da14699-pac 0.2.0

Peripheral Access Crate (PAC) for DA14699.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
/*
DISCLAIMER
This software is supplied by Renesas Electronics Corporation and is only intended for use with Renesas products.
No other uses are authorized. This software is owned by Renesas Electronics Corporation and is protected under all
applicable laws, including copyright laws.
THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT.  ALL SUCH WARRANTIES ARE EXPRESSLY DISCLAIMED.TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY
LAW, NEITHER RENESAS ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR
ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Renesas reserves the right, without notice, to make changes to this software and to discontinue the availability
of this software. By using this software, you agree to the additional terms and conditions found by accessing the
following link:
http://www.renesas.com/disclaimer

*/
// Generated from SVD 1.2, with svd2pac 0.6.0 on Thu, 24 Jul 2025 04:45:45 +0000

#![allow(clippy::identity_op)]
#![allow(clippy::module_inception)]
#![allow(clippy::derivable_impls)]
#[allow(unused_imports)]
use crate::common::sealed;
#[allow(unused_imports)]
use crate::common::*;
#[doc = r"UART2 registers"]
unsafe impl ::core::marker::Send for super::Uart2 {}
unsafe impl ::core::marker::Sync for super::Uart2 {}
impl super::Uart2 {
    #[allow(unused)]
    #[inline(always)]
    pub(crate) const fn _svd2pac_as_ptr(&self) -> *mut u8 {
        self.ptr
    }

    #[doc = "Component Type Register"]
    #[inline(always)]
    pub const fn uart2_ctr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2CtrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2CtrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(252usize),
            )
        }
    }

    #[doc = "Divisor Latch Fraction Register"]
    #[inline(always)]
    pub const fn uart2_dlf_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2DlfReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2DlfReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(192usize),
            )
        }
    }

    #[doc = "DMA Software Acknowledge"]
    #[inline(always)]
    pub const fn uart2_dmasa_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2DmasaReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2DmasaReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(168usize),
            )
        }
    }

    #[doc = "Halt TX"]
    #[inline(always)]
    pub const fn uart2_htx_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2HtxReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2HtxReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(164usize),
            )
        }
    }

    #[doc = "Interrupt Enable Register"]
    #[inline(always)]
    pub const fn uart2_ier_dlh_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2IerDlhReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2IerDlhReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(4usize),
            )
        }
    }

    #[doc = "Interrupt Identification Register/FIFO Control Register"]
    #[inline(always)]
    pub const fn uart2_iir_fcr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2IirFcrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2IirFcrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(8usize),
            )
        }
    }

    #[doc = "Line Extended Control Register"]
    #[inline(always)]
    pub const fn uart2_lcr_ext(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2LcrExt_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2LcrExt_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(204usize),
            )
        }
    }

    #[doc = "Line Control Register"]
    #[inline(always)]
    pub const fn uart2_lcr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2LcrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2LcrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(12usize),
            )
        }
    }

    #[doc = "Line Status Register"]
    #[inline(always)]
    pub const fn uart2_lsr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2LsrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2LsrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(20usize),
            )
        }
    }

    #[doc = "Modem Control Register"]
    #[inline(always)]
    pub const fn uart2_mcr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2McrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2McrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(16usize),
            )
        }
    }

    #[doc = "Modem Status Register"]
    #[inline(always)]
    pub const fn uart2_msr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2MsrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2MsrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(24usize),
            )
        }
    }

    #[doc = "Receive Address Register"]
    #[inline(always)]
    pub const fn uart2_rar_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2RarReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2RarReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(196usize),
            )
        }
    }

    #[doc = "Receive Buffer Register"]
    #[inline(always)]
    pub const fn uart2_rbr_thr_dll_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2RbrThrDllReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2RbrThrDllReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(0usize),
            )
        }
    }

    #[doc = "Receive FIFO Level."]
    #[inline(always)]
    pub const fn uart2_rfl_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2RflReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2RflReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(132usize),
            )
        }
    }

    #[doc = "Shadow Break Control Register"]
    #[inline(always)]
    pub const fn uart2_sbcr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SbcrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SbcrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(144usize),
            )
        }
    }

    #[doc = "Scratchpad Register"]
    #[inline(always)]
    pub const fn uart2_scr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2ScrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2ScrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(28usize),
            )
        }
    }

    #[doc = "Shadow DMA Mode"]
    #[inline(always)]
    pub const fn uart2_sdmam_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SdmamReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SdmamReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(148usize),
            )
        }
    }

    #[doc = "Shadow FIFO Enable"]
    #[inline(always)]
    pub const fn uart2_sfe_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SfeReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SfeReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(152usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr0_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr0Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr0Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(48usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr10_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr10Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr10Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(88usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr11_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr11Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr11Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(92usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr12_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr12Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr12Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(96usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr13_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr13Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr13Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(100usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr14_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr14Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr14Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(104usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr15_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr15Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr15Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(108usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr1_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr1Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr1Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(52usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr2_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr2Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr2Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(56usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr3_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr3Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr3Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(60usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr4_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr4Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr4Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(64usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr5_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr5Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr5Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(68usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr6_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr6Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr6Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(72usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr7_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr7Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr7Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(76usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr8_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr8Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr8Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(80usize),
            )
        }
    }

    #[doc = "Shadow Receive/Transmit Buffer Register"]
    #[inline(always)]
    pub const fn uart2_srbr_sthr9_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrbrSthr9Reg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrbrSthr9Reg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(84usize),
            )
        }
    }

    #[doc = "Software Reset Register."]
    #[inline(always)]
    pub const fn uart2_srr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(136usize),
            )
        }
    }

    #[doc = "Shadow Request to Send"]
    #[inline(always)]
    pub const fn uart2_srts_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrtsReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrtsReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(140usize),
            )
        }
    }

    #[doc = "Shadow RCVR Trigger"]
    #[inline(always)]
    pub const fn uart2_srt_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2SrtReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2SrtReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(156usize),
            )
        }
    }

    #[doc = "Shadow TX Empty Trigger"]
    #[inline(always)]
    pub const fn uart2_stet_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2StetReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2StetReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(160usize),
            )
        }
    }

    #[doc = "Transmit Address Register"]
    #[inline(always)]
    pub const fn uart2_tar_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2TarReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2TarReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(200usize),
            )
        }
    }

    #[doc = "Transmit FIFO Level"]
    #[inline(always)]
    pub const fn uart2_tfl_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2TflReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2TflReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(128usize),
            )
        }
    }

    #[doc = "Component Version"]
    #[inline(always)]
    pub const fn uart2_ucv_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2UcvReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2UcvReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(248usize),
            )
        }
    }

    #[doc = "UART Status register."]
    #[inline(always)]
    pub const fn uart2_usr_reg(
        &self,
    ) -> &'static crate::common::Reg<self::Uart2UsrReg_SPEC, crate::common::RW> {
        unsafe {
            crate::common::Reg::<self::Uart2UsrReg_SPEC, crate::common::RW>::from_ptr(
                self._svd2pac_as_ptr().add(124usize),
            )
        }
    }
}
#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2CtrReg_SPEC;
impl crate::sealed::RegSpec for Uart2CtrReg_SPEC {
    type DataType = u32;
}

