feanor-math 3.5.8

A library for number theory, providing implementations for arithmetic in various rings and algorithms working on them.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

use std::mem::swap;

use crate::delegate::{UnwrapHom, WrapHom};
use crate::reduce_lift::poly_eval::{EvalPolyLocallyRing, EvaluatePolyLocallyReductionMap};
use crate::divisibility::{DivisibilityRingStore, Domain};
use crate::pid::{EuclideanRing, PrincipalIdealRing, PrincipalIdealRingStore};
use crate::algorithms::eea::signed_lcm;
use crate::rings::field::{AsField, AsFieldBase};
use crate::rings::fraction::FractionFieldStore;
use crate::rings::poly::*;
use crate::rings::finite::*;
use crate::pid::EuclideanRingStore;
use crate::specialization::FiniteRingOperation;
use crate::algorithms;
use crate::integer::*;
use crate::rings::rational::*;
use crate::homomorphism::*;
use crate::ring::*;
use crate::rings::poly::dense_poly::DensePolyRing;

///
/// Computes the resultant of `f` and `g` over the base ring, using
/// a direct variant of Eulid's algorithm. 
/// 
/// This function is deprecated, you should instead use
/// [`ComputeResultantRing::resultant()`] or [`resultant_finite_field()`].
/// 
/// The resultant is the determinant of the linear map
/// ```text
///   R[X]_deg(g)  x  R[X]_deg(f)  ->  R[X]_deg(fg),
///        a       ,       b       ->    af + bg
/// ```
/// where `R[X]_d` refers to the vector space of polynomials in `R[X]` of degree
/// less than `d`.
/// 
/// # Example
/// 
/// ```rust
/// use feanor_math::ring::*;
/// use feanor_math::primitive_int::*;
/// use feanor_math::rings::poly::dense_poly::DensePolyRing;
/// use feanor_math::rings::poly::*;
/// use feanor_math::algorithms::resultant::*;
/// let ZZ = StaticRing::<i64>::RING;
/// let ZZX = DensePolyRing::new(ZZ, "X");
/// let [f] = ZZX.with_wrapped_indeterminate(|X| [X.pow_ref(2) - 2 * X + 1]);
/// // the discrimiant is the resultant of f and f'
/// let discriminant = resultant_global(&ZZX, ZZX.clone_el(&f), derive_poly(&ZZX, &f));
/// assert_eq!(0, discriminant);
/// ```
/// 
#[deprecated]
pub fn resultant_global<P>(ring: P, mut f: El<P>, mut g: El<P>) -> El<<P::Type as RingExtension>::BaseRing>
    where P: RingStore + Copy,
        P::Type: PolyRing,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: Domain + PrincipalIdealRing
{
    let base_ring = ring.base_ring();
    if ring.is_zero(&g) || ring.is_zero(&f) {
        return base_ring.zero();
    }
    let mut scale_den = base_ring.one();
    let mut scale_num = base_ring.one();

    if ring.degree(&g).unwrap() < ring.degree(&f).unwrap() {
        if ring.degree(&g).unwrap() % 2 != 0 && ring.degree(&f).unwrap() % 2 != 0 {
            base_ring.negate_inplace(&mut scale_num);
        }
        std::mem::swap(&mut f, &mut g);
    }

    while ring.degree(&f).unwrap_or(0) >= 1 {

        let balance_factor = ring.get_ring().balance_poly(&mut f);
        if let Some(balance_factor) = balance_factor {
            base_ring.mul_assign(&mut scale_num, base_ring.pow(balance_factor, ring.degree(&g).unwrap()));
        }

        // use here that `res(f, g) = a^(-deg(f)) lc(f)^(deg(g) - deg(ag - fh)) res(f, ag - fh)` if `deg(fh) <= deg(g)`
        let deg_g = ring.degree(&g).unwrap();
        let (_q, r, a) = algorithms::poly_div::poly_div_rem_domain(ring, g, &f);
        let deg_r = ring.degree(&r).unwrap_or(0);

