use crate::algorithms::eea::{inv_crt, signed_gcd};
use crate::algorithms::int_bisect::root_floor;
use crate::algorithms::int_factor::factor;
use crate::algorithms::linsolve::smith::{determinant_using_pre_smith, pre_smith};
use crate::algorithms::linsolve::LinSolveRingStore;
use crate::algorithms::lll::exact::lll;
use crate::algorithms::matmul::MatmulAlgorithm;
use crate::algorithms::matmul::STANDARD_MATMUL;
use crate::divisibility::DivisibilityRing;
use crate::divisibility::DivisibilityRingStore;
use crate::group::*;
use crate::group::HashableGroupEl;
use crate::group::MultGroup;
use crate::iters::multi_cartesian_product;
use crate::matrix::transform::TransformTarget;
use crate::pid::PrincipalIdealRingStore;
use crate::rings::finite::FiniteRingStore;
use crate::field::FieldStore;
use crate::homomorphism::Homomorphism;
use crate::integer::int_cast;
use crate::integer::BigIntRing;
use crate::matrix::*;
use crate::primitive_int::StaticRing;
use crate::ring::*;
use crate::rings::rational::RationalField;
use crate::ordered::OrderedRingStore;
use crate::rings::zn::ZnRingStore;
use crate::rings::zn::zn_big;
use crate::rings::zn::ZnRing;
use crate::serialization::{DeserializeWithRing, SerializeWithRing};
use serde::{Deserialize, Serialize};
use feanor_serde::dependent_tuple::DeserializeSeedDependentTuple;
use feanor_serde::impl_deserialize_seed_for_dependent_struct;
use feanor_serde::map::DeserializeSeedMapped;
use feanor_serde::newtype_struct::{DeserializeSeedNewtypeStruct, SerializableNewtypeStruct};
use feanor_serde::seq::{DeserializeSeedSeq, SerializableSeq};
use std::alloc::Global;
use std::collections::HashMap;
use std::marker::PhantomData;
use std::mem::replace;
use std::rc::Rc;
const ZZ: StaticRing<i64> = StaticRing::<i64>::RING;
const ZZbig: BigIntRing = BigIntRing::RING;
#[stability::unstable(feature = "enable")]
pub struct SubgroupBase<G: AbelianGroupStore> {
parent: G,
generators: Vec<GroupEl<G>>,
order_multiple: El<BigIntRing>,
order_factorization: Vec<(i64, usize)>,
scaled_relation_lattices: Vec<Vec<OwnedMatrix<i64>>>,
scaled_generating_sets: Vec<Vec<Vec<GroupEl<G>>>>
}
#[stability::unstable(feature = "enable")]
#[allow(type_alias_bounds)]
pub type Subgroup<G: AbelianGroupStore> = GroupValue<SubgroupBase<G>>;
impl<G: AbelianGroupStore> Subgroup<G> {
#[stability::unstable(feature = "enable")]
pub fn new(group: G, order_multiple: El<BigIntRing>, generators: Vec<GroupEl<G>>) -> Self {
let n = generators.len();
if n == 0 {
return GroupValue::from(SubgroupBase {
parent: group,
generators: Vec::new(),
order_multiple: ZZbig.clone_el(&order_multiple),
order_factorization: factor(ZZbig, order_multiple).into_iter().map(|(p, e)| (int_cast(p, ZZ, ZZbig), e)).collect(),
scaled_generating_sets: Vec::new(),
scaled_relation_lattices: Vec::new()
});
} else {
let mut result = Self::new(group, order_multiple, Vec::new());
for g in generators {
result = result.add_generator(g);
}
return result;
}
}
#[stability::unstable(feature = "enable")]
pub fn parent(&self) -> &G {
self.get_group().parent()
}
#[stability::unstable(feature = "enable")]
pub fn subgroup_order(&self) -> El<BigIntRing> {
self.get_group().subgroup_order()
}
#[stability::unstable(feature = "enable")]
pub fn generators(&self) -> &[GroupEl<G>] {
self.get_group().generators()
}
#[stability::unstable(feature = "enable")]
pub fn add_generator(self, new_gen_base: GroupEl<G>) -> Self {
Self::from(self.into().add_generator(new_gen_base))
}
#[stability::unstable(feature = "enable")]
pub fn contains(&self, element: &GroupEl<G>) -> bool {
self.get_group().contains(element)
}
#[stability::unstable(feature = "enable")]
pub fn dlog(&self, target: &GroupEl<G>) -> Option<Vec<i64>> {
self.get_group().dlog(target)
}
#[stability::unstable(feature = "enable")]
pub fn enumerate_elements<'a>(&'a self) -> impl use<'a, G> + Clone + Iterator<Item = GroupEl<G>> {
self.get_group().enumerate_elements()
}
}
impl<G: AbelianGroupStore> SubgroupBase<G> {
#[stability::unstable(feature = "enable")]
pub fn parent(&self) -> &G {
&self.parent
}
#[stability::unstable(feature = "enable")]
pub fn subgroup_order(&self) -> El<BigIntRing> {
let mut result = ZZbig.one();
let n = self.generators.len();
if n == 0 {
