                    "X",
                    Global,
                    STANDARD_CONVOLUTION
                )
            )
        );
        
        let total_rank = K.rank() * L.rank();

        // the main task is to find a primitive element of `L`, i.e. that generates it over `K`.
        // we use the following approach:
        //  - Consider generator `a` of `K` and `b` of `L` over `K`
        //  - Consider the set `A_n = { b, b + a, b + 2a, ..., b + (n - 1)a }`
        //  - Consider also the subset `B_n = { x in A_n | QQ[x] != L }`
        //  - The idea is now to choose a random element from `A_n`, and hope that it is not in `B_n`
        //  - To estimate the probability, consider the map `B_n -> { maximal proper subfields of L }` that maps any `x`
        //    to some maximal proper subfield containing `QQ[x]`
        //  - Then this map is injective, as any field containing `a + ib` and `a + jb`, `j > i` must contain `a, b`, thus be `L`
        //  - In other words, to find `n`, we need a bound on the maximal proper subfields
        //  - I believe the degree `[L : QQ]` is such a bound (in the Galois case it is, at least)

        // take `A` twice as large, so that we find a good element with probability >= 1/2
        let size_of_A: i32 = (2 * total_rank).try_into().unwrap();

        let mut rng = oorandom::Rand64::new(1);

        for _ in 0..MAX_PROBABILISTIC_REPETITIONS {

            let a = StaticRing::<i32>::RING.get_uniformly_random(&size_of_A, || rng.rand_u64());
            let potential_primitive_element = L.add(L.canonical_gen(), L.inclusion().map(K.int_hom().mul_map(K.canonical_gen(), a)));
        
            if let Some((QQX, gen_poly, K_gen, L_gen)) = test_primitive_element(&L, potential_primitive_element) {
                if let Some((result, x)) = NumberField::try_adjoin_root(&QQX, &gen_poly) {

                    // note that `sol` contains coefficients w.r.t. `x` and not `result.canonical_gen()`
                    let K_generator = QQX.evaluate(&K_gen, &x, result.inclusion());
                    let L_generator = QQX.evaluate(&L_gen, &x, result.inclusion());

                    let result = FreeAlgebraHom::promise_is_well_defined(poly_ring.into().into_base_ring(), result, K_generator);

                    log_progress!(controller, "success");
                    return (result, L_generator);
                } else {
                    unreachable!()
                }
            } else {
                log_progress!(controller, "(not_primitive)");
            }
        }

        unreachable!()
})
}

///
/// Given a polynomial `f in K[X]` over a field `K`, this computes an 
/// extension `L` of `K` such that `f` splits in `L`.
/// 
/// This function returns the embedding `K -> L` and the list of roots of `f`.
/// 
/// The closure `create_field` should, when given a field `K'` and an irreducible
/// polynomial `g in K'[X]`, compute an extension field `K''`, and return both the
/// embedding `K' -> K''` and a root `a in K''` of `g`.
/// 
#[stability::unstable(feature = "enable")]
pub fn splitting_field<K, F, Controller>(
    mut poly_ring: DensePolyRing<K>, 
    f: El<DensePolyRing<K>>, 
    mut create_field: F,
    controller: Controller
) -> (
    FreeAlgebraHom<K, K>,
    Vec<(El<K>, usize)>
)
    where K: RingStore + Clone,
        K::Type: FactorPolyField + FreeAlgebra,
        F: for<'a> FnMut(DensePolyRing<&'a K>, El<DensePolyRing<&'a K>>, Controller) -> (FreeAlgebraHom<&'a K, K>, El<K>),
        Controller: ComputationController
{
    assert!(!poly_ring.is_zero(&f));
    let mut to_split = vec![(f, 1)];
    let mut roots = Vec::new();
    let mut base_field = None;
    let mut image_of_base_can_gen = poly_ring.base_ring().canonical_gen();

    controller.run_computation(format_args!("splitting_field(base_deg={}, deg={})", poly_ring.base_ring().rank(), poly_ring.degree(&to_split[0].0).unwrap()), |controller| {

        while let Some((next_to_split, multiplicity)) = to_split.pop() {
            let (mut factorization, _) = <_ as FactorPolyField>::factor_poly_with_controller(&poly_ring, &next_to_split, controller.clone());
            let extend_idx = factorization.iter().enumerate().max_by_key(|(_, (f, _))| poly_ring.degree(f).unwrap()).unwrap().0;
            