#[doc = "Component Type Register"]
pub type Uart2CtrReg = crate::RegValueT<Uart2CtrReg_SPEC>;

impl Uart2CtrReg {
    #[doc = "Component Type Register"]
    #[inline(always)]
    pub fn uart_ctr(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xffffffff,
        1,
        0,
        u32,
        u32,
        Uart2CtrReg_SPEC,
        crate::common::R,
    > {
        crate::common::RegisterField::<
            0,
            0xffffffff,
            1,
            0,
            u32,
            u32,
            Uart2CtrReg_SPEC,
            crate::common::R,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2CtrReg {
    #[inline(always)]
    fn default() -> Uart2CtrReg {
        <crate::RegValueT<Uart2CtrReg_SPEC> as RegisterValue<_>>::new(1146552592)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2DlfReg_SPEC;
impl crate::sealed::RegSpec for Uart2DlfReg_SPEC {
    type DataType = u32;
}

#[doc = "Divisor Latch Fraction Register"]
pub type Uart2DlfReg = crate::RegValueT<Uart2DlfReg_SPEC>;

impl Uart2DlfReg {
    #[doc = "The fractional value is added to integer value set by DLH, DLL. Fractional value is equal UART_DLF/16"]
    #[inline(always)]
    pub fn uart_dlf(
        self,
    ) -> crate::common::RegisterField<0, 0xf, 1, 0, u8, u8, Uart2DlfReg_SPEC, crate::common::RW>
    {
        crate::common::RegisterField::<0,0xf,1,0,u8,u8,Uart2DlfReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2DlfReg {
    #[inline(always)]
    fn default() -> Uart2DlfReg {
        <crate::RegValueT<Uart2DlfReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2DmasaReg_SPEC;
impl crate::sealed::RegSpec for Uart2DmasaReg_SPEC {
    type DataType = u32;
}

#[doc = "DMA Software Acknowledge"]
pub type Uart2DmasaReg = crate::RegValueT<Uart2DmasaReg_SPEC>;

impl Uart2DmasaReg {
    #[doc = "This register is use to perform DMA software acknowledge if a transfer needs to be terminated due to an error condition. For example, if the DMA disables the channel, then the DW_apb_uart should clear its request. This will cause the TX request, TX single, RX request and RX single signals to de-assert. Note that this bit is \'self-clearing\' and it is not necessary to clear this bit."]
    #[inline(always)]
    pub fn uart_dmasa(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2DmasaReg_SPEC, crate::common::W> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2DmasaReg_SPEC,crate::common::W>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2DmasaReg {
    #[inline(always)]
    fn default() -> Uart2DmasaReg {
        <crate::RegValueT<Uart2DmasaReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2HtxReg_SPEC;
impl crate::sealed::RegSpec for Uart2HtxReg_SPEC {
    type DataType = u32;
}

#[doc = "Halt TX"]
pub type Uart2HtxReg = crate::RegValueT<Uart2HtxReg_SPEC>;

impl Uart2HtxReg {
    #[doc = "This register is use to halt transmissions, so that the transmit FIFO can be filled by the master when FIFOs are implemented and enabled.\n0 = Halt TX disabled\n1 = Halt TX enabled\nNote, if FIFOs are not enabled, the setting of the halt TX register has no effect on operation."]
    #[inline(always)]
    pub fn uart_halt_tx(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2HtxReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2HtxReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2HtxReg {
    #[inline(always)]
    fn default() -> Uart2HtxReg {
        <crate::RegValueT<Uart2HtxReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2IerDlhReg_SPEC;
impl crate::sealed::RegSpec for Uart2IerDlhReg_SPEC {
    type DataType = u32;
}

#[doc = "Interrupt Enable Register"]
pub type Uart2IerDlhReg = crate::RegValueT<Uart2IerDlhReg_SPEC>;

impl Uart2IerDlhReg {
    #[doc = "Interrupt Enable Register: PTIME, Programmable THRE Interrupt Mode Enable. This is used to enable/disable the generation of THRE Interrupt. 0 = disabled 1 = enabled \nDivisor Latch (High): Bit\\[7\\] of the 8 bit DLH register."]
    #[inline(always)]
    pub fn ptime_dlh7(
        self,
    ) -> crate::common::RegisterFieldBool<7, 1, 0, Uart2IerDlhReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<7,1,0,Uart2IerDlhReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Divisor Latch (High): Bit\\[6:5\\] of the 8 bit DLH register"]
    #[inline(always)]
    pub fn dlh6_5(
        self,
    ) -> crate::common::RegisterField<5, 0x3, 1, 0, u8, u8, Uart2IerDlhReg_SPEC, crate::common::RW>
    {
        crate::common::RegisterField::<5,0x3,1,0,u8,u8,Uart2IerDlhReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Interrupt Enable Register: ELCOLR (read only), this bit controls the method for clearing the status in the LSR register. This is applicable only for Overrun Error, Parity Error, Framing Error, and Break Interrupt status bits.\n0 = LSR status bits are cleared either on reading Rx FIFO (RBR Read) or On reading LSR register.\nDivisor Latch (High): Bit\\[4\\] of the 8 bit DLH register"]
    #[inline(always)]
    pub fn elcolr_dlh4(
        self,
    ) -> crate::common::RegisterFieldBool<4, 1, 0, Uart2IerDlhReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<4,1,0,Uart2IerDlhReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Interrupt Enable Register: EDSSI, Enable Modem Status Interrupt. This is used to enable/disable the generation of Modem Status Interrupt. This is the fourth highest priority interrupt. 0 = disabled 1 = enabled\nDivisor Latch (High): Bit\\[3\\] of the 8 bit DLH register"]
    #[inline(always)]
    pub fn edssi_dlh3(
        self,
    ) -> crate::common::RegisterFieldBool<3, 1, 0, Uart2IerDlhReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<3,1,0,Uart2IerDlhReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Interrupt Enable Register: ELSI, Enable Receiver Line Status Interrupt. This is used to enable/disable the generation of Receiver Line Status Interrupt. This is the highest priority interrupt. 0 = disabled 1 = enabled\nDivisor Latch (High): Bit\\[2\\] of the 8 bit DLH register."]
    #[inline(always)]
    pub fn elsi_dlh2(
        self,
    ) -> crate::common::RegisterFieldBool<2, 1, 0, Uart2IerDlhReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<2,1,0,Uart2IerDlhReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Interrupt Enable Register: ETBEI, Enable Transmit Holding Register Empty Interrupt. This is used to enable/disable the generation of Transmitter Holding Register Empty Interrupt. This is the third highest priority interrupt. 0 = disabled 1 = enabled \nDivisor Latch (High): Bit\\[1\\] of the 8 bit DLH register."]
    #[inline(always)]
    pub fn etbei_dlh1(
        self,
    ) -> crate::common::RegisterFieldBool<1, 1, 0, Uart2IerDlhReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<1,1,0,Uart2IerDlhReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Interrupt Enable Register: ERBFI, Enable Received Data Available Interrupt. This is used to enable/disable the generation of Received Data Available Interrupt and the Character Timeout Interrupt (if in FIFO mode and FIFO\'s enabled). These are the second highest priority interrupts. 0 = disabled 1 = enabled\nDivisor Latch (High): Bit\\[0\\] of the 8 bit DLH register."]
    #[inline(always)]
    pub fn erbfi_dlh0(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2IerDlhReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2IerDlhReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2IerDlhReg {
    #[inline(always)]
    fn default() -> Uart2IerDlhReg {
        <crate::RegValueT<Uart2IerDlhReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2IirFcrReg_SPEC;
impl crate::sealed::RegSpec for Uart2IirFcrReg_SPEC {
    type DataType = u32;
}