return result;
}
for i in 0..self.order_factorization.len() {
let (p, e) = self.order_factorization[i];
let relation_lattice = self.scaled_relation_lattices[i][e].data();
let Zpne = zn_big::Zn::new(ZZbig, ZZbig.pow(int_cast(p, ZZbig, StaticRing::<i64>::RING), e * n));
let mod_pne = Zpne.can_hom(&StaticRing::<i64>::RING).unwrap();
let relation_lattice_det = determinant_using_pre_smith(
&Zpne,
OwnedMatrix::from_fn(relation_lattice.row_count(), relation_lattice.col_count(), |k, l| mod_pne.map(*relation_lattice.at(k, l))).data_mut(),
Global
);
ZZbig.mul_assign(&mut result, signed_gcd(ZZbig.clone_el(Zpne.modulus()), Zpne.smallest_positive_lift(relation_lattice_det), ZZbig));
}
return result;
}
#[stability::unstable(feature = "enable")]
pub fn order_multiple(&self) -> &El<BigIntRing> {
&self.order_multiple
}
#[stability::unstable(feature = "enable")]
pub fn generators(&self) -> &[GroupEl<G>] {
&self.generators
}
#[stability::unstable(feature = "enable")]
pub fn add_generator(self, new_gen_base: GroupEl<G>) -> Self {
let group = &self.parent;
assert!(group.is_identity(&group.pow(&new_gen_base, &self.order_multiple)));
let ZZ_to_ZZbig = ZZbig.can_hom(&ZZ).unwrap();
let mut scaled_relation_lattices = Vec::new();
let mut scaled_generating_sets = Vec::new();
for p_idx in 0..self.order_factorization.len() {
let (p, e) = self.order_factorization[p_idx];
let p_bigint = ZZ_to_ZZbig.map(p);
let power = ZZbig.checked_div(
&self.order_multiple,
&ZZbig.pow(ZZbig.clone_el(&p_bigint), e)
).unwrap();
let gens = self.generators.iter().map(|g| group.pow(g, &power)).collect::<Vec<_>>();
let new_gen = group.pow(&new_gen_base, &power);
let n = self.generators.len();
let mut main_relation_matrix = OwnedMatrix::zero(n + 1, n + 1, ZZ);
for i in 0..n {
for j in 0..n {
*main_relation_matrix.at_mut(i, j) = *self.scaled_relation_lattices[p_idx][e].at(i, j);
}
}
*main_relation_matrix.at_mut(n, n) = -ZZ.pow(p, e);
for k in 0..e {
if let Some(dlog) = self.padic_dlog(p_idx, e, &group.pow(&new_gen, &ZZbig.pow(ZZbig.clone_el(&p_bigint), k))) {
*main_relation_matrix.at_mut(n, n) = -ZZ.pow(p, k);
for j in 0..n {
*main_relation_matrix.at_mut(n, j) = dlog[j];
}
break;
}
}
debug_assert!(main_relation_matrix.data().row_iter().all(|row| group.is_identity(
&(0..n).fold(group.pow(&new_gen, &ZZ_to_ZZbig.map(row[n])), |current, i| group.op(current, group.pow(&gens[i], &ZZ_to_ZZbig.map(row[i]))))
)));
let mut result = Vec::with_capacity(e + 1);
result.push(main_relation_matrix);
for _ in 0..e {
result.push(Self::relation_lattice_basis_downscale_p(result.last().unwrap().data(), p));
}
result.reverse();
scaled_relation_lattices.push(result);
let mut generating_sets = Vec::new();
for i in 0..e {
let generating_set = scaled_relation_lattices.last().unwrap()[i].data().row_iter().map(|row| {
let scale = ZZbig.pow(ZZbig.clone_el(&p_bigint), e - i - 1);
let result = (0..n).fold(group.pow(&new_gen, &ZZ_to_ZZbig.mul_ref_map(&scale, &row[n])), |current, j|
group.op(current, group.pow(&gens[j], &ZZ_to_ZZbig.mul_ref_map(&scale, &row[j])))
);
debug_assert!(group.is_identity(&group.pow(&result, &p_bigint)));
result
}).collect::<Vec<_>>();
generating_sets.push(generating_set);
}
scaled_generating_sets.push(generating_sets);
}
return Self {
generators: self.generators.iter().map(|g| group.clone_el(g)).chain([new_gen_base].into_iter()).collect(),
order_multiple: ZZbig.clone_el(&self.order_multiple),
order_factorization: self.order_factorization.clone(),
scaled_generating_sets: scaled_generating_sets,
scaled_relation_lattices: scaled_relation_lattices,
parent: self.parent
};
}
fn padic_dlog(&self, p_idx: usize, e: usize, target: &GroupEl<G>) -> Option<Vec<i64>> {
let group = &self.parent;
let ZZ_to_ZZbig = ZZbig.can_hom(&ZZ).unwrap();
let n = self.generators.len();
if n == 0 {
return if group.is_identity(target) { Some(Vec::new()) } else { None };
} else if e == 0 {
debug_assert!(group.is_identity(target));
return Some((0..n).map(|_| 0).collect());
}
let p = self.order_factorization[p_idx].0;
debug_assert!(group.is_identity(&group.pow(target, &ZZbig.pow(ZZ_to_ZZbig.map(p), e))));
let power = ZZbig.checked_div(
&self.order_multiple,
&ZZbig.pow(int_cast(p, ZZbig, ZZ), e)
).unwrap();
