use std::mem::swap;
use crate::delegate::{UnwrapHom, WrapHom};
use crate::reduce_lift::poly_eval::{EvalPolyLocallyRing, EvaluatePolyLocallyReductionMap};
use crate::divisibility::{DivisibilityRingStore, Domain};
use crate::pid::{EuclideanRing, PrincipalIdealRing, PrincipalIdealRingStore};
use crate::algorithms::eea::signed_lcm;
use crate::rings::field::{AsField, AsFieldBase};
use crate::rings::fraction::FractionFieldStore;
use crate::rings::poly::*;
use crate::rings::finite::*;
use crate::pid::EuclideanRingStore;
use crate::specialization::FiniteRingOperation;
use crate::algorithms;
use crate::integer::*;
use crate::rings::rational::*;
use crate::homomorphism::*;
use crate::ring::*;
use crate::rings::poly::dense_poly::DensePolyRing;
#[deprecated]
pub fn resultant_global<P>(ring: P, mut f: El<P>, mut g: El<P>) -> El<<P::Type as RingExtension>::BaseRing>
where P: RingStore + Copy,
P::Type: PolyRing,
<<P::Type as RingExtension>::BaseRing as RingStore>::Type: Domain + PrincipalIdealRing
{
let base_ring = ring.base_ring();
if ring.is_zero(&g) || ring.is_zero(&f) {
return base_ring.zero();
}
let mut scale_den = base_ring.one();
let mut scale_num = base_ring.one();
if ring.degree(&g).unwrap() < ring.degree(&f).unwrap() {
if ring.degree(&g).unwrap() % 2 != 0 && ring.degree(&f).unwrap() % 2 != 0 {
base_ring.negate_inplace(&mut scale_num);
}
std::mem::swap(&mut f, &mut g);
}
while ring.degree(&f).unwrap_or(0) >= 1 {
let balance_factor = ring.get_ring().balance_poly(&mut f);
if let Some(balance_factor) = balance_factor {
base_ring.mul_assign(&mut scale_num, base_ring.pow(balance_factor, ring.degree(&g).unwrap()));
}
let deg_g = ring.degree(&g).unwrap();
let (_q, r, a) = algorithms::poly_div::poly_div_rem_domain(ring, g, &f);
let deg_r = ring.degree(&r).unwrap_or(0);
base_ring.mul_assign(&mut scale_den, base_ring.pow(a, ring.degree(&f).unwrap()));
base_ring.mul_assign(&mut scale_num, base_ring.pow(base_ring.clone_el(ring.lc(&f).unwrap()), deg_g - deg_r));
let gcd = base_ring.ideal_gen(&scale_den, &scale_num);
scale_den = base_ring.checked_div(&scale_den, &gcd).unwrap();
scale_num = base_ring.checked_div(&scale_num, &gcd).unwrap();
g = f;
f = r;
if ring.degree(&g).unwrap() % 2 != 0 && ring.degree(&f).unwrap_or(0) % 2 != 0 {
base_ring.negate_inplace(&mut scale_num);
}
}
if ring.is_zero(&f) {
return base_ring.zero();
} else {
let mut result = base_ring.clone_el(&ring.coefficient_at(&f, 0));
result = base_ring.pow(result, ring.degree(&g).unwrap());
base_ring.mul_assign(&mut result, scale_num);
return base_ring.checked_div(&result, &scale_den).unwrap();
}
}
#[stability::unstable(feature = "enable")]
pub fn resultant_finite_field<P>(ring: P, mut f: El<P>, mut g: El<P>) -> El<<P::Type as RingExtension>::BaseRing>