        // adjust the scaling factor - we cancel out gcd's to prevent excessive number growth
        base_ring.mul_assign(&mut scale_den, base_ring.pow(a, ring.degree(&f).unwrap()));
        base_ring.mul_assign(&mut scale_num, base_ring.pow(base_ring.clone_el(ring.lc(&f).unwrap()), deg_g - deg_r));
        let gcd = base_ring.ideal_gen(&scale_den, &scale_num);
        scale_den = base_ring.checked_div(&scale_den, &gcd).unwrap();
        scale_num = base_ring.checked_div(&scale_num, &gcd).unwrap();

        g = f;
        f = r;

        if ring.degree(&g).unwrap() % 2 != 0 && ring.degree(&f).unwrap_or(0) % 2 != 0 {
            base_ring.negate_inplace(&mut scale_num);
        }
    }

    if ring.is_zero(&f) {
        return base_ring.zero();
    } else {
        let mut result = base_ring.clone_el(&ring.coefficient_at(&f, 0));
        result = base_ring.pow(result, ring.degree(&g).unwrap());
        base_ring.mul_assign(&mut result, scale_num);
        return base_ring.checked_div(&result, &scale_den).unwrap();
    }
}

///
/// Computes the resultant of two polynomials `f` and `g` over a finite field.
/// 
/// Usually you should use [`ComputeResultantRing::resultant()`], unless you
/// are implementing said method for a custom ring.
/// 
#[stability::unstable(feature = "enable")]
pub fn resultant_finite_field<P>(ring: P, mut f: El<P>, mut g: El<P>) -> El<<P::Type as RingExtension>::BaseRing>
    where P: RingStore + Copy,
        P::Type: PolyRing + EuclideanRing,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: Domain + FiniteRing
{
    let base_ring = ring.base_ring();
    if ring.is_zero(&g) || ring.is_zero(&f) {
        return base_ring.zero();
    }
    let mut scale = base_ring.one();
    if ring.degree(&g).unwrap() < ring.degree(&f).unwrap() {
        if ring.degree(&g).unwrap() % 2 != 0 && ring.degree(&f).unwrap() % 2 != 0 {
            base_ring.negate_inplace(&mut scale);
        }
        swap(&mut f, &mut g);
    }

    while ring.degree(&f).unwrap_or(0) >= 1 {
        assert!(ring.degree(&g).unwrap() >= ring.degree(&f).unwrap());
        let deg_g = ring.degree(&g).unwrap();
        let r = ring.euclidean_rem(g, &f);
        g = r;
        base_ring.mul_assign(&mut scale, base_ring.pow(base_ring.clone_el(ring.lc(&f).unwrap()), deg_g - ring.degree(&g).unwrap_or(0)));

        swap(&mut f, &mut g);
        if ring.degree(&g).unwrap() % 2 != 0 && ring.degree(&f).unwrap_or(0) % 2 != 0 {
            base_ring.negate_inplace(&mut scale);
        }
    }

    if ring.is_zero(&f) {
        return base_ring.zero();
    } else {
        let mut result = base_ring.clone_el(&ring.coefficient_at(&f, 0));
        result = base_ring.pow(result, ring.degree(&g).unwrap());
        base_ring.mul_assign(&mut result, scale);
        return result;
    }
}

///
/// Trait for rings that support computing resultants of polynomials
/// over the ring.
/// 
#[stability::unstable(feature = "enable")]
pub trait ComputeResultantRing: RingBase {