let gens = self.generators.iter().map(|g| group.pow(g, &power)).collect::<Vec<_>>();
let G_mod_H_dlog = self.padic_dlog(
p_idx,
e - 1,
&group.pow(target, &ZZ_to_ZZbig.map(p))
)?;
debug_assert!(group.eq_el(
&group.pow(target, &ZZ_to_ZZbig.map(p)),
&(0..n).fold(group.identity(), |current, i| group.op(current, group.pow(&gens[i], &ZZ_to_ZZbig.map(p * G_mod_H_dlog[i]))))
));
let delta = (0..n).fold(group.clone_el(target), |current, i|
group.op(current, group.pow(&gens[i], &ZZ_to_ZZbig.map(-G_mod_H_dlog[i])))
);
debug_assert!(group.is_identity(&group.pow(&delta, &ZZ_to_ZZbig.map(p))));
let H_generators = &self.scaled_generating_sets[p_idx][e - 1];
let H_dlog_wrt_H_gens = baby_giant_step(
group,
delta,
&H_generators,
&(0..n).map(|_| int_cast(p, ZZbig, ZZ)).collect::<Vec<_>>()
)?;
let H_dlog = {
let mut result = (0..n).map(|_| 0).collect::<Vec<_>>();
STANDARD_MATMUL.matmul(
TransposableSubmatrix::from(Submatrix::from_1d(&H_dlog_wrt_H_gens, 1, n)),
TransposableSubmatrix::from(self.scaled_relation_lattices[p_idx][e - 1].data()),
TransposableSubmatrixMut::from(SubmatrixMut::from_1d(&mut result, 1, n)),
ZZ
);
result
};
let result = G_mod_H_dlog.into_iter().zip(H_dlog.into_iter()).map(|(x, y)| x + y).collect::<Vec<_>>();
debug_assert!(group.eq_el(
target,
&(0..n).fold(group.identity(), |current, i| group.op(current, group.pow(&gens[i], &ZZ_to_ZZbig.map(result[i]))))
));
return Some(result);
}
#[stability::unstable(feature = "enable")]
pub fn contains(&self, element: &GroupEl<G>) -> bool {
self.dlog(element).is_some()
}
#[stability::unstable(feature = "enable")]
pub fn dlog(&self, target: &GroupEl<G>) -> Option<Vec<i64>> {
let group = &self.parent;
let ZZ_to_ZZbig = ZZbig.can_hom(&ZZ).unwrap();
let n = self.generators.len();
if n == 0 {
return if group.is_identity(target) { Some(Vec::new()) } else { None };
}
let mut current_dlog = (0..n).map(|_| 0).collect::<Vec<_>>();
let mut current_order = (0..n).map(|_| 1).collect::<Vec<_>>();
for p_idx in 0..self.order_factorization.len() {
let (p, e) = self.order_factorization[p_idx];
let power = ZZbig.checked_div(
&self.order_multiple,
&ZZbig.pow(int_cast(p, ZZbig, ZZ), e)
).unwrap();
let padic_dlog = self.padic_dlog(p_idx, e, &group.pow(target, &power))?;
for j in 0..n {
current_dlog[j] = inv_crt(current_dlog[j], padic_dlog[j], ¤t_order[j], &ZZ.pow(p, e), ZZ);
current_order[j] *= ZZ.pow(p, e);
}
}
debug_assert!(group.eq_el(
target,
&(0..n).fold(group.identity(), |current, i| group.op(current, group.pow(&self.generators[i], &ZZ_to_ZZbig.map(current_dlog[i]))))
));
return Some(current_dlog);
}
fn padic_rectangular_form<'a>(&'a self, p_idx: usize) -> Vec<(GroupEl<G>, usize)> {
let group = &self.parent;
let (p, e) = self.order_factorization[p_idx];
let power = ZZbig.checked_div(
&self.order_multiple,
&ZZbig.pow(int_cast(p, ZZbig, ZZ), e)
).unwrap();
let n = self.generators.len();
if n == 0 {
return Vec::new();
}
let Zpne = zn_big::Zn::new(ZZbig, ZZbig.pow(int_cast(p, ZZbig, StaticRing::<i64>::RING), e * n));
let mod_pne = Zpne.can_hom(&StaticRing::<i64>::RING).unwrap();
let relation_lattice = self.scaled_relation_lattices[p_idx][e].data();
let mut relation_lattice_mod_pne = OwnedMatrix::from_fn(relation_lattice.row_count(), relation_lattice.col_count(), |k, l| mod_pne.map(*relation_lattice.at(k, l)));
let mut generators = self.generators.iter().map(|g| group.pow(g, &power)).collect::<Vec<_>>();
struct TransformGenerators<'a, G: AbelianGroupStore> {
group: &'a G,
generators: &'a mut [GroupEl<G>]
}
impl<'a, G: AbelianGroupStore> TransformTarget<zn_big::ZnBase<BigIntRing>> for TransformGenerators<'a, G> {
fn transform<S: Copy + RingStore<Type = zn_big::ZnBase<BigIntRing>>>(&mut self, ring: S, i: usize, j: usize, transform: &[El<zn_big::Zn<BigIntRing>>; 4]) {
let transform_inv_det = ring.invert(&ring.sub(
ring.mul_ref(&transform[0], &transform[3]),
ring.mul_ref(&transform[1], &transform[2])
)).unwrap();
let inv_transform = [
ring.smallest_positive_lift(ring.mul_ref(&transform[3], &transform_inv_det)),
ring.smallest_positive_lift(ring.negate(ring.mul_ref(&transform[1], &transform_inv_det))),
ring.smallest_positive_lift(ring.negate(ring.mul_ref(&transform[2], &transform_inv_det))),