            let extend_with_poly = if poly_ring.degree(&factorization[extend_idx].0).unwrap() > 1 {
                Some(factorization.remove(extend_idx))
            } else {
                None
            };

            for (g, e) in factorization.into_iter() {
                if poly_ring.degree(&g).unwrap() > 1 {
                    to_split.push((g, e * multiplicity));
                } else {
                    roots.push((poly_ring.base_ring().negate(poly_ring.base_ring().div(poly_ring.coefficient_at(&g, 0), poly_ring.coefficient_at(&g, 1))), e * multiplicity));
                }
            }

            if let Some((extend_with_poly, e)) = extend_with_poly {
                log_progress!(controller, "({})", poly_ring.degree(&extend_with_poly).unwrap());
                let ref_poly_ring = DensePolyRing::new(poly_ring.base_ring(), "X");
                let ref_extend_with_poly = ref_poly_ring.lifted_hom(&poly_ring, poly_ring.base_ring().identity()).map_ref(&extend_with_poly);
                let (into_new_field, root) = create_field(ref_poly_ring, ref_extend_with_poly, controller.clone());
                let (old_field, new_field, image) = into_new_field.destruct();
                let new_poly_ring = DensePolyRing::new(new_field, "X");
                let into_new_field = FreeAlgebraHom::promise_is_well_defined(old_field, new_poly_ring.base_ring(), image);
                
                image_of_base_can_gen = into_new_field.map(image_of_base_can_gen);
                roots = roots.into_iter().map(|(r, e)| (into_new_field.map(r), e)).collect();
                let lifted_hom = new_poly_ring.lifted_hom(&poly_ring, &into_new_field);
                to_split = to_split.into_iter().map(|(f, e)| (lifted_hom.map(f), e)).collect();

                to_split.push((new_poly_ring.checked_div(
                    &lifted_hom.map(extend_with_poly), 
                    &new_poly_ring.sub(new_poly_ring.indeterminate(), new_poly_ring.inclusion().map_ref(&root))
                ).unwrap(), multiplicity * e));
                roots.push((root, multiplicity * e));

                if base_field.is_none() {
                    base_field = Some(poly_ring.into().into_base_ring());
                }
                poly_ring = new_poly_ring;
            }
        }
        return (
            FreeAlgebraHom::promise_is_well_defined(
                base_field.unwrap_or_else(|| poly_ring.clone().into().into_base_ring()),
                poly_ring.into().into_base_ring(),
                image_of_base_can_gen
            ),
            roots
        );
})
}

///
/// The closure `create_field` should, when given a field `K'` and an irreducible
/// polynomial `g in K'[X]`, compute an extension field `K''`, and return both the
/// embedding `K' -> K''` and a root `a in K''` of `g`.
/// 
#[stability::unstable(feature = "enable")]
pub fn variety_from_lex_gb<K, P, F, Controller>(
    poly_ring: P, 
    lex_gb: &[El<P>], 
    mut create_field: F,
    controller: Controller
) -> (FreeAlgebraHom<K, K>, Vec<Vec<El<K>>>)
    where P: RingStore,
        K: RingStore + Clone,
        K::Type: FactorPolyField + FreeAlgebra,
        P::Type: MultivariatePolyRing,
        <P::Type as RingExtension>::BaseRing: Borrow<K> + RingStore<Type = K::Type>,
        F: for<'a> FnMut(DensePolyRing<&'a K>, El<DensePolyRing<&'a K>>, Controller) -> (FreeAlgebraHom<&'a K, K>, El<K>),
        Controller: ComputationController
{
    let n = poly_ring.indeterminate_count();
    let constant_monomial = poly_ring.create_monomial((0..n).map(|_| 0));
    if lex_gb.iter().any(|f| poly_ring.appearing_indeterminates(f).len() == 0 && !poly_ring.base_ring().is_zero(poly_ring.coefficient_at(f, &constant_monomial))) {
        return (FreeAlgebraHom::identity(poly_ring.base_ring().borrow().clone()), Vec::new());
    }

    let mut relevant_indeterminates = Vec::new();
    for f in lex_gb {
        relevant_indeterminates.extend(poly_ring.appearing_indeterminates(f).into_iter().map(|(v, _)| v));
    }
    relevant_indeterminates.sort_unstable();
    relevant_indeterminates.dedup();
    let contains_indeterminate = |f, indet| poly_ring.appearing_indeterminates(f).iter().any(|(v, _)| v == indet);
    let has_no_indeterminate_before = |f, indet| poly_ring.appearing_indeterminates(f).iter().all(|(v, _)| v >= indet);
    