#[doc = "Interrupt Identification Register/FIFO Control Register"]
pub type Uart2IirFcrReg = crate::RegValueT<Uart2IirFcrReg_SPEC>;

impl Uart2IirFcrReg {
    #[doc = "On Read Interrupt Identification Register :\nBits\\[7:6\\], FIFO\'s Enabled (or FIFOSE): This is used to indicate whether the FIFO\'s are enabled or disabled. 00 = disabled. 11 = enabled.\nBits\\[5:4\\],Reserved\nBits\\[3:0\\], Interrupt ID (or IID): This indicates the highest priority pending interrupt which can be one of the following types:0001 = no interrupt pending. 0010 = THR empty. 0100 = received data available. 0110 = receiver line status. 0111 = busy detect. 1100 = character timeout.\nOn Write FIFO Control Register\nBits\\[7:6\\], RCVR Trigger (or RT):. This is used to select the trigger level in the receiver FIFO at which the Received Data Available Interrupt will be generated. In auto flow control mode it is used to determine when the rts_n signal will be de-asserted. It also determines when the dma_rx_req_n signal will be asserted when in certain modes of operation. The following trigger levels are supported: 00 = 1 character in the FIFO 01 = FIFO 1/4 full 10 = FIFO 1/2 full 11 = FIFO 2 less than full\nBits\\[5:4\\], TX Empty Trigger (or TET): This is used to select the empty threshold level at which the THRE Interrupts will be generated when the mode is active. It also determines when the dma_tx_req_n signal will be asserted when in certain modes of operation. The following trigger levels are supported: 00 = FIFO empty 01 = 2 characters in the FIFO 10 = FIFO 1/4 full 11 = FIFO 1/2 full\nBit\\[3\\], DMA Mode (or DMAM): This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals. 0 = mode 0 1 = mode 1\nBit\\[2\\], XMIT FIFO Reset (or XFIFOR): This resets the control portion of the transmit FIFO and treats the FIFO as empty. Note that this bit is \'self-clearing\' and it is not necessary to clear this bit.\nBit\\[1\\], RCVR FIFO Reset (or RFIFOR): This resets the control portion of the receive FIFO and treats the FIFO as empty. Note that this bit is \'self-clearing\' and it is not necessary to clear this bit.\nBit\\[0\\], FIFO Enable (or FIFOE): This enables/disables the transmit (XMIT) and receive (RCVR) FIFO\'s. Whenever the value of this bit is changed both the XMIT and RCVR controller portion of FIFO\'s will be reset."]
    #[inline(always)]
    pub fn iir_fcr(
        self,
    ) -> crate::common::RegisterField<0, 0xff, 1, 0, u8, u8, Uart2IirFcrReg_SPEC, crate::common::RW>
    {
        crate::common::RegisterField::<0,0xff,1,0,u8,u8,Uart2IirFcrReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2IirFcrReg {
    #[inline(always)]
    fn default() -> Uart2IirFcrReg {
        <crate::RegValueT<Uart2IirFcrReg_SPEC> as RegisterValue<_>>::new(1)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2LcrExt_SPEC;
impl crate::sealed::RegSpec for Uart2LcrExt_SPEC {
    type DataType = u32;
}

#[doc = "Line Extended Control Register"]
pub type Uart2LcrExt = crate::RegValueT<Uart2LcrExt_SPEC>;

impl Uart2LcrExt {
    #[doc = "Transmit mode control bit. This bit is used to control the type of transmit mode during 9-bit data transfers.\n1 = In this mode of operation, Transmit Holding Register (THR) and Shadow Transmit Holding Register (STHR) are 9-bit wide. The user needs to ensure that the THR/STHR register is written correctly for address/data.\nAddress: 9th bit is set to 1,\nData : 9th bit is set to 0.\nNote: Transmit address register (TAR) is not applicable in this mode of operation.\n0 = In this mode of operation, Transmit Holding Register (THR) and Shadow Transmit Holding register (STHR) are 8-bit wide. The user needs to program the address into Transmit Address Register (TAR) and data into the THR/STHR register. SEND_ADDR bit is used as a control knob to indicate the uart on when to send the address."]
    #[inline(always)]
    pub fn uart_transmit_mode(
        self,
    ) -> crate::common::RegisterFieldBool<3, 1, 0, Uart2LcrExt_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<3,1,0,Uart2LcrExt_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Send address control bit. This bit is used as a control knob for the user to determine when to send the address during transmit mode.\n1 = 9-bit character will be transmitted with 9-th bit set to 1 and the remaining 8-bits will match to what is being programmed in \'Transmit Address Register\'.\n0 = 9-bit character will be transmitted with 9-th bit set to 0 and the remaining 8-bits will be taken from the TXFIFO which is programmed through 8-bit wide THR/STHR register.\nNote:\n1. This bit is auto-cleared by the hardware, after sending out the address character. User is not expected to program this bit to 0.\n2. This field is applicable only when DLS_E bit is set to 1 and TRANSMIT_MODE is set to 0."]
    #[inline(always)]
    pub fn uart_send_addr(
        self,
    ) -> crate::common::RegisterFieldBool<2, 1, 0, Uart2LcrExt_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<2,1,0,Uart2LcrExt_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Address Match Mode.This bit is used to enable the address match feature during receive.\n1 = Address match mode; uart will wait until the incoming character with 9-th bit set to 1. And further checks to see if the address matches with what is programmed in \'Receive Address Match Register\'. If match is found, then sub-sequent characters will be treated as valid data and DW_apb_uart starts receiving data.\n0 = Normal mode; DW_apb_uart will start to receive the data and 9-bit character will be formed and written into the receive RXFIFO. User is responsible to read the data and differentiate b/n address and data.\nNote: This field is applicable only when DLS_E is set to 1."]
    #[inline(always)]
    pub fn uart_addr_match(
        self,
    ) -> crate::common::RegisterFieldBool<1, 1, 0, Uart2LcrExt_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<1,1,0,Uart2LcrExt_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Extension for DLS. This bit is used to enable 9-bit data for transmit and receive transfers."]
    #[inline(always)]
    pub fn uart_dls_e(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2LcrExt_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2LcrExt_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2LcrExt {
    #[inline(always)]
    fn default() -> Uart2LcrExt {
        <crate::RegValueT<Uart2LcrExt_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2LcrReg_SPEC;
impl crate::sealed::RegSpec for Uart2LcrReg_SPEC {
    type DataType = u32;
}