ring.smallest_positive_lift(ring.mul_ref(&transform[0], &transform_inv_det))
];
let new_gens = (
self.group.op(self.group.pow(&self.generators[i], &inv_transform[0]), self.group.pow(&self.generators[j], &inv_transform[1])),
self.group.op(self.group.pow(&self.generators[i], &inv_transform[2]), self.group.pow(&self.generators[j], &inv_transform[3])),
);
self.generators[i] = new_gens.0;
self.generators[j] = new_gens.1;
}
}
pre_smith(
&Zpne,
&mut (),
&mut TransformGenerators { group: group, generators: &mut generators },
relation_lattice_mod_pne.data_mut()
);
return generators.into_iter().enumerate().map(|(i, g)| (
g,
int_cast(ZZbig.ideal_gen(Zpne.modulus(), &Zpne.smallest_positive_lift(Zpne.clone_el(relation_lattice_mod_pne.at(i, i)))), ZZ, ZZbig) as usize
)).collect()
}
#[stability::unstable(feature = "enable")]
pub fn rectangular_form<'a>(&'a self) -> Vec<(GroupEl<G>, usize)> {
(0..self.order_factorization.len()).flat_map(|p_idx| self.padic_rectangular_form(p_idx)).collect()
}
#[stability::unstable(feature = "enable")]
pub fn enumerate_elements<'a>(&'a self) -> impl use<'a, G> + Clone + Iterator<Item = GroupEl<G>> {
let rectangular_form = Rc::new(self.rectangular_form());
multi_cartesian_product(
rectangular_form.iter().map(|(_, l)| 0..*l).collect::<Vec<_>>().into_iter(),
move |pows| pows.iter().enumerate().fold(self.parent().identity(), |current, (i, e)|
self.parent().op(current, self.parent().pow(&rectangular_form[i].0, &int_cast(*e as i64, ZZbig, ZZ)))
),
|_, x| *x
)
}
fn relation_lattice_basis_downscale_p<V>(basis: Submatrix<V, i64>, p: i64) -> OwnedMatrix<i64>
where V: AsPointerToSlice<i64>
{
let n = basis.row_count();
assert_eq!(n, basis.col_count());
let QQ = RationalField::new(ZZbig);
let ZZ_to_QQ = QQ.inclusion().compose(QQ.base_ring().can_hom(&ZZ).unwrap());
let as_ZZ = |x| int_cast(ZZbig.checked_div(QQ.num(x), QQ.den(x)).unwrap(), ZZ, ZZbig);
let mut dual_basis = OwnedMatrix::identity(n, 2 * n, &QQ);
let mut Binv = dual_basis.data_mut().submatrix(0..n, n..(2 * n));
let mut rhs = OwnedMatrix::identity(n, n, &QQ);
QQ.solve_right(
OwnedMatrix::from_fn(n, n, |i, j| ZZ_to_QQ.map_ref(basis.at(i, j))).data_mut(),
rhs.data_mut(),
Binv.reborrow()
).assert_solved();
Binv.reborrow().row_iter().flat_map(|row| row.iter_mut()).for_each(|x| ZZ_to_QQ.mul_assign_map(x, p));
let mut identity = OwnedMatrix::identity(n, n, &QQ);
lll(
&QQ,
identity.data(),
dual_basis.data_mut(),
&QQ.div(&ZZ_to_QQ.map(9), &ZZ_to_QQ.map(10)),
Global,
false
);
let mut result_QQ = rhs;
QQ.solve_right(
dual_basis.data_mut().submatrix(0..n, n..(2 * n)),
identity.data_mut(),
result_QQ.data_mut()
).assert_solved();
let result = OwnedMatrix::from_fn(n, n, |i, j| as_ZZ(result_QQ.at(i, j)));
return result;
}
}
impl<G: AbelianGroupStore> PartialEq for SubgroupBase<G> {
fn eq(&self, other: &Self) -> bool {
self.parent().get_group() == other.parent().get_group() &&
other.generators().iter().all(|g| self.contains(g)) &&
self.generators().iter().all(|g| other.contains(g))
}
}
impl<G: AbelianGroupStore> AbelianGroupBase for SubgroupBase<G> {
type Element = GroupEl<G>;
fn clone_el(&self, x: &Self::Element) -> Self::Element {
self.parent().clone_el(x)
}
fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
self.parent().eq_el(lhs, rhs)
}
fn hash<H: std::hash::Hasher>(&self, x: &Self::Element, hasher: &mut H) {
self.parent().hash(x, hasher)
}
fn identity(&self) -> Self::Element {
self.parent().identity()
}
fn inv(&self, x: &Self::Element) -> Self::Element {
self.parent().inv(x)
}
fn is_identity(&self, x: &Self::Element) -> bool {
self.parent().is_identity(x)
}
fn op(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element {
self.parent().op(lhs, rhs)
}
fn pow(&self, x: &Self::Element, e: &El<BigIntRing>) -> Self::Element {
self.parent().pow(x, e)
}
fn op_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
self.parent().op_ref(lhs, rhs)
}
fn op_ref_snd(&self, lhs:Self::Element, rhs: &Self::Element) -> Self::Element {
self.parent().op_ref_snd(lhs, rhs)
}
}
impl<G: AbelianGroupStore + Serialize> Serialize for SubgroupBase<G>
where G::Type: SerializableElementGroup
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: serde::Serializer
{
#[derive(Serialize)]
struct SubgroupData<'a, Gens: Serialize> {