    ///
    /// Computes the resultant of `f` and `g` over the base ring.
    /// 
    /// The resultant is the determinant of the linear map
    /// ```text
    ///   R[X]_deg(g)  x  R[X]_deg(f)  ->  R[X]_deg(fg),
    ///        a       ,       b       ->    af + bg
    /// ```
    /// where `R[X]_d` refers to the vector space of polynomials in `R[X]` of degree
    /// less than `d`.
    /// 
    /// # Example
    /// ```rust
    /// use feanor_math::assert_el_eq;
    /// use feanor_math::ring::*;
    /// use feanor_math::integer::*;
    /// use feanor_math::rings::poly::dense_poly::DensePolyRing;
    /// use feanor_math::rings::poly::*;
    /// use feanor_math::algorithms::resultant::*;
    /// let ZZ = BigIntRing::RING;
    /// let ZZX = DensePolyRing::new(ZZ, "X");
    /// let [f] = ZZX.with_wrapped_indeterminate(|X| [X.pow_ref(2) - 2 * X + 1]);
    /// // the discrimiant is the resultant of f and f'
    /// let discriminant = <_ as ComputeResultantRing>::resultant(&ZZX, ZZX.clone_el(&f), derive_poly(&ZZX, &f));
    /// assert_el_eq!(ZZ, ZZ.zero(), discriminant);
    /// ```
    /// 
    fn resultant<P>(poly_ring: P, f: El<P>, g: El<P>) -> Self::Element
        where P: RingStore + Copy,
            P::Type: PolyRing,
            <P::Type as RingExtension>::BaseRing: RingStore<Type = Self>;
}

impl<R: ?Sized + EvalPolyLocallyRing + PrincipalIdealRing + Domain + SelfIso> ComputeResultantRing for R {

    default fn resultant<P>(ring: P, f: El<P>, g: El<P>) -> El<<P::Type as RingExtension>::BaseRing>
        where P: RingStore + Copy,
            P::Type: PolyRing,
            <P::Type as RingExtension>::BaseRing: RingStore<Type = R>
    {
        struct ComputeResultant<P>
            where P: RingStore + Copy,
                P::Type: PolyRing,
                <<P::Type as RingExtension>::BaseRing as RingStore>::Type: EvalPolyLocallyRing + PrincipalIdealRing + Domain + SelfIso
        {
            ring: P,
            f: El<P>,
            g: El<P>
        }
        impl<P> FiniteRingOperation<<<P::Type as RingExtension>::BaseRing as RingStore>::Type> for ComputeResultant<P>
            where P: RingStore + Copy,
                P::Type: PolyRing,
                <<P::Type as RingExtension>::BaseRing as RingStore>::Type: EvalPolyLocallyRing + PrincipalIdealRing + Domain + SelfIso
        {
            type Output = El<<P::Type as RingExtension>::BaseRing>;

            fn execute(self) -> Self::Output
                where <<P::Type as RingExtension>::BaseRing as RingStore>::Type: FiniteRing
            {
                let new_poly_ring = DensePolyRing::new(AsField::from(AsFieldBase::promise_is_perfect_field(self.ring.base_ring())), "X");
                let hom = new_poly_ring.lifted_hom(&self.ring, WrapHom::new(new_poly_ring.base_ring().get_ring()));
                let result = resultant_finite_field(&new_poly_ring, hom.map(self.f), hom.map(self.g));
                return UnwrapHom::new(new_poly_ring.base_ring().get_ring()).map(result);
            }

            fn fallback(self) -> Self::Output {
                let ring = self.ring;
                let f = self.f;
                let g = self.g;
                let base_ring = ring.base_ring();
                if ring.is_zero(&f) || ring.is_zero(&g) {
                    return base_ring.zero();
                }
                let n = ring.degree(&f).unwrap() + ring.degree(&g).unwrap();
                let coeff_bound_ln = ring.terms(&f).chain(ring.terms(&g)).map(|(c, _)| base_ring.get_ring().ln_pseudo_norm(c)).max_by(f64::total_cmp).unwrap();
                let ln_max_norm = coeff_bound_ln * n as f64 + base_ring.get_ring().ln_pseudo_norm(&base_ring.int_hom().map(n as i32)) * n as f64 / 2.;