#[doc = "Line Control Register"]
pub type Uart2LcrReg = crate::RegValueT<Uart2LcrReg_SPEC>;

impl Uart2LcrReg {
    #[doc = "Divisor Latch Access Bit.\nThis bit is used to enable reading and writing of the Divisor Latch register (DLL and DLH) to set the baud rate of the UART.\nThis bit must be cleared after initial baud rate setup in order to access other registers."]
    #[inline(always)]
    pub fn uart_dlab(
        self,
    ) -> crate::common::RegisterFieldBool<7, 1, 0, Uart2LcrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<7,1,0,Uart2LcrReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Break Control Bit.\nThis is used to cause a break condition to be transmitted to the receiving device. If set to one the serial output is forced to the spacing (logic 0) state. When not in Loopback Mode, as determined by MCR\\[4\\], the sout line is forced low until the Break bit is cleared."]
    #[inline(always)]
    pub fn uart_bc(
        self,
    ) -> crate::common::RegisterFieldBool<6, 1, 0, Uart2LcrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<6,1,0,Uart2LcrReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Stick Parity. (writeable only when UART is not busy USR\\[0\\] is 0); otherwise always writable and always readable. This bit is used to force parity value. When PEN, EPS and Stick Parity are set to 1, the parity bit is transmitted and checked as logic 0. If PEN and Stick Parity are set to 1 and EPS is a logic 0, then parity bit is transmitted and checked as a logic 1. If this bit is set to 0, Stick Parity is disabled."]
    #[inline(always)]
    pub fn uart_sp(
        self,
    ) -> crate::common::RegisterFieldBool<5, 1, 0, Uart2LcrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<5,1,0,Uart2LcrReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Even Parity Select. Writeable only when UART is not busy (USR\\[0\\] is zero).\nThis is used to select between even and odd parity, when parity is enabled (PEN set to one). If set to one, an even number of logic 1s is transmitted or checked. If set to zero, an odd number of logic 1s is transmitted or checked."]
    #[inline(always)]
    pub fn uart_eps(
        self,
    ) -> crate::common::RegisterFieldBool<4, 1, 0, Uart2LcrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<4,1,0,Uart2LcrReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Parity Enable. Writeable only when UART is not busy (USR\\[0\\] is zero)\nThis bit is used to enable and disable parity generation and detection in transmitted and received serial character respectively.\n0 = parity disabled\n1 = parity enabled"]
    #[inline(always)]
    pub fn uart_pen(
        self,
    ) -> crate::common::RegisterFieldBool<3, 1, 0, Uart2LcrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<3,1,0,Uart2LcrReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Number of stop bits.\nThis is used to select the number of stop bits per character that the peripheral transmits and receives. If set to zero, one stop bit is transmitted in the serial data.\nIf set to one and the data bits are set to 5 (LCR\\[1:0\\] set to zero) one and a half stop bits is transmitted. Otherwise, two stop bits are transmitted. Note that regardless of the number of stop bits selected, the receiver checks only the first stop bit.\n0 = 1 stop bit\n1 = 1.5 stop bits when DLS (LCR\\[1:0\\]) is zero, else 2 stop bit"]
    #[inline(always)]
    pub fn uart_stop(
        self,
    ) -> crate::common::RegisterFieldBool<2, 1, 0, Uart2LcrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<2,1,0,Uart2LcrReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Data Length Select.\nThis is used to select the number of data bits per character that the peripheral transmits and receives. The number of bit that may be selected areas follows:\n00 = 5 bits\n01 = 6 bits\n10 = 7 bits\n11 = 8 bits"]
    #[inline(always)]
    pub fn uart_dls(
        self,
    ) -> crate::common::RegisterField<0, 0x3, 1, 0, u8, u8, Uart2LcrReg_SPEC, crate::common::RW>
    {
        crate::common::RegisterField::<0,0x3,1,0,u8,u8,Uart2LcrReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2LcrReg {
    #[inline(always)]
    fn default() -> Uart2LcrReg {
        <crate::RegValueT<Uart2LcrReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2LsrReg_SPEC;
impl crate::sealed::RegSpec for Uart2LsrReg_SPEC {
    type DataType = u32;
}

#[doc = "Line Status Register"]
pub type Uart2LsrReg = crate::RegValueT<Uart2LsrReg_SPEC>;

impl Uart2LsrReg {
    #[doc = "Address Received Bit.\nIf 9Bit data mode (LCR_EXT\\[0\\]=1) is enabled, this bit is used to indicate the 9th bit of the receive data is set to 1. This bit can also be used to indicate whether the incoming character is address or data.\n1 = Indicates the character is address.\n0 = Indicates the character is data.\nIn the FIFO mode, since the 9th bit is associated with a character received, it is revealed when the character with the 9th bit set to 1 is at the top of the FIFO.\nReading the LSR clears the 9BIT.\nNote: User needs to ensure that interrupt gets cleared (reading LSR register) before the next address byte arrives. If there is a delay in clearing the interrupt, then Software will not be able to distinguish between multiple address related interrupt."]
    #[inline(always)]
    pub fn uart_addr_rcvd(
        self,
    ) -> crate::common::RegisterFieldBool<8, 1, 0, Uart2LsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<8,1,0,Uart2LsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Receiver FIFO Error bit.\nThis bit is only relevant when FIFOs are enabled (FCR\\[0\\] set to one). This is used to indicate if there is at least one parity error, framing error, or break indication in the FIFO.\n0 = no error in RX FIFO\n1 = error in RX FIFO\nThis bit is cleared when the LSR is read and the character with the error is at the top of the receiver FIFO and there are no subsequent errors in the FIFO."]
    #[inline(always)]
    pub fn uart_rfe(
        self,
    ) -> crate::common::RegisterFieldBool<7, 1, 0, Uart2LsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<7,1,0,Uart2LsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Transmitter Empty bit.\nIf FIFOs enabled (FCR\\[0\\] set to one), this bit is set whenever the Transmitter Shift Register and the FIFO are both empty. If FIFOs are disabled, this bit is set whenever the Transmitter Holding Register and the Transmitter Shift Register are both empty."]
    #[inline(always)]
    pub fn uart_temt(
        self,
    ) -> crate::common::RegisterFieldBool<6, 1, 0, Uart2LsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<6,1,0,Uart2LsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Transmit Holding Register Empty bit.\nIf THRE mode is disabled (IER\\[7\\] set to zero) and regardless of FIFO\'s being implemented/enabled or not, this bit indicates that the THR or TX FIFO is empty.\nThis bit is set whenever data is transferred from the THR or TX FIFO to the transmitter shift register and no new data has been written to the THR or TX FIFO. This also causes a THRE Interrupt to occur, if the THRE Interrupt is enabled. If both modes are active (IER\\[7\\] set to one and FCR\\[0\\] set to one respectively), the functionality is switched to indicate the transmitter FIFO is full, and no longer controls THRE interrupts, which are then controlled by the FCR\\[5:4\\] threshold setting."]
    #[inline(always)]
    pub fn uart_thre(
        self,
    ) -> crate::common::RegisterFieldBool<5, 1, 0, Uart2LsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<5,1,0,Uart2LsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Break Interrupt bit.\nThis is used to indicate the detection of a break sequence on the serial input data.\nIf in UART mode (SIR_MODE == Disabled), it is set whenever the serial input, sin, is held in a logic \'0\' state for longer than the sum of start time + data bits + parity + stop bits.\nIn the FIFO mode, the character associated with the break condition is carried through the FIFO and is revealed when the character is at the top of the FIFO.\nReading the LSR clears the BI bit. In the non-FIFO mode, the BI indication occurs immediately and persists until the LSR is read."]
    #[inline(always)]
    pub fn uart_bi(
        self,
    ) -> crate::common::RegisterFieldBool<4, 1, 0, Uart2LsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<4,1,0,Uart2LsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Framing Error bit.\nThis is used to indicate the occurrence of a framing error in the receiver. A framing error occurs when the receiver does not detect a valid STOP bit in the received data.\nIn the FIFO mode, since the framing error is associated with a character received, it is revealed when the character with the framing error is at the top of the FIFO.\nWhen a framing error occurs, the UART tries to resynchronize. It does this by assuming that the error was due to the start bit of the next character and then continues receiving the other bit i.e. data, and/or parity and stop. It should be noted that the Framing Error (FE) bit (LSR\\[3\\]) is set if a break interrupt has occurred, as indicated by Break Interrupt (BI) bit (LSR\\[4\\]).\n0 = no framing error\n1 = framing error\nReading the LSR clears the FE bit."]
    #[inline(always)]
    pub fn uart_fe(
        self,
    ) -> crate::common::RegisterFieldBool<3, 1, 0, Uart2LsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<3,1,0,Uart2LsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Parity Error bit.\nThis is used to indicate the occurrence of a parity error in the receiver if the Parity Enable (PEN) bit (LCR\\[3\\]) is set.\nIn the FIFO mode, since the parity error is associated with a character received, it is revealed when the character with the parity error arrives at the top of the FIFO.\nIt should be noted that the Parity Error (PE) bit (LSR\\[2\\]) is set if a break interrupt has occurred, as indicated by Break Interrupt (BI) bit (LSR\\[4\\]).\n0 = no parity error\n1 = parity error\nReading the LSR clears the PE bit."]
    #[inline(always)]
    pub fn uart_pe(
        self,
    ) -> crate::common::RegisterFieldBool<2, 1, 0, Uart2LsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<2,1,0,Uart2LsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Overrun error bit.\nThis is used to indicate the occurrence of an overrun error.\nThis occurs if a new data character was received before the previous data was read.\nIn the non-FIFO mode, the OE bit is set when a new character arrives in the receiver before the previous character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the receive shift register is lost.\n0 = no overrun error\n1 = overrun error\nReading the LSR clears the OE bit."]
    #[inline(always)]
    pub fn uart_oe(
        self,
    ) -> crate::common::RegisterFieldBool<1, 1, 0, Uart2LsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<1,1,0,Uart2LsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Data Ready bit.\nThis is used to indicate that the receiver contains at least one character in the RBR or the receiver FIFO.\n0 = no data ready\n1 = data ready\nThis bit is cleared when the RBR is read in non-FIFO mode, or when the receiver FIFO is empty, in FIFO mode."]
    #[inline(always)]
    pub fn uart_dr(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2LsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2LsrReg_SPEC,crate::common::R>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2LsrReg {
    #[inline(always)]
    fn default() -> Uart2LsrReg {
        <crate::RegValueT<Uart2LsrReg_SPEC> as RegisterValue<_>>::new(96)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2McrReg_SPEC;
impl crate::sealed::RegSpec for Uart2McrReg_SPEC {
    type DataType = u32;
}