order_multiple: SerializeWithRing<'a, BigIntRing>,
generators: Gens,
group: ()
}
SerializableNewtypeStruct::new("Subgroup", (self.parent(), SubgroupData {
order_multiple: SerializeWithRing::new(&self.order_multiple, ZZbig),
generators: SerializableSeq::new(self.generators.iter().map(|g| SerializeWithGroup::new(g, self.parent()))),
group: ()
})).serialize(serializer)
}
}
impl<'de, G: AbelianGroupStore + Clone + Deserialize<'de>> Deserialize<'de> for SubgroupBase<G>
where G::Type: SerializableElementGroup
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: serde::Deserializer<'de>
{
use serde::de::DeserializeSeed;
struct DeserializeSeedSubgroupData<G: AbelianGroupStore>
where G::Type: SerializableElementGroup
{
group: G
}
impl_deserialize_seed_for_dependent_struct!{
<{ 'de, G }> pub struct SubgroupData<{'de, G}> using DeserializeSeedSubgroupData<G> {
order_multiple: El<BigIntRing>: |_| DeserializeWithRing::new(ZZbig),
generators: Vec<GroupEl<G>>: |master: &DeserializeSeedSubgroupData<G>| {
let group_clone = master.group.clone();
DeserializeSeedSeq::new((0..).map(move |_| DeserializeWithGroup::new(group_clone.clone())), Vec::new(), |mut current, next| { current.push(next); current })
},
group: G: |master: &DeserializeSeedSubgroupData<G>| {
let group_clone = master.group.clone();
DeserializeSeedMapped::new(PhantomData::<()>, move |()| group_clone)
}
} where G: AbelianGroupStore + Clone, G::Type: SerializableElementGroup
}
DeserializeSeedNewtypeStruct::new("Subgroup", DeserializeSeedDependentTuple::new(
PhantomData::<G>,
|group| DeserializeSeedSubgroupData { group }
)).deserialize(deserializer).map(|data| Subgroup::new(data.group, data.order_multiple, data.generators).into())
}
}
impl<G: AbelianGroupStore> Clone for SubgroupBase<G>
where G: Clone
{
fn clone(&self) -> Self {
Self {
parent: self.parent.clone(),
generators: self.generators.iter().map(|g| self.parent.clone_el(g)).collect(),
order_factorization: self.order_factorization.clone(),
order_multiple: self.order_multiple.clone(),
scaled_generating_sets: self.scaled_generating_sets.iter().map(|sets| sets.iter().map(|set| set.iter().map(|g| self.parent.clone_el(g)).collect()).collect()).collect(),
scaled_relation_lattices: self.scaled_relation_lattices.iter().map(|x| x.iter().map(|x| x.clone_matrix(StaticRing::<i64>::RING)).collect()).collect()
}
}
}
impl<R> Subgroup<MultGroup<R>>
where R: RingStore,
R::Type: ZnRing + HashableElRing + DivisibilityRing
{
#[stability::unstable(feature = "enable")]
pub fn for_zn(group: MultGroup<R>, generators: Vec<GroupEl<MultGroup<R>>>) -> Self {
let n = generators.len();
if n == 0 {
let n_factorization = factor(ZZbig, group.underlying_ring().size(ZZbig).unwrap());
let mut order_factorization = n_factorization.into_iter().flat_map(|(p, e)|
factor(ZZbig, ZZbig.sub_ref_fst(&p, ZZbig.one())).into_iter().chain([(p, e - 1)].into_iter())
).collect::<Vec<_>>();
order_factorization.sort_unstable_by(|(pl, _), (pr, _)| ZZbig.cmp(pl, pr));
order_factorization.dedup_by(|(p1, e1), (p2, e2)| if ZZbig.eq_el(p1, p2) {
*e2 += *e1;
true
} else {
false
});
order_factorization.retain(|(_, e)| *e > 0);
let order = ZZbig.prod(order_factorization.iter().map(|(p, e)| ZZbig.pow(ZZbig.clone_el(p), *e)));
let order_factorization = order_factorization.into_iter().map(|(p, e)| (int_cast(p, ZZ, ZZbig), e)).collect();
return Self::from(SubgroupBase {
parent: group,
generators: Vec::new(),
order_multiple: order,
order_factorization: order_factorization,
scaled_generating_sets: Vec::new(),
scaled_relation_lattices: Vec::new()
});
} else {
let mut result = Self::for_zn(group, Vec::new());
for g in generators {
result = result.add_generator(g);
}
return result;
}
}
}
#[stability::unstable(feature = "enable")]
pub fn baby_giant_step<G>(group: G, value: GroupEl<G>, generators: &[GroupEl<G>], dlog_bounds: &[El<BigIntRing>]) -> Option<Vec<i64>>
where G: AbelianGroupStore
{
let n = generators.len();
assert_eq!(n, dlog_bounds.len());
if generators.len() == 0 {
if group.is_identity(&value) {
return Some(Vec::new());
} else {
return None;
}
}
let ns = dlog_bounds.iter().map(|n| int_cast(root_floor(ZZbig, n.clone(), 2), ZZ, ZZbig) + 1).collect::<Vec<_>>();