where P: RingStore + Copy,
P::Type: PolyRing + EuclideanRing,
<<P::Type as RingExtension>::BaseRing as RingStore>::Type: Domain + FiniteRing
{
let base_ring = ring.base_ring();
if ring.is_zero(&g) || ring.is_zero(&f) {
return base_ring.zero();
}
let mut scale = base_ring.one();
if ring.degree(&g).unwrap() < ring.degree(&f).unwrap() {
if ring.degree(&g).unwrap() % 2 != 0 && ring.degree(&f).unwrap() % 2 != 0 {
base_ring.negate_inplace(&mut scale);
}
swap(&mut f, &mut g);
}
while ring.degree(&f).unwrap_or(0) >= 1 {
assert!(ring.degree(&g).unwrap() >= ring.degree(&f).unwrap());
let deg_g = ring.degree(&g).unwrap();
let r = ring.euclidean_rem(g, &f);
g = r;
base_ring.mul_assign(&mut scale, base_ring.pow(base_ring.clone_el(ring.lc(&f).unwrap()), deg_g - ring.degree(&g).unwrap_or(0)));
swap(&mut f, &mut g);
if ring.degree(&g).unwrap() % 2 != 0 && ring.degree(&f).unwrap_or(0) % 2 != 0 {
base_ring.negate_inplace(&mut scale);
}
}
if ring.is_zero(&f) {
return base_ring.zero();
} else {
let mut result = base_ring.clone_el(&ring.coefficient_at(&f, 0));
result = base_ring.pow(result, ring.degree(&g).unwrap());
base_ring.mul_assign(&mut result, scale);
return result;
}
}
#[stability::unstable(feature = "enable")]
pub trait ComputeResultantRing: RingBase {
fn resultant<P>(poly_ring: P, f: El<P>, g: El<P>) -> Self::Element
where P: RingStore + Copy,
P::Type: PolyRing,
<P::Type as RingExtension>::BaseRing: RingStore<Type = Self>;
}
impl<R: ?Sized + EvalPolyLocallyRing + PrincipalIdealRing + Domain + SelfIso> ComputeResultantRing for R {
default fn resultant<P>(ring: P, f: El<P>, g: El<P>) -> El<<P::Type as RingExtension>::BaseRing>
where P: RingStore + Copy,
P::Type: PolyRing,
<P::Type as RingExtension>::BaseRing: RingStore<Type = R>
{
struct ComputeResultant<P>
where P: RingStore + Copy,
P::Type: PolyRing,
<<P::Type as RingExtension>::BaseRing as RingStore>::Type: EvalPolyLocallyRing + PrincipalIdealRing + Domain + SelfIso
{
ring: P,
f: El<P>,
g: El<P>
}
impl<P> FiniteRingOperation<<<P::Type as RingExtension>::BaseRing as RingStore>::Type> for ComputeResultant<P>
where P: RingStore + Copy,
P::Type: PolyRing,
<<P::Type as RingExtension>::BaseRing as RingStore>::Type: EvalPolyLocallyRing + PrincipalIdealRing + Domain + SelfIso
{
type Output = El<<P::Type as RingExtension>::BaseRing>;
fn execute(self) -> Self::Output
where <<P::Type as RingExtension>::BaseRing as RingStore>::Type: FiniteRing
{
let new_poly_ring = DensePolyRing::new(AsField::from(AsFieldBase::promise_is_perfect_field(self.ring.base_ring())), "X");
let hom = new_poly_ring.lifted_hom(&self.ring, WrapHom::new(new_poly_ring.base_ring().get_ring()));
let result = resultant_finite_field(&new_poly_ring, hom.map(self.f), hom.map(self.g));