#[doc = "Modem Control Register"]
pub type Uart2McrReg = crate::RegValueT<Uart2McrReg_SPEC>;

impl Uart2McrReg {
    #[doc = "Auto Flow Control Enable.\nWhen FIFOs are enabled and the Auto Flow Control Enable (AFCE) bit is set, Auto Flow Control features are enabled as described in \"Auto Flow Control\".\n0 = Auto Flow Control Mode disabled\n1 = Auto Flow Control Mode enabled"]
    #[inline(always)]
    pub fn uart_afce(
        self,
    ) -> crate::common::RegisterFieldBool<5, 1, 0, Uart2McrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<5,1,0,Uart2McrReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "LoopBack Bit.\nThis is used to put the UART into a diagnostic mode for test purposes.\nData on the sout line is held high, while serial data output is looped back to the sin line, internally. In this mode all the interrupts are fully functional. Also, in loopback mode, the modem control inputs (dsr_n, cts_n, ri_n, dcd_n) are disconnected and the modem control outputs (dtr_n, rts_n) are looped back to the inputs, internally."]
    #[inline(always)]
    pub fn uart_lb(
        self,
    ) -> crate::common::RegisterFieldBool<4, 1, 0, Uart2McrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<4,1,0,Uart2McrReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Request to Send.\nThis is used to directly control the Request to Send (rts_n) output. The Request To Send (rts_n) output is used to inform the modem or data set that the UART is ready to exchange data.\nWhen Auto RTS Flow Control is not enabled (MCR\\[5\\] set to zero), the rts_n signal is set low by programming MCR\\[1\\] (RTS) to a high.In Auto Flow Control, active (MCR\\[5\\] set to one) and FIFOs enable (FCR\\[0\\] set to one), the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold). The rts_n signal is de-asserted when MCR\\[1\\] is set low.\nNote that in Loopback mode (MCR\\[4\\] set to one), the rts_n output is held inactive high while the value of this location is internally looped back to an input."]
    #[inline(always)]
    pub fn uart_rts(
        self,
    ) -> crate::common::RegisterFieldBool<1, 1, 0, Uart2McrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<1,1,0,Uart2McrReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2McrReg {
    #[inline(always)]
    fn default() -> Uart2McrReg {
        <crate::RegValueT<Uart2McrReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2MsrReg_SPEC;
impl crate::sealed::RegSpec for Uart2MsrReg_SPEC {
    type DataType = u32;
}

#[doc = "Modem Status Register"]
pub type Uart2MsrReg = crate::RegValueT<Uart2MsrReg_SPEC>;

impl Uart2MsrReg {
    #[doc = "Clear to Send.\nThis is used to indicate the current state of the modem control line cts_n. This bit is the complement of cts_n. When the Clear to Send input (cts_n) is asserted it is an indication that the modem or data set is ready to exchange data with the UART Ctrl.\n0 = cts_n input is de-asserted (logic 1)\n1 = cts_n input is asserted (logic 0)\nIn Loopback Mode (MCR\\[4\\] = 1), CTS is the same as MCR\\[1\\] (RTS)."]
    #[inline(always)]
    pub fn uart_cts(
        self,
    ) -> crate::common::RegisterFieldBool<4, 1, 0, Uart2MsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<4,1,0,Uart2MsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Delta Clear to Send.\nThis is used to indicate that the modem control line cts_n has changed since the last time the MSR was read.\n0 = no change on cts_n since last read of MSR\n1 = change on cts_n since last read of MSR\nReading the MSR clears the DCTS bit. In Loopback Mode (MCR\\[4\\] = 1), DCTS reflects changes on MCR\\[1\\] (RTS).\nNote, if the DCTS bit is not set and the cts_n signal is asserted (low) and a reset occurs (software or otherwise), then the DCTS bit is set when the reset is removed if the cts_n signal remains asserted."]
    #[inline(always)]
    pub fn uart_dcts(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2MsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2MsrReg_SPEC,crate::common::R>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2MsrReg {
    #[inline(always)]
    fn default() -> Uart2MsrReg {
        <crate::RegValueT<Uart2MsrReg_SPEC> as RegisterValue<_>>::new(16)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2RarReg_SPEC;
impl crate::sealed::RegSpec for Uart2RarReg_SPEC {
    type DataType = u32;
}