let count = int_cast(ZZbig.prod(ns.iter().map(|n| int_cast(*n, ZZbig, ZZ))), ZZ, ZZbig);
let mut baby_step_table: HashMap<HashableGroupEl<_>, i64> = HashMap::with_capacity(count as usize);
{
let mut current_els = (0..n).map(|_| group.clone_el(&value)).collect::<Vec<_>>();
let mut current_idxs = (0..n).map(|_| 0).collect::<Vec<_>>();
for idx in 0..count {
_ = baby_step_table.insert(HashableGroupEl::new(&group, group.clone_el(¤t_els[n - 1])), idx);
let mut i = n - 1;
while current_idxs[i] == ns[i] - 1 {
if i == 0 {
assert!(idx + 1 == count);
break;
}
current_idxs[i] = 0;
i -= 1;
}
current_idxs[i] += 1;
current_els[i] = group.op_ref_snd(replace(&mut current_els[i], group.identity()), &generators[i]);
for j in (i + 1)..n {
current_els[j] = group.clone_el(¤t_els[i]);
}
}
}
let giant_steps = generators.iter().zip(ns.iter()).map(|(g, n)| group.pow(g, &int_cast(*n, ZZbig, ZZ))).collect::<Vec<_>>();
{
let start_el = giant_steps.iter().fold(group.identity(), |x, y| group.op_ref_snd(x, y));
let mut current_els = (0..n).map(|_| group.clone_el(&start_el)).collect::<Vec<_>>();
let mut current_idxs = (0..n).map(|_| 1).collect::<Vec<_>>();
for idx in 0..count {
if let Some(bs_idx) = baby_step_table.get(&HashableGroupEl::new(&group, group.clone_el(¤t_els[n - 1]))) {
let mut bs_idx = *bs_idx;
let mut result = current_idxs.clone();
for j in (0..n).rev() {
let bs_idxs_j = bs_idx % ns[j];
bs_idx = bs_idx / ns[j];
result[j] = result[j] * ns[j] - bs_idxs_j;
}
if (0..dlog_bounds.len()).all(|j| ZZbig.is_leq(&int_cast(result[j], ZZbig, ZZ), &dlog_bounds[j])) {
debug_assert_eq!(n, result.len());
return Some(result);
}
}
let mut i = n - 1;
while current_idxs[i] == ns[i] {
if i == 0 {
assert!(idx + 1 == count);
break;
}
current_idxs[i] = 1;
i -= 1;
}
current_idxs[i] += 1;
current_els[i] = group.op_ref_snd(replace(&mut current_els[i], group.identity()), &giant_steps[i]);
for j in (i + 1)..n {
current_els[j] = group.clone_el(¤t_els[i]);
}
}
}
return None;
}
pub fn finite_field_discrete_log<R: RingStore>(value: El<R>, base: El<R>, Zn: R) -> Option<i64>
where R::Type: ZnRing + HashableElRing
{
let group = MultGroup::new(Zn);
let generators = vec![group.from_ring_el(base).unwrap()];
let subgroup = Subgroup::for_zn(group, generators);
return subgroup.dlog(&subgroup.parent().from_ring_el(value).unwrap())
.map(|res| res[0]);
}
pub fn multiplicative_order<R: RingStore>(x: El<R>, Zn: R) -> i64
where R::Type: ZnRing + HashableElRing
{
let group = MultGroup::new(Zn);
let gen_set = Subgroup::for_zn(group, Vec::new());
let Zn = gen_set.parent().underlying_ring();
let mut result = ZZbig.one();
for (p, e) in &gen_set.get_group().order_factorization {
let mut current = Zn.pow_gen(
Zn.clone_el(&x),
&ZZbig.checked_div(&gen_set.get_group().order_multiple, &ZZbig.pow(int_cast(*p, ZZbig, ZZ), *e)).unwrap(),
ZZbig
);
while !Zn.is_one(¤t) {
current = Zn.pow(current, *p as usize);
ZZbig.mul_assign(&mut result, int_cast(*p, ZZbig, ZZ));
}
}
return int_cast(result, ZZ, ZZbig);
}
#[cfg(test)]
struct ProdGroupBase<G: AbelianGroupStore, const N: usize>(G);
#[cfg(test)]
impl<G: AbelianGroupStore, const N: usize> PartialEq for ProdGroupBase<G, N> {
fn eq(&self, other: &Self) -> bool {
self.0.get_group() == other.0.get_group()
}
}
#[cfg(test)]
impl<G: AbelianGroupStore, const N: usize> AbelianGroupBase for ProdGroupBase<G, N> {
type Element = [GroupEl<G>; N];
fn clone_el(&self, x: &Self::Element) -> Self::Element {
from_fn(|i| self.0.clone_el(&x[i]))
}
fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
(0..N).all(|i| self.0.eq_el(&lhs[i], &rhs[i]))
}
fn op(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element {
from_fn(|i| self.0.op_ref(&lhs[i], &rhs[i]))
}
fn hash<H: std::hash::Hasher>(&self, x: &Self::Element, hasher: &mut H) {
for i in 0..N {
self.0.hash(&x[i], hasher)
}
}
fn inv(&self, x: &Self::Element) -> Self::Element {
from_fn(|i| self.0.inv(&x[i]))
}
fn identity(&self) -> Self::Element {
from_fn(|_| self.0.identity())
}
}
#[cfg(test)]
use crate::rings::zn::zn_static::Zn;
#[cfg(test)]
use oorandom::Rand64;
#[cfg(test)]
use crate::algorithms::matmul::ComputeInnerProduct;
#[cfg(test)]
use crate::group::AddGroup;
#[cfg(test)]
use crate::assert_matrix_eq;
#[cfg(test)]
use crate::RANDOM_TEST_INSTANCE_COUNT;