    let polys_for_indeterminate = relevant_indeterminates.iter().map(|indet| {
        let relevant_polys = lex_gb.iter().filter(|f| contains_indeterminate(f, indet) && has_no_indeterminate_before(f, indet)).collect::<Vec<_>>();
        assert!(relevant_polys.len() > 0, "basis is either not a lex-GB or does not generate a zero-dimensional ideal");
        return relevant_polys;
    }).collect::<Vec<_>>();

    let mut current_embedding: FreeAlgebraHom<_, K> = FreeAlgebraHom::identity(poly_ring.base_ring().borrow().clone());
    let mut current_roots: Vec<(usize, Vec<El<K>>)> = vec![(0, (0..relevant_indeterminates.len()).map(|_| current_embedding.codomain().zero()).collect())];
    let mut final_roots: Vec<Vec<El<K>>> = Vec::new();

    while let Some((set_indeterminates, current_root)) = current_roots.pop() {
        let next_indet_idx = relevant_indeterminates.len() - set_indeterminates - 1;
        let next_indet = relevant_indeterminates[next_indet_idx];
        
        let (base_field, current_field, base_field_gen) = current_embedding.destruct();
        let KX = DensePolyRing::new(current_field, "X");
        let ref_current_embedding = FreeAlgebraHom::promise_is_well_defined(&base_field, KX.base_ring(), base_field_gen);
        let next_roots_from: El<DensePolyRing<K>> = polys_for_indeterminate[next_indet_idx].iter().map(|f| 
            poly_ring.evaluate(
                f, 
                (0..n).map_fn(|i| if i == next_indet {
                    KX.indeterminate()
                } else {
                    KX.inclusion().map_ref(&current_root[i])
                }),
                KX.inclusion().compose(&ref_current_embedding)
            )
        ).fold(KX.zero(), |current, next| KX.ideal_gen(&current, &next));

        assert!(!KX.is_zero(&next_roots_from), "basis is either not a lex-GB or does not generate a zero-dimensional ideal");
        if KX.degree(&next_roots_from).unwrap() == 0 {
            let (_, _, base_field_gen) = ref_current_embedding.destruct();
            current_embedding = FreeAlgebraHom::promise_is_well_defined(base_field, KX.into().into_base_ring(), base_field_gen);
            // continue
        } else if KX.degree(&next_roots_from).unwrap() == 1 {
            let mut new_root = current_root;
            new_root[next_indet_idx] = KX.base_ring().negate(KX.base_ring().div(KX.coefficient_at(&next_roots_from, 0), KX.coefficient_at(&next_roots_from, 1)));
            if set_indeterminates + 1 < relevant_indeterminates.len() {
                current_roots.push((set_indeterminates + 1, new_root));
            } else {
                final_roots.push(new_root);
            }
            let (_, _, base_field_gen) = ref_current_embedding.destruct();
            current_embedding = FreeAlgebraHom::promise_is_well_defined(base_field, KX.into().into_base_ring(), base_field_gen);
        } else {
            let (_, _, base_field_gen) = ref_current_embedding.destruct();
            let (into_new_field, roots) = splitting_field(KX, next_roots_from, &mut create_field, controller.clone());

            final_roots = final_roots.into_iter().map(|root| root.into_iter().map(|x| into_new_field.map(x)).collect()).collect();
            current_roots = current_roots.into_iter().map(|(l, root)| (l, root.into_iter().map(|x| into_new_field.map(x)).collect())).collect();
            for (r, _) in roots.into_iter() {
                let mut new_root: Vec<El<K>> = current_root.iter().map(|x| into_new_field.map_ref(x)).collect();
                new_root[next_indet_idx] = r;
                if set_indeterminates + 1 < relevant_indeterminates.len() {
                    current_roots.push((set_indeterminates + 1, new_root));
                } else {
                    final_roots.push(new_root);
                }
            }
            let base_field_gen = into_new_field.map(base_field_gen);
            let (_, new_field, _) = into_new_field.destruct();
            current_embedding = FreeAlgebraHom::promise_is_well_defined(base_field, new_field, base_field_gen);
        }
    }
    return (current_embedding, final_roots);
}

#[cfg(test)]
use crate::wrapper::RingElementWrapper;
#[cfg(test)]
use crate::rings::rational::RationalField;
#[cfg(test)]
use crate::rings::multivariate::multivariate_impl::MultivariatePolyRingImpl;