return UnwrapHom::new(new_poly_ring.base_ring().get_ring()).map(result);
}
fn fallback(self) -> Self::Output {
let ring = self.ring;
let f = self.f;
let g = self.g;
let base_ring = ring.base_ring();
if ring.is_zero(&f) || ring.is_zero(&g) {
return base_ring.zero();
}
let n = ring.degree(&f).unwrap() + ring.degree(&g).unwrap();
let coeff_bound_ln = ring.terms(&f).chain(ring.terms(&g)).map(|(c, _)| base_ring.get_ring().ln_pseudo_norm(c)).max_by(f64::total_cmp).unwrap();
let ln_max_norm = coeff_bound_ln * n as f64 + base_ring.get_ring().ln_pseudo_norm(&base_ring.int_hom().map(n as i32)) * n as f64 / 2.;
let work_locally = base_ring.get_ring().local_computation(ln_max_norm);
let mut resultants = Vec::new();
for i in 0..base_ring.get_ring().local_ring_count(&work_locally) {
let embedding = EvaluatePolyLocallyReductionMap::new(base_ring.get_ring(), &work_locally, i);
let new_poly_ring = DensePolyRing::new(embedding.codomain(), "X");
let poly_ring_embedding = new_poly_ring.lifted_hom(ring, &embedding);
let local_f = poly_ring_embedding.map_ref(&f);
let local_g = poly_ring_embedding.map_ref(&g);
let local_resultant = <_ as ComputeResultantRing>::resultant(&new_poly_ring, local_f, local_g);
resultants.push(local_resultant);
}
return base_ring.get_ring().lift_combine(&work_locally, &resultants);
}
}
R::specialize(ComputeResultant { ring, f, g })
}
}
impl<I> ComputeResultantRing for RationalFieldBase<I>
where I: RingStore,
I::Type: IntegerRing
{
fn resultant<P>(ring: P, f: El<P>, g: El<P>) -> El<<P::Type as RingExtension>::BaseRing>
where P: RingStore + Copy,
P::Type: PolyRing,
<P::Type as RingExtension>::BaseRing: RingStore<Type = Self>
{
if ring.is_zero(&g) || ring.is_zero(&f) {
return ring.base_ring().zero();
}
let QQ = ring.base_ring();
let ZZ = QQ.base_ring();
let f_deg = ring.degree(&f).unwrap();
let g_deg = ring.degree(&g).unwrap();
let f_den_lcm = ring.terms(&f).map(|(c, _)| ZZ.clone_el(QQ.get_ring().den(c))).fold(ZZ.one(), |a, b| signed_lcm(a, b, ZZ));
let g_den_lcm = ring.terms(&g).map(|(c, _)| ZZ.clone_el(QQ.get_ring().den(c))).fold(ZZ.one(), |a, b| signed_lcm(a, b, ZZ));
let ZZX = DensePolyRing::new(ZZ, "X");
let f_int = ZZX.from_terms(ring.terms(&f).map(|(c, i)| { let (a, b) = (QQ.get_ring().num(c), QQ.get_ring().den(c)); (ZZ.checked_div(&ZZ.mul_ref(&f_den_lcm, a), b).unwrap(), i) }));
let g_int = ZZX.from_terms(ring.terms(&g).map(|(c, i)| { let (a, b) = (QQ.get_ring().num(c), QQ.get_ring().den(c)); (ZZ.checked_div(&ZZ.mul_ref(&f_den_lcm, a), b).unwrap(), i) }));
let result_unscaled = <_ as ComputeResultantRing>::resultant(&ZZX, f_int, g_int);
return QQ.from_fraction(result_unscaled, ZZ.mul(ZZ.pow(f_den_lcm, g_deg), ZZ.pow(g_den_lcm, f_deg)));
}
}
#[cfg(test)]
use crate::primitive_int::StaticRing;