#[cfg(test)]
use std::array::from_fn;
#[test]
fn test_baby_giant_step() {
for base_bound in [21, 26, 31, 37] {
let dlog_bound = [int_cast(base_bound, ZZbig, ZZ)];
let G = AddGroup::new(ZZ);
assert_eq!(
Some(vec![6]),
baby_giant_step(&G, 6, &[1], &dlog_bound)
);
assert_eq!(
None,
baby_giant_step(&G, 0, &[1], &dlog_bound)
);
let G = AddGroup::new(Zn::<20>::RING);
assert_eq!(
Some(vec![20]),
baby_giant_step(&G, 0, &[1], &dlog_bound)
);
assert_eq!(
Some(vec![10]),
baby_giant_step(&G, 10, &[1], &dlog_bound)
);
assert_eq!(
Some(vec![5]),
baby_giant_step(&G, 0, &[16], &dlog_bound)
);
}
let G = AddGroup::new(ZZ);
assert_eq!(
Some(vec![9 - 1, 6 - 1]),
baby_giant_step(&G, 85, &[10, 1], &from_fn::<_, 2, _>(|_| int_cast(8, ZZbig, ZZ)))
);
assert_eq!(
Some(vec![10 - 2, 5 - 0]),
baby_giant_step(&G, 85, &[10, 1], &from_fn::<_, 2, _>(|_| int_cast(21, ZZbig, ZZ)))
);
assert_eq!(
Some(vec![6 - 0, 30 - 5]),
baby_giant_step(&G, 85, &[10, 1], &from_fn::<_, 2, _>(|_| int_cast(31, ZZbig, ZZ)))
);
}
#[test]
fn test_padic_relation_lattice() {
let G = AddGroup::new(Zn::<81>::RING);
let subgroup = Subgroup::new(&G, int_cast(81, ZZbig, ZZ), vec![1]);
assert_matrix_eq!(ZZ, [[-81]], subgroup.get_group().scaled_relation_lattices[0][4]);
assert_matrix_eq!(ZZ, [[-27]], subgroup.get_group().scaled_relation_lattices[0][3]);
assert_matrix_eq!(ZZ, [[-9]], subgroup.get_group().scaled_relation_lattices[0][2]);
assert_matrix_eq!(ZZ, [[-3]], subgroup.get_group().scaled_relation_lattices[0][1]);
assert_matrix_eq!(ZZ, [[1]], subgroup.get_group().scaled_relation_lattices[0][0]);
let subgroup = Subgroup::new(&G, int_cast(81, ZZbig, ZZ), vec![3, 6]);
let matrix = &subgroup.get_group().scaled_relation_lattices[0][4];
assert_eq!(-27, *matrix.at(0, 0));
assert_eq!(-1, *matrix.at(1, 1));
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(1).iter().zip([3, 6].iter())) % 81);
let subgroup = Subgroup::new(&G, int_cast(81, ZZbig, ZZ), vec![3, 9]);
let matrix = &subgroup.get_group().scaled_relation_lattices[0][4];
assert_eq!(-27, *matrix.at(0, 0));
assert_eq!(-1, *matrix.at(1, 1));
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(1).iter().zip([3, 9].iter())) % 81);
let subgroup = Subgroup::new(&G, int_cast(81, ZZbig, ZZ), vec![6, 18, 9]);
let matrix = &subgroup.get_group().scaled_relation_lattices[0][4];
assert_eq!(-27, *matrix.at(0, 0));
assert_eq!(-1, *matrix.at(1, 1));
assert_eq!(-1, *matrix.at(2, 2));
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(1).iter().zip([6, 18, 9].iter())) % 81);
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(2).iter().zip([6, 18, 9].iter())) % 81);
let G = GroupValue::from(ProdGroupBase(AddGroup::new(Zn::<81>::RING)));
let subgroup = Subgroup::new(&G, int_cast(81, ZZbig, ZZ), vec![[1, 4], [1, 1]]);
let matrix = &subgroup.get_group().scaled_relation_lattices[0][4];
assert_eq!(-81, *matrix.at(0, 0));
assert_eq!(-27, *matrix.at(1, 1));
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(1).iter().zip([1, 1].iter())) % 81);
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(1).iter().zip([4, 1].iter())) % 81);
let G = GroupValue::from(ProdGroupBase(AddGroup::new(Zn::<8>::RING)));
let subgroup = Subgroup::new(&G, int_cast(8, ZZbig, ZZ), vec![[6, 3, 5], [6, 2, 6], [4, 5, 7]]);
let matrix = &subgroup.get_group().scaled_relation_lattices[0][3];
assert_eq!(-8, *matrix.at(0, 0));
assert_eq!(-4, *matrix.at(1, 1));
assert_eq!(-2, *matrix.at(2, 2));
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(1).iter().zip([6, 6, 4].iter())) % 8);
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(1).iter().zip([3, 2, 5].iter())) % 8);
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(1).iter().zip([5, 6, 7].iter())) % 8);
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(2).iter().zip([6, 6, 4].iter())) % 8);
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(2).iter().zip([3, 2, 5].iter())) % 8);
assert_eq!(0, ZZ.get_ring().inner_product_ref(matrix.data().row_at(2).iter().zip([5, 6, 7].iter())) % 8);
}
#[test]
fn random_test_dlog() {
let ring = Zn::<1400>::RING;
let i = ring.can_hom(&ZZ).unwrap();
let mut rng = Rand64::new(0);
let G = GroupValue::from(ProdGroupBase(AddGroup::new(ring)));