                let work_locally = base_ring.get_ring().local_computation(ln_max_norm);
                let mut resultants = Vec::new();
                for i in 0..base_ring.get_ring().local_ring_count(&work_locally) {
                    let embedding = EvaluatePolyLocallyReductionMap::new(base_ring.get_ring(), &work_locally, i);
                    let new_poly_ring = DensePolyRing::new(embedding.codomain(), "X");
                    let poly_ring_embedding = new_poly_ring.lifted_hom(ring, &embedding);
                    let local_f = poly_ring_embedding.map_ref(&f);
                    let local_g = poly_ring_embedding.map_ref(&g);
                    let local_resultant = <_ as ComputeResultantRing>::resultant(&new_poly_ring, local_f, local_g);
                    resultants.push(local_resultant);
                }
                return base_ring.get_ring().lift_combine(&work_locally, &resultants);
            }
        }
        R::specialize(ComputeResultant { ring, f, g })
    }
}

impl<I> ComputeResultantRing for RationalFieldBase<I>
    where I: RingStore,
        I::Type: IntegerRing 
{
    fn resultant<P>(ring: P, f: El<P>, g: El<P>) -> El<<P::Type as RingExtension>::BaseRing>
        where P: RingStore + Copy,
            P::Type: PolyRing,
            <P::Type as RingExtension>::BaseRing: RingStore<Type = Self>
    {
        if ring.is_zero(&g) || ring.is_zero(&f) {
            return ring.base_ring().zero();
        }
        let QQ = ring.base_ring();
        let ZZ = QQ.base_ring();
        let f_deg = ring.degree(&f).unwrap();
        let g_deg = ring.degree(&g).unwrap();
        let f_den_lcm = ring.terms(&f).map(|(c, _)| ZZ.clone_el(QQ.get_ring().den(c))).fold(ZZ.one(), |a, b| signed_lcm(a, b, ZZ));
        let g_den_lcm = ring.terms(&g).map(|(c, _)| ZZ.clone_el(QQ.get_ring().den(c))).fold(ZZ.one(), |a, b| signed_lcm(a, b, ZZ));
        let ZZX = DensePolyRing::new(ZZ, "X");
        let f_int = ZZX.from_terms(ring.terms(&f).map(|(c, i)| { let (a, b) = (QQ.get_ring().num(c), QQ.get_ring().den(c)); (ZZ.checked_div(&ZZ.mul_ref(&f_den_lcm, a), b).unwrap(), i) }));
        let g_int = ZZX.from_terms(ring.terms(&g).map(|(c, i)| { let (a, b) = (QQ.get_ring().num(c), QQ.get_ring().den(c)); (ZZ.checked_div(&ZZ.mul_ref(&f_den_lcm, a), b).unwrap(), i) }));
        let result_unscaled = <_ as ComputeResultantRing>::resultant(&ZZX, f_int, g_int);
        return QQ.from_fraction(result_unscaled, ZZ.mul(ZZ.pow(f_den_lcm, g_deg), ZZ.pow(g_den_lcm, f_deg)));
    }
}

#[cfg(test)]
use crate::primitive_int::StaticRing;
#[cfg(test)]
use crate::rings::multivariate::multivariate_impl::MultivariatePolyRingImpl;
#[cfg(test)]
use crate::rings::multivariate::*;
#[cfg(test)]
use crate::algorithms::buchberger::buchberger_simple;
#[cfg(test)]
use crate::integer::BigIntRing;
#[cfg(test)]
use crate::algorithms::poly_gcd::PolyTFracGCDRing;
#[cfg(test)]
use crate::rings::zn::ZnRingStore;
#[cfg(test)]
use crate::rings::zn::zn_64::Zn;

#[test]
#[allow(deprecated)]
fn test_resultant_global() {
    let ZZ = StaticRing::<i64>::RING;
    let ZZX = DensePolyRing::new(ZZ, "X");

    // a quadratic polynomial and its derivative - the resultant should be the discriminant
    let f = ZZX.from_terms([(3, 0), (-5, 1), (1, 2)].into_iter());
    let g = ZZX.from_terms([(-5, 0), (2, 1)].into_iter());

    assert_el_eq!(ZZ, -13, resultant_global(&ZZX, ZZX.clone_el(&f), ZZX.clone_el(&g)));
    assert_el_eq!(ZZ, -13, resultant_global(&ZZX, g, f));