#[doc = "Receive Address Register"]
pub type Uart2RarReg = crate::RegValueT<Uart2RarReg_SPEC>;

impl Uart2RarReg {
    #[doc = "This is an address matching register during receive mode. If the 9-th bit is set in the incoming character then the remaining 8-bits will be checked against this register value. If the match happens then sub-sequent characters with 9-th bit set to 0 will be treated as data byte until the next address byte is received.\nNote:\n- This register is applicable only when \'ADDR_MATCH\'(LCR_EXT\\[1\\] and \'DLS_E\' (LCR_EXT\\[0\\]) bits are set to 1.\nRAR should be programmed only when UART is not busy."]
    #[inline(always)]
    pub fn uart_rar(
        self,
    ) -> crate::common::RegisterField<0, 0xff, 1, 0, u8, u8, Uart2RarReg_SPEC, crate::common::RW>
    {
        crate::common::RegisterField::<0,0xff,1,0,u8,u8,Uart2RarReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2RarReg {
    #[inline(always)]
    fn default() -> Uart2RarReg {
        <crate::RegValueT<Uart2RarReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2RbrThrDllReg_SPEC;
impl crate::sealed::RegSpec for Uart2RbrThrDllReg_SPEC {
    type DataType = u32;
}

#[doc = "Receive Buffer Register"]
pub type Uart2RbrThrDllReg = crate::RegValueT<Uart2RbrThrDllReg_SPEC>;

impl Uart2RbrThrDllReg {
    #[doc = "When 9BIT_DATA_EN, On read :Receive Buffer bit 8 - On write Transmit Buffer bit 8 when LCR_EXT\\[3\\]=1"]
    #[inline(always)]
    pub fn rbr_thr_9bit(
        self,
    ) -> crate::common::RegisterFieldBool<8, 1, 0, Uart2RbrThrDllReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<8,1,0,Uart2RbrThrDllReg_SPEC,crate::common::RW>::from_register(self,0)
    }

    #[doc = "Receive Buffer Register: (RBR).\nThis register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur.\nTransmit Holding Register: (THR)\nThis register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.\nDivisor Latch (Low): (DLL)\nThis register makes up the lower 8-bits of a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. This register may only be accessed when the DLAB bit (LCR\\[7\\]) is set. The output baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows:\nbaud rate = (serial clock freq) / (16 * divisor)\nNote that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled and no serial communications will occur. Also, once the DLL is set, at least 8 clock cycles of the slowest DW_apb_uart clock should be allowed to pass before transmitting or receiving data.\nDivisor Latch (High): (DLH) (Note: This register is placed in UART_IER_DLH_REG with offset 0x4)\nUpper 8-bits of a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. This register may be accessed only when the DLAB bit (LCR\\[7\\]) is set. The output baud rate is equal to the serial clock frequency divided by sixteen times the value of the baud rate divisor, as follows:\nbaud rate = (serial clock freq) / (16 * divisor).\nNote that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled and no serial communications occur. Also, once the DLH is set, at least 8 clock cycles of the slowest DW_apb_uart clock should be allowed to pass before transmitting or receiving data."]
    #[inline(always)]
    pub fn rbr_thr_dll(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2RbrThrDllReg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2RbrThrDllReg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2RbrThrDllReg {
    #[inline(always)]
    fn default() -> Uart2RbrThrDllReg {
        <crate::RegValueT<Uart2RbrThrDllReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2RflReg_SPEC;
impl crate::sealed::RegSpec for Uart2RflReg_SPEC {
    type DataType = u32;
}

#[doc = "Receive FIFO Level."]
pub type Uart2RflReg = crate::RegValueT<Uart2RflReg_SPEC>;

impl Uart2RflReg {
    #[doc = "Receive FIFO Level.\nThis is indicates the number of data entries in the receive FIFO."]
    #[inline(always)]
    pub fn uart_receive_fifo_level(
        self,
    ) -> crate::common::RegisterField<0, 0x1f, 1, 0, u8, u8, Uart2RflReg_SPEC, crate::common::R>
    {
        crate::common::RegisterField::<0,0x1f,1,0,u8,u8,Uart2RflReg_SPEC,crate::common::R>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2RflReg {
    #[inline(always)]
    fn default() -> Uart2RflReg {
        <crate::RegValueT<Uart2RflReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SbcrReg_SPEC;
impl crate::sealed::RegSpec for Uart2SbcrReg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Break Control Register"]
pub type Uart2SbcrReg = crate::RegValueT<Uart2SbcrReg_SPEC>;

impl Uart2SbcrReg {
    #[doc = "Shadow Break Control Bit.\nThis is a shadow register for the Break bit (LCR\\[6\\]), this can be used to remove the burden of having to performing a read modify write on the LCR. This is used to cause a break condition to be transmitted to the receiving device.\nIf set to one the serial output is forced to the spacing (logic 0) state. When not in Loopback Mode, as determined by MCR\\[4\\], the sout line is forced low until the Break bit is cleared."]
    #[inline(always)]
    pub fn uart_shadow_break_control(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2SbcrReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2SbcrReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2SbcrReg {
    #[inline(always)]
    fn default() -> Uart2SbcrReg {
        <crate::RegValueT<Uart2SbcrReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2ScrReg_SPEC;
impl crate::sealed::RegSpec for Uart2ScrReg_SPEC {
    type DataType = u32;
}

#[doc = "Scratchpad Register"]
pub type Uart2ScrReg = crate::RegValueT<Uart2ScrReg_SPEC>;

impl Uart2ScrReg {
    #[doc = "This register is for programmers to use as a temporary storage space. It has no defined purpose in the UART Ctrl."]
    #[inline(always)]
    pub fn uart_scratch_pad(
        self,
    ) -> crate::common::RegisterField<0, 0xff, 1, 0, u8, u8, Uart2ScrReg_SPEC, crate::common::RW>
    {
        crate::common::RegisterField::<0,0xff,1,0,u8,u8,Uart2ScrReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2ScrReg {
    #[inline(always)]
    fn default() -> Uart2ScrReg {
        <crate::RegValueT<Uart2ScrReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SdmamReg_SPEC;
impl crate::sealed::RegSpec for Uart2SdmamReg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow DMA Mode"]
pub type Uart2SdmamReg = crate::RegValueT<Uart2SdmamReg_SPEC>;

impl Uart2SdmamReg {
    #[doc = "Shadow DMA Mode.\nThis is a shadow register for the DMA mode bit (FCR\\[3\\]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the DMA Mode bit gets updated. This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals.\n0 = mode 0\n1 = mode 1"]
    #[inline(always)]
    pub fn uart_shadow_dma_mode(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2SdmamReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2SdmamReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2SdmamReg {
    #[inline(always)]
    fn default() -> Uart2SdmamReg {
        <crate::RegValueT<Uart2SdmamReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SfeReg_SPEC;
impl crate::sealed::RegSpec for Uart2SfeReg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow FIFO Enable"]
pub type Uart2SfeReg = crate::RegValueT<Uart2SfeReg_SPEC>;

impl Uart2SfeReg {
    #[doc = "Shadow FIFO Enable.\nThis is a shadow register for the FIFO enable bit (FCR\\[0\\]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the FIFO enable bit gets updated.This enables/disables the transmit (XMIT) and receive (RCVR) FIFOs. If this bit is set to zero (disabled) after being enabled then both the XMIT and RCVR controller portion of FIFOs are reset."]
    #[inline(always)]
    pub fn uart_shadow_fifo_enable(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2SfeReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2SfeReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2SfeReg {
    #[inline(always)]
    fn default() -> Uart2SfeReg {
        <crate::RegValueT<Uart2SfeReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr0Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr0Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr0Reg = crate::RegValueT<Uart2SrbrSthr0Reg_SPEC>;