let rand_gs = |rng: &mut Rand64| from_fn::<_, 3, _>(|_| ring.random_element(|| rng.rand_u64()));
for _ in 0..RANDOM_TEST_INSTANCE_COUNT {
let gs = from_fn::<_, 3, _>(|_| rand_gs(&mut rng));
let subgroup = Subgroup::new(&G, int_cast(1400, ZZbig, ZZ), gs.into());
let coeffs = rand_gs(&mut rng);
let val = (0..3).fold(G.identity(), |current, i| G.op(current, G.pow(&gs[i], &int_cast(coeffs[i] as i64, ZZbig, ZZ))));
let dlog = subgroup.dlog(&val);
println!("{:?} * x + {:?} * y + {:?} * z = {:?} mod 1400", gs[0], gs[1], gs[2], val);
if let Some(dlog) = dlog {
for k in 0..3 {
assert_el_eq!(ring, val[k], ring.sum([i.mul_map(gs[0][k], dlog[0]), i.mul_map(gs[1][k], dlog[1]), i.mul_map(gs[2][k], dlog[2])]));
}
println!("checked solution");
}
}
for _ in 0..RANDOM_TEST_INSTANCE_COUNT {
let gs = from_fn::<_, 3, _>(|_| rand_gs(&mut rng));
let subgroup = Subgroup::new(&G, int_cast(1400, ZZbig, ZZ), gs.into());
let val = rand_gs(&mut rng);
let dlog = subgroup.dlog(&val);
println!("{:?} * x + {:?} * y + {:?} * z = {:?} mod 1400", gs[0], gs[1], gs[2], val);
if let Some(dlog) = dlog {
for k in 0..3 {
assert_el_eq!(ring, val[k], ring.sum([i.mul_map(gs[0][k], dlog[0]), i.mul_map(gs[1][k], dlog[1]), i.mul_map(gs[2][k], dlog[2])]));
}
println!("checked solution");
} else {
let mut gen_matrix = OwnedMatrix::from_fn(3, 3, |i, j| gs[j][i]);
let mut value = OwnedMatrix::from_fn(3, 1, |i, _| val[i]);
let mut res = OwnedMatrix::zero(3, 1, ring);
let solved = ring.solve_right(gen_matrix.data_mut(), value.data_mut(), res.data_mut());
println!("[{}, {}, {}]", res.at(0, 0), res.at(1, 0), res.at(2, 0));
if solved.is_solved() {
for k in 0..3 {
assert_el_eq!(ring, val[k], ring.sum([ring.mul(gs[0][k], *res.at(0, 0)), ring.mul(gs[1][k], *res.at(1, 0)), ring.mul(gs[2][k], *res.at(2, 0))]));
}
assert!(solved == crate::algorithms::linsolve::SolveResult::NoSolution);
}
println!("has no solution");
}
}
}
#[test]
fn test_zn_dlog() {
let ring = Zn::<51>::RING;
let g1 = ring.int_hom().map(37);
let g2 = ring.int_hom().map(35);
assert_eq!(0, finite_field_discrete_log(ring.one(), g1, ring).unwrap() % 16);
assert_eq!(0, finite_field_discrete_log(ring.one(), g2, ring).unwrap() % 2);
assert_eq!(1, finite_field_discrete_log(g2, g2, ring).unwrap() % 2);
for i in 0..16 {
assert_eq!(i, finite_field_discrete_log(ring.pow(g1, i as usize), g1, ring).unwrap() % 16);
}
for i in 0..16 {
assert_eq!(None, finite_field_discrete_log(ring.mul(ring.pow(g1, i as usize), g2), g1, ring));
}
assert_eq!(16, multiplicative_order(g1, ring));
assert_eq!(8, multiplicative_order(ring.pow(g1, 2), ring));
assert_eq!(4, multiplicative_order(ring.pow(g1, 4), ring));
assert_eq!(2, multiplicative_order(ring.pow(g1, 8), ring));
assert_eq!(2, multiplicative_order(g2, ring));
}
#[test]
fn test_zn_subgroup_size() {
let ring = Zn::<153>::RING;
let group = MultGroup::new(ring);
let g1 = group.from_ring_el(ring.int_hom().map(2)).unwrap();
let g2 = group.from_ring_el(ring.int_hom().map(37)).unwrap();
let mut subgroup = Subgroup::for_zn(group.clone(), Vec::new());
assert_el_eq!(ZZbig, ZZbig.int_hom().map(1), subgroup.subgroup_order());
let next_gen = subgroup.parent().clone_el(&g1);
subgroup = subgroup.add_generator(next_gen);
assert_el_eq!(ZZbig, ZZbig.int_hom().map(24), subgroup.subgroup_order());
let next_gen = subgroup.parent().pow(&g1, &ZZbig.int_hom().map(2));
subgroup = subgroup.add_generator(next_gen);
assert_el_eq!(ZZbig, ZZbig.int_hom().map(24), subgroup.subgroup_order());
let next_gen = subgroup.parent().clone_el(&g2);
subgroup = subgroup.add_generator(next_gen);
assert_el_eq!(ZZbig, ZZbig.int_hom().map(96), subgroup.subgroup_order());
let generating_set = Subgroup::for_zn(group, vec![g2]);
assert_el_eq!(ZZbig, ZZbig.int_hom().map(16), generating_set.subgroup_order());
}
#[test]
fn test_enumerate_elements() {
let ring = Zn::<45>::RING;
let group = AddGroup::new(ring);
assert_eq!(vec![ring.zero()], Subgroup::new(group.clone(), int_cast(45, ZZbig, ZZ), Vec::new()).enumerate_elements().collect::<Vec<_>>());
let subgroup = Subgroup::new(group, int_cast(45, ZZbig, ZZ), vec![9, 15]);
let mut elements = subgroup.enumerate_elements().collect::<Vec<_>>();
elements.sort_unstable();
assert_eq!((0..45).step_by(3).collect::<Vec<_>>(), elements);
}