    // if f and g have common factors, this should be zero
    let f = ZZX.from_terms([(1, 0), (-2, 1), (1, 2)].into_iter());
    let g = ZZX.from_terms([(-1, 0), (1, 2)].into_iter());
    assert_el_eq!(ZZ, 0, resultant_global(&ZZX, f, g));

    // a slightly larger example
    let f = ZZX.from_terms([(5, 0), (-1, 1), (3, 2), (1, 4)].into_iter());
    let g = ZZX.from_terms([(-1, 0), (-1, 2), (1, 3), (4, 5)].into_iter());
    assert_el_eq!(ZZ, 642632, resultant_global(&ZZX, f, g));

    let Fp = Zn::new(512409557603043077).as_field().ok().unwrap();
    let FpX = DensePolyRing::new(Fp, "X");
    let f = FpX.from_terms([(Fp.one(), 4), (Fp.int_hom().map(-2), 1), (Fp.int_hom().map(2), 0)].into_iter());
    let g = FpX.from_terms([(Fp.one(), 64), (Fp.one(), 0)].into_iter());
    assert_el_eq!(Fp, Fp.coerce(&StaticRing::<i64>::RING, 148105674794572153), resultant_global(&FpX, f, g));
}

#[test]
#[allow(deprecated)]
fn test_resultant_finite_field() {
    let Fp = Zn::new(17).as_field().ok().unwrap();
    let FpX = DensePolyRing::new(Fp, "X");

    let [f, g] = FpX.with_wrapped_indeterminate(|X| [X.pow_ref(5) + 13 * X.pow_ref(4) + 4 * X.pow_ref(3) + X.pow_ref(2) + 14 * X + 7, X.pow_ref(3) + 1]);
    assert_el_eq!(Fp, Fp.int_hom().map(8), resultant_finite_field(&FpX, FpX.clone_el(&f), FpX.clone_el(&g)));
    assert_el_eq!(Fp, Fp.int_hom().map(9), resultant_finite_field(&FpX, FpX.clone_el(&g), FpX.clone_el(&f)));
    assert_el_eq!(Fp, Fp.int_hom().map(8), resultant_global(&FpX, FpX.clone_el(&f), FpX.clone_el(&g)));
    assert_el_eq!(Fp, Fp.int_hom().map(9), resultant_global(&FpX, FpX.clone_el(&g), FpX.clone_el(&f)));

    let [f, g] = FpX.with_wrapped_indeterminate(|X| [X.pow_ref(4) + 4 * X.pow_ref(3) + X.pow_ref(2) + 14 * X + 7, X.pow_ref(3) + 1]);
    assert_el_eq!(Fp, Fp.int_hom().map(5), resultant_finite_field(&FpX, FpX.clone_el(&f), FpX.clone_el(&g)));
    assert_el_eq!(Fp, Fp.int_hom().map(5), resultant_finite_field(&FpX, FpX.clone_el(&g), FpX.clone_el(&f)));
    assert_el_eq!(Fp, Fp.int_hom().map(5), resultant_global(&FpX, FpX.clone_el(&f), FpX.clone_el(&g)));
    assert_el_eq!(Fp, Fp.int_hom().map(5), resultant_global(&FpX, FpX.clone_el(&g), FpX.clone_el(&f)));
}

#[test]
#[allow(deprecated)]
fn test_resultant_local_polynomial() {
    let ZZ = BigIntRing::RING;
    let QQ = RationalField::new(ZZ);
    static_assert_impls!(RationalFieldBase<BigIntRing>: PolyTFracGCDRing);
    // we eliminate `Y`, so add it as the outer indeterminate
    let QQX = DensePolyRing::new(&QQ, "X");
    let QQXY = DensePolyRing::new(&QQX, "Y");
    let ZZ_to_QQ = QQ.int_hom();