#[cfg(test)]
use crate::rings::multivariate::multivariate_impl::MultivariatePolyRingImpl;
#[cfg(test)]
use crate::rings::multivariate::*;
#[cfg(test)]
use crate::algorithms::buchberger::buchberger_simple;
#[cfg(test)]
use crate::integer::BigIntRing;
#[cfg(test)]
use crate::algorithms::poly_gcd::PolyTFracGCDRing;
#[cfg(test)]
use crate::rings::zn::ZnRingStore;
#[cfg(test)]
use crate::rings::zn::zn_64::Zn;
#[test]
#[allow(deprecated)]
fn test_resultant_global() {
let ZZ = StaticRing::<i64>::RING;
let ZZX = DensePolyRing::new(ZZ, "X");
let f = ZZX.from_terms([(3, 0), (-5, 1), (1, 2)].into_iter());
let g = ZZX.from_terms([(-5, 0), (2, 1)].into_iter());
assert_el_eq!(ZZ, -13, resultant_global(&ZZX, ZZX.clone_el(&f), ZZX.clone_el(&g)));
assert_el_eq!(ZZ, -13, resultant_global(&ZZX, g, f));
let f = ZZX.from_terms([(1, 0), (-2, 1), (1, 2)].into_iter());
let g = ZZX.from_terms([(-1, 0), (1, 2)].into_iter());
assert_el_eq!(ZZ, 0, resultant_global(&ZZX, f, g));
let f = ZZX.from_terms([(5, 0), (-1, 1), (3, 2), (1, 4)].into_iter());
let g = ZZX.from_terms([(-1, 0), (-1, 2), (1, 3), (4, 5)].into_iter());
assert_el_eq!(ZZ, 642632, resultant_global(&ZZX, f, g));
let Fp = Zn::new(512409557603043077).as_field().ok().unwrap();
let FpX = DensePolyRing::new(Fp, "X");
let f = FpX.from_terms([(Fp.one(), 4), (Fp.int_hom().map(-2), 1), (Fp.int_hom().map(2), 0)].into_iter());
let g = FpX.from_terms([(Fp.one(), 64), (Fp.one(), 0)].into_iter());
assert_el_eq!(Fp, Fp.coerce(&StaticRing::<i64>::RING, 148105674794572153), resultant_global(&FpX, f, g));
}
#[test]
#[allow(deprecated)]
fn test_resultant_finite_field() {
let Fp = Zn::new(17).as_field().ok().unwrap();
let FpX = DensePolyRing::new(Fp, "X");
let [f, g] = FpX.with_wrapped_indeterminate(|X| [X.pow_ref(5) + 13 * X.pow_ref(4) + 4 * X.pow_ref(3) + X.pow_ref(2) + 14 * X + 7, X.pow_ref(3) + 1]);
assert_el_eq!(Fp, Fp.int_hom().map(8), resultant_finite_field(&FpX, FpX.clone_el(&f), FpX.clone_el(&g)));
assert_el_eq!(Fp, Fp.int_hom().map(9), resultant_finite_field(&FpX, FpX.clone_el(&g), FpX.clone_el(&f)));
assert_el_eq!(Fp, Fp.int_hom().map(8), resultant_global(&FpX, FpX.clone_el(&f), FpX.clone_el(&g)));
assert_el_eq!(Fp, Fp.int_hom().map(9), resultant_global(&FpX, FpX.clone_el(&g), FpX.clone_el(&f)));
let [f, g] = FpX.with_wrapped_indeterminate(|X| [X.pow_ref(4) + 4 * X.pow_ref(3) + X.pow_ref(2) + 14 * X + 7, X.pow_ref(3) + 1]);
assert_el_eq!(Fp, Fp.int_hom().map(5), resultant_finite_field(&FpX, FpX.clone_el(&f), FpX.clone_el(&g)));
assert_el_eq!(Fp, Fp.int_hom().map(5), resultant_finite_field(&FpX, FpX.clone_el(&g), FpX.clone_el(&f)));
assert_el_eq!(Fp, Fp.int_hom().map(5), resultant_global(&FpX, FpX.clone_el(&f), FpX.clone_el(&g)));