impl Uart2SrbrSthr0Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr0Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr0Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr0Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr0Reg {
        <crate::RegValueT<Uart2SrbrSthr0Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr10Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr10Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr10Reg = crate::RegValueT<Uart2SrbrSthr10Reg_SPEC>;

impl Uart2SrbrSthr10Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr10Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr10Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr10Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr10Reg {
        <crate::RegValueT<Uart2SrbrSthr10Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr11Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr11Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr11Reg = crate::RegValueT<Uart2SrbrSthr11Reg_SPEC>;

impl Uart2SrbrSthr11Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr11Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr11Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr11Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr11Reg {
        <crate::RegValueT<Uart2SrbrSthr11Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr12Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr12Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr12Reg = crate::RegValueT<Uart2SrbrSthr12Reg_SPEC>;

impl Uart2SrbrSthr12Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr12Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr12Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr12Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr12Reg {
        <crate::RegValueT<Uart2SrbrSthr12Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr13Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr13Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr13Reg = crate::RegValueT<Uart2SrbrSthr13Reg_SPEC>;

impl Uart2SrbrSthr13Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr13Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr13Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr13Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr13Reg {
        <crate::RegValueT<Uart2SrbrSthr13Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr14Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr14Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr14Reg = crate::RegValueT<Uart2SrbrSthr14Reg_SPEC>;

impl Uart2SrbrSthr14Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr14Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr14Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr14Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr14Reg {
        <crate::RegValueT<Uart2SrbrSthr14Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr15Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr15Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr15Reg = crate::RegValueT<Uart2SrbrSthr15Reg_SPEC>;

impl Uart2SrbrSthr15Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr15Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr15Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr15Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr15Reg {
        <crate::RegValueT<Uart2SrbrSthr15Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr1Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr1Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr1Reg = crate::RegValueT<Uart2SrbrSthr1Reg_SPEC>;

impl Uart2SrbrSthr1Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr1Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr1Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr1Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr1Reg {
        <crate::RegValueT<Uart2SrbrSthr1Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr2Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr2Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr2Reg = crate::RegValueT<Uart2SrbrSthr2Reg_SPEC>;

impl Uart2SrbrSthr2Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr2Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr2Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr2Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr2Reg {
        <crate::RegValueT<Uart2SrbrSthr2Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr3Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr3Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr3Reg = crate::RegValueT<Uart2SrbrSthr3Reg_SPEC>;

impl Uart2SrbrSthr3Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr3Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr3Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr3Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr3Reg {
        <crate::RegValueT<Uart2SrbrSthr3Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr4Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr4Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr4Reg = crate::RegValueT<Uart2SrbrSthr4Reg_SPEC>;

impl Uart2SrbrSthr4Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr4Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr4Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr4Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr4Reg {
        <crate::RegValueT<Uart2SrbrSthr4Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr5Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr5Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr5Reg = crate::RegValueT<Uart2SrbrSthr5Reg_SPEC>;

impl Uart2SrbrSthr5Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr5Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr5Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr5Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr5Reg {
        <crate::RegValueT<Uart2SrbrSthr5Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr6Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr6Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr6Reg = crate::RegValueT<Uart2SrbrSthr6Reg_SPEC>;

impl Uart2SrbrSthr6Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr6Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr6Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr6Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr6Reg {
        <crate::RegValueT<Uart2SrbrSthr6Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr7Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr7Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr7Reg = crate::RegValueT<Uart2SrbrSthr7Reg_SPEC>;

impl Uart2SrbrSthr7Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr7Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr7Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr7Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr7Reg {
        <crate::RegValueT<Uart2SrbrSthr7Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr8Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr8Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr8Reg = crate::RegValueT<Uart2SrbrSthr8Reg_SPEC>;

impl Uart2SrbrSthr8Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr8Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr8Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr8Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr8Reg {
        <crate::RegValueT<Uart2SrbrSthr8Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrbrSthr9Reg_SPEC;
impl crate::sealed::RegSpec for Uart2SrbrSthr9Reg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Receive/Transmit Buffer Register"]
pub type Uart2SrbrSthr9Reg = crate::RegValueT<Uart2SrbrSthr9Reg_SPEC>;

impl Uart2SrbrSthr9Reg {
    #[doc = "Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR\\[0\\] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR\\[0\\] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR\\[5\\]) is set. If FIFO\'s are disabled (FCR\\[0\\] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO\'s are enabled (FCR\\[0\\] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost."]
    #[inline(always)]
    pub fn srbr_sthrx(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xff,
        1,
        0,
        u8,
        u8,
        Uart2SrbrSthr9Reg_SPEC,
        crate::common::RW,
    > {
        crate::common::RegisterField::<
            0,
            0xff,
            1,
            0,
            u8,
            u8,
            Uart2SrbrSthr9Reg_SPEC,
            crate::common::RW,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2SrbrSthr9Reg {
    #[inline(always)]
    fn default() -> Uart2SrbrSthr9Reg {
        <crate::RegValueT<Uart2SrbrSthr9Reg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrrReg_SPEC;
impl crate::sealed::RegSpec for Uart2SrrReg_SPEC {
    type DataType = u32;
}

#[doc = "Software Reset Register."]
pub type Uart2SrrReg = crate::RegValueT<Uart2SrrReg_SPEC>;

impl Uart2SrrReg {
    #[doc = "XMIT FIFO Reset.\nThis is a shadow register for the XMIT FIFO Reset bit (FCR\\[2\\]). This can be used to remove the burden on software having to store previously written FCR values (which are pretty static) just to reset the transmit FIFO. This resets the control portion of the transmit FIFO and treats the FIFO as empty. Note that this bit is \'self-clearing\'. It is not necessary to clear this bit."]
    #[inline(always)]
    pub fn uart_xfr(
        self,
    ) -> crate::common::RegisterFieldBool<2, 1, 0, Uart2SrrReg_SPEC, crate::common::W> {
        crate::common::RegisterFieldBool::<2,1,0,Uart2SrrReg_SPEC,crate::common::W>::from_register(self,0)
    }

    #[doc = "RCVR FIFO Reset.\nThis is a shadow register for the RCVR FIFO Reset bit (FCR\\[1\\]). This can be used to remove the burden on software having to store previously written FCR values (which are pretty static) just to reset the receive FIFO This resets the control portion of the receive FIFO and treats the FIFO as empty.\nNote that this bit is \'self-clearing\'. It is not necessary to clear this bit."]
    #[inline(always)]
    pub fn uart_rfr(
        self,
    ) -> crate::common::RegisterFieldBool<1, 1, 0, Uart2SrrReg_SPEC, crate::common::W> {
        crate::common::RegisterFieldBool::<1,1,0,Uart2SrrReg_SPEC,crate::common::W>::from_register(self,0)
    }