#[test]
fn test_extend_field() {
    let ZZ = BigIntRing::RING;
    let QQ = RationalField::new(ZZ);
    let ZZX = DensePolyRing::new(&ZZ, "X");
    let [f] = ZZX.with_wrapped_indeterminate(|X| [X.pow_ref(2) + 1]);
    let K = NumberField::new(ZZX, &f);
    let KX = DensePolyRing::new(&K, "X");

    // extend `QQ[i]` by `X^4 - i`
    let [g] = KX.with_wrapped_indeterminate(|X| [X.pow_ref(4) - RingElementWrapper::new(&KX, KX.inclusion().map(K.canonical_gen()))]);
    let (extension_field_embedding, x) = extend_number_field(KX.clone(), &g, TEST_LOG_PROGRESS);
    let ext_field = extension_field_embedding.codomain();
    assert_eq!(8, ext_field.rank());
    assert_el_eq!(ext_field, ext_field.neg_one(), ext_field.pow(extension_field_embedding.map(K.canonical_gen()), 2));
    assert_el_eq!(ext_field, extension_field_embedding.map(K.canonical_gen()), ext_field.pow(x, 4));

    crate::homomorphism::generic_tests::test_homomorphism_axioms(
        &extension_field_embedding, 
        [(0, 0), (0, 1), (1, 0), (2, 0), (-1, 0), (0, -1), (-1, -1)].into_iter().map(|(a, b)| K.from_canonical_basis([QQ.int_hom().map(a), QQ.int_hom().map(b)]))
    );

    // extend `QQ[i]` by `X^3 - 2`
    let [g] = KX.with_wrapped_indeterminate(|X| [X.pow_ref(3) - 2]);
    let (extension_field_embedding, x) = extend_number_field(KX, &g, TEST_LOG_PROGRESS);
    let ext_field = extension_field_embedding.codomain();
    assert_eq!(6, ext_field.rank());
    assert_el_eq!(ext_field, ext_field.neg_one(), ext_field.pow(extension_field_embedding.map(K.canonical_gen()), 2));
    assert_el_eq!(ext_field, ext_field.int_hom().map(2), ext_field.pow(x, 3));
    
    crate::homomorphism::generic_tests::test_homomorphism_axioms(
        &extension_field_embedding, 
        [(0, 0), (0, 1), (1, 0), (2, 0), (-1, 0), (0, -1), (-1, -1)].into_iter().map(|(a, b)| K.from_canonical_basis([QQ.int_hom().map(a), QQ.int_hom().map(b)]))
    );
}

#[test]
fn test_variety_from_lex_gb() {
    unimplemented!("Currently super slow");
    let ZZX = DensePolyRing::new(BigIntRing::RING, "X");
    let [f] = ZZX.with_wrapped_indeterminate(|X| [X - 1]);
    let QQ = NumberField::new(ZZX, &f);
    let QQXYZ = MultivariatePolyRingImpl::new(&QQ, 3);
    let intersection_unitsphere_twistedcubic = QQXYZ.with_wrapped_indeterminates(|[x, y, z]| [
        x.pow_ref(2) + y.pow_ref(2) + z.pow_ref(2) - 1, 
        y - x.pow_ref(2), 
        z - x.pow_ref(2)
    ]);
    let lex_gb = QQXYZ.with_wrapped_indeterminates(|[x, y, z]| [
        z.pow_ref(6) - 5 * z.pow_ref(4) + 7 * z.pow_ref(2) - 1,
        y - z.pow_ref(4) + 3 * z.pow_ref(2) - 1,
        x + z.pow_ref(3) - 2 * z
    ]);
    let (into_L, variety) = variety_from_lex_gb(&QQXYZ, &lex_gb, |poly_ring, poly, controller| extend_number_field_promise_is_irreducible(poly_ring, &poly, controller), TEST_LOG_PROGRESS);
    let L = into_L.codomain();

    assert_eq!(6, variety.len());
    for point in &variety {
        assert_el_eq!(L, L.zero(), QQXYZ.evaluate(&intersection_unitsphere_twistedcubic[0], point.clone_ring_els(L), &into_L));
        assert_el_eq!(L, L.zero(), QQXYZ.evaluate(&intersection_unitsphere_twistedcubic[1], point.clone_ring_els(L), &into_L));
        assert_el_eq!(L, L.zero(), QQXYZ.evaluate(&intersection_unitsphere_twistedcubic[2], point.clone_ring_els(L), &into_L));
    }
}