assert_el_eq!(Fp, Fp.int_hom().map(5), resultant_global(&FpX, FpX.clone_el(&g), FpX.clone_el(&f)));
}
#[test]
#[allow(deprecated)]
fn test_resultant_local_polynomial() {
let ZZ = BigIntRing::RING;
let QQ = RationalField::new(ZZ);
static_assert_impls!(RationalFieldBase<BigIntRing>: PolyTFracGCDRing);
let QQX = DensePolyRing::new(&QQ, "X");
let QQXY = DensePolyRing::new(&QQX, "Y");
let ZZ_to_QQ = QQ.int_hom();
let f= QQXY.from_terms([
(vec![(1, 0), (1, 2)], 0),
(vec![(2, 0)], 1),
(vec![(1, 0), (1, 1)], 2)
].into_iter().map(|(v, i)| (QQX.from_terms(v.into_iter().map(|(c, j)| (ZZ_to_QQ.map(c), j))), i)));
let g = QQXY.from_terms([
(vec![(3, 0), (1, 1)], 0),
(vec![(2, 0), (1, 1)], 1),
(vec![(1, 0), (1, 1), (1, 2)], 2)
].into_iter().map(|(v, i)| (QQX.from_terms(v.into_iter().map(|(c, j)| (ZZ_to_QQ.map(c), j))), i)));
let actual = QQX.normalize(resultant_global(&QQXY, QQXY.clone_el(&f), QQXY.clone_el(&g)));
let actual_local = <_ as ComputeResultantRing>::resultant(&QQXY, QQXY.clone_el(&f), QQXY.clone_el(&g));
assert_el_eq!(&QQX, &actual, &actual_local);
let QQYX = MultivariatePolyRingImpl::new(&QQ, 2);
let [f, g] = QQYX.with_wrapped_indeterminates(|[Y, X]| [ 1 + X.pow_ref(2) + 2 * Y + (1 + X) * Y.pow_ref(2), 3 + X + (2 + X) * Y + (1 + X + X.pow_ref(2)) * Y.pow_ref(2) ]);
let gb = buchberger_simple::<_, _>(&QQYX, vec![f, g], Lex);
let expected = gb.into_iter().filter(|poly| QQYX.appearing_indeterminates(&poly).len() == 1).collect::<Vec<_>>();
assert!(expected.len() == 1);
let expected = QQX.normalize(QQX.from_terms(QQYX.terms(&expected[0]).map(|(c, m)| (QQ.clone_el(c), QQYX.exponent_at(m, 1)))));
assert_el_eq!(QQX, expected, actual);
}
#[test]
fn test_resultant_local_integer() {
let ZZ = BigIntRing::RING;
let ZZX = DensePolyRing::new(ZZ, "X");
let [f, g] = ZZX.with_wrapped_indeterminate(|X| [
X.pow_ref(32) + 1,
X.pow_ref(2) - X - 1
]);
assert_el_eq!(ZZ, ZZ.int_hom().map(4870849), <_ as ComputeResultantRing>::resultant(&ZZX, f, g));
let [f, g] = ZZX.with_wrapped_indeterminate(|X| [
X.pow_ref(4) - 2 * X + 2,
X.pow_ref(64) + 1
]);
assert_el_eq!(ZZ, ZZ.parse("381380816531458621441", 10).unwrap(), <_ as ComputeResultantRing>::resultant(&ZZX, f, g));
let [f, g] = ZZX.with_wrapped_indeterminate(|X| [
X.pow_ref(32) - 2 * X.pow_ref(8) + 2,
X.pow_ref(512) + 1
]);
assert_el_eq!(ZZ, ZZ.pow(ZZ.parse("381380816531458621441", 10).unwrap(), 8), <_ as ComputeResultantRing>::resultant(&ZZX, f, g));
}
#[test]
#[ignore]
fn test_resultant_large() {
let ZZ = BigIntRing::RING;
let ZZX = DensePolyRing::new(ZZ, "X");
let [f] = ZZX.with_wrapped_indeterminate(|X| [X.pow_ref(4) - 2 * X + 2]);
let g = ZZX.from_terms([(ZZ.one(), 1 << 14), (ZZ.one(), 0)]);
println!("start");
let result = BigIntRingBase::resultant(&ZZX, f, g);
println!("{}", ZZ.format(&result))
}