    #[doc = "UART Reset. This asynchronously resets the UART Ctrl and synchronously removes the reset assertion. For a two clock implementation both pclk and sclk domains are reset."]
    #[inline(always)]
    pub fn uart_ur(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2SrrReg_SPEC, crate::common::W> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2SrrReg_SPEC,crate::common::W>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2SrrReg {
    #[inline(always)]
    fn default() -> Uart2SrrReg {
        <crate::RegValueT<Uart2SrrReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrtsReg_SPEC;
impl crate::sealed::RegSpec for Uart2SrtsReg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow Request to Send"]
pub type Uart2SrtsReg = crate::RegValueT<Uart2SrtsReg_SPEC>;

impl Uart2SrtsReg {
    #[doc = "Shadow Request to Send.\nThis is a shadow register for the RTS bit (MCR\\[1\\]), this can be used to remove the burden of having to\nperforming a read-modify-write on the MCR. This is used to directly control the Request to Send (rts_n) output. The Request To Send (rts_n) output is used to inform the modem or data set that the UART Ctrl is ready to exchange data.\nWhen Auto RTS Flow Control is not enabled (MCR\\[5\\] = 0), the rts_n signal is set low by programming MCR\\[1\\] (RTS) to a high.\nIn Auto Flow Control, (active MCR\\[5\\] = 1) and FIFOs enable (FCR\\[0\\] = 1), the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold).\nNote that in Loopback mode (MCR\\[4\\] = 1), the rts_n output is held inactive-high while the value of this location is internally looped back to an input."]
    #[inline(always)]
    pub fn uart_shadow_request_to_send(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2SrtsReg_SPEC, crate::common::RW> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2SrtsReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2SrtsReg {
    #[inline(always)]
    fn default() -> Uart2SrtsReg {
        <crate::RegValueT<Uart2SrtsReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2SrtReg_SPEC;
impl crate::sealed::RegSpec for Uart2SrtReg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow RCVR Trigger"]
pub type Uart2SrtReg = crate::RegValueT<Uart2SrtReg_SPEC>;

impl Uart2SrtReg {
    #[doc = "Shadow RCVR Trigger.\nThis is a shadow register for the RCVR trigger bits (FCR\\[7:6\\]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the RCVR trigger bit gets updated.\nThis is used to select the trigger level in the receiver FIFO at which the Received Data Available Interrupt is generated. It also determines when the dma_rx_req_n signal is asserted when DMA Mode (FCR\\[3\\]) = 1. The following trigger levels are supported:\n00 = 1 character in the FIFO\n01 = FIFO ¼ full\n10 = FIFO ½ full\n11 = FIFO 2 less than full"]
    #[inline(always)]
    pub fn uart_shadow_rcvr_trigger(
        self,
    ) -> crate::common::RegisterField<0, 0x3, 1, 0, u8, u8, Uart2SrtReg_SPEC, crate::common::RW>
    {
        crate::common::RegisterField::<0,0x3,1,0,u8,u8,Uart2SrtReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2SrtReg {
    #[inline(always)]
    fn default() -> Uart2SrtReg {
        <crate::RegValueT<Uart2SrtReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2StetReg_SPEC;
impl crate::sealed::RegSpec for Uart2StetReg_SPEC {
    type DataType = u32;
}

#[doc = "Shadow TX Empty Trigger"]
pub type Uart2StetReg = crate::RegValueT<Uart2StetReg_SPEC>;

impl Uart2StetReg {
    #[doc = "Shadow TX Empty Trigger.\nThis is a shadow register for the TX empty trigger bits (FCR\\[5:4\\]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the TX empty trigger bit gets updated.\nThis is used to select the empty threshold level at which the THRE Interrupts are generated when the mode is active. The following trigger levels are supported:\n00 = FIFO empty\n01 = 2 characters in the FIFO\n10 = FIFO ¼ full\n11 = FIFO ½ full"]
    #[inline(always)]
    pub fn uart_shadow_tx_empty_trigger(
        self,
    ) -> crate::common::RegisterField<0, 0x3, 1, 0, u8, u8, Uart2StetReg_SPEC, crate::common::RW>
    {
        crate::common::RegisterField::<0,0x3,1,0,u8,u8,Uart2StetReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2StetReg {
    #[inline(always)]
    fn default() -> Uart2StetReg {
        <crate::RegValueT<Uart2StetReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2TarReg_SPEC;
impl crate::sealed::RegSpec for Uart2TarReg_SPEC {
    type DataType = u32;
}

#[doc = "Transmit Address Register"]
pub type Uart2TarReg = crate::RegValueT<Uart2TarReg_SPEC>;

impl Uart2TarReg {
    #[doc = "This is an address matching register during transmit mode. If DLS_E (LCR_EXT\\[0\\]) bit is enabled, then uart will send the 9-bit character with 9-th bit set to 1 and remaining 8-bit address will be sent from this register provided \'SEND_ADDR\' (LCR_EXT\\[2\\]) bit is set to 1.\nNote:\n- This register is used only to send the address. The normal data should be sent by programming THR register.\n- Once the address is started to send on the DW_apb_uart serial lane, then \'SEND_ADDR\' bit will be auto-cleared by the hardware."]
    #[inline(always)]
    pub fn uart_tar(
        self,
    ) -> crate::common::RegisterField<0, 0xff, 1, 0, u8, u8, Uart2TarReg_SPEC, crate::common::RW>
    {
        crate::common::RegisterField::<0,0xff,1,0,u8,u8,Uart2TarReg_SPEC,crate::common::RW>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2TarReg {
    #[inline(always)]
    fn default() -> Uart2TarReg {
        <crate::RegValueT<Uart2TarReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2TflReg_SPEC;
impl crate::sealed::RegSpec for Uart2TflReg_SPEC {
    type DataType = u32;
}

#[doc = "Transmit FIFO Level"]
pub type Uart2TflReg = crate::RegValueT<Uart2TflReg_SPEC>;

impl Uart2TflReg {
    #[doc = "Transmit FIFO Level.\nThis is indicates the number of data entries in the transmit FIFO."]
    #[inline(always)]
    pub fn uart_transmit_fifo_level(
        self,
    ) -> crate::common::RegisterField<0, 0x1f, 1, 0, u8, u8, Uart2TflReg_SPEC, crate::common::R>
    {
        crate::common::RegisterField::<0,0x1f,1,0,u8,u8,Uart2TflReg_SPEC,crate::common::R>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2TflReg {
    #[inline(always)]
    fn default() -> Uart2TflReg {
        <crate::RegValueT<Uart2TflReg_SPEC> as RegisterValue<_>>::new(0)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2UcvReg_SPEC;
impl crate::sealed::RegSpec for Uart2UcvReg_SPEC {
    type DataType = u32;
}

#[doc = "Component Version"]
pub type Uart2UcvReg = crate::RegValueT<Uart2UcvReg_SPEC>;

impl Uart2UcvReg {
    #[doc = "Component Version"]
    #[inline(always)]
    pub fn uart_ucv(
        self,
    ) -> crate::common::RegisterField<
        0,
        0xffffffff,
        1,
        0,
        u32,
        u32,
        Uart2UcvReg_SPEC,
        crate::common::R,
    > {
        crate::common::RegisterField::<
            0,
            0xffffffff,
            1,
            0,
            u32,
            u32,
            Uart2UcvReg_SPEC,
            crate::common::R,
        >::from_register(self, 0)
    }
}
impl ::core::default::Default for Uart2UcvReg {
    #[inline(always)]
    fn default() -> Uart2UcvReg {
        <crate::RegValueT<Uart2UcvReg_SPEC> as RegisterValue<_>>::new(875573546)
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Uart2UsrReg_SPEC;
impl crate::sealed::RegSpec for Uart2UsrReg_SPEC {
    type DataType = u32