    // 1 + X^2 + 2 Y + (1 + X) Y^2
    let f= QQXY.from_terms([
        (vec![(1, 0), (1, 2)], 0),
        (vec![(2, 0)], 1),
        (vec![(1, 0), (1, 1)], 2)
    ].into_iter().map(|(v, i)| (QQX.from_terms(v.into_iter().map(|(c, j)| (ZZ_to_QQ.map(c), j))), i)));

    // 3 + X + (2 + X) Y + (1 + X + X^2) Y^2
    let g = QQXY.from_terms([
        (vec![(3, 0), (1, 1)], 0),
        (vec![(2, 0), (1, 1)], 1),
        (vec![(1, 0), (1, 1), (1, 2)], 2)
    ].into_iter().map(|(v, i)| (QQX.from_terms(v.into_iter().map(|(c, j)| (ZZ_to_QQ.map(c), j))), i)));

    let actual = QQX.normalize(resultant_global(&QQXY, QQXY.clone_el(&f), QQXY.clone_el(&g)));
    let actual_local = <_ as ComputeResultantRing>::resultant(&QQXY, QQXY.clone_el(&f), QQXY.clone_el(&g));
    assert_el_eq!(&QQX, &actual, &actual_local);

    let QQYX = MultivariatePolyRingImpl::new(&QQ, 2);
    // reverse the order of indeterminates, so that we indeed eliminate `Y`
    let [f, g] = QQYX.with_wrapped_indeterminates(|[Y, X]| [ 1 + X.pow_ref(2) + 2 * Y + (1 + X) * Y.pow_ref(2), 3 + X + (2 + X) * Y + (1 + X + X.pow_ref(2)) * Y.pow_ref(2) ]);

    let gb = buchberger_simple::<_, _>(&QQYX, vec![f, g], Lex);
    let expected = gb.into_iter().filter(|poly| QQYX.appearing_indeterminates(&poly).len() == 1).collect::<Vec<_>>();
    assert!(expected.len() == 1);
    let expected = QQX.normalize(QQX.from_terms(QQYX.terms(&expected[0]).map(|(c, m)| (QQ.clone_el(c), QQYX.exponent_at(m, 1)))));

    assert_el_eq!(QQX, expected, actual);
}

#[test]
fn test_resultant_local_integer() {
    let ZZ = BigIntRing::RING;
    let ZZX = DensePolyRing::new(ZZ, "X");

    let [f, g] = ZZX.with_wrapped_indeterminate(|X| [
        X.pow_ref(32) + 1,
        X.pow_ref(2) - X - 1
    ]);
    assert_el_eq!(ZZ, ZZ.int_hom().map(4870849), <_ as ComputeResultantRing>::resultant(&ZZX, f, g));

    let [f, g] = ZZX.with_wrapped_indeterminate(|X| [
        X.pow_ref(4) - 2 * X + 2,
        X.pow_ref(64) + 1
    ]);
    assert_el_eq!(ZZ, ZZ.parse("381380816531458621441", 10).unwrap(), <_ as ComputeResultantRing>::resultant(&ZZX, f, g));

    let [f, g] = ZZX.with_wrapped_indeterminate(|X| [
        X.pow_ref(32) - 2 * X.pow_ref(8) + 2,
        X.pow_ref(512) + 1
    ]);
    assert_el_eq!(ZZ, ZZ.pow(ZZ.parse("381380816531458621441", 10).unwrap(), 8), <_ as ComputeResultantRing>::resultant(&ZZX, f, g));
}

#[test]
#[ignore]
fn test_resultant_large() {
    let ZZ = BigIntRing::RING;
    let ZZX = DensePolyRing::new(ZZ, "X");

    let [f] = ZZX.with_wrapped_indeterminate(|X| [X.pow_ref(4) - 2 * X + 2]);
    let g = ZZX.from_terms([(ZZ.one(), 1 << 14), (ZZ.one(), 0)]);
    println!("start");
    let result = BigIntRingBase::resultant(&ZZX, f, g);
    println!("{}", ZZ.format(&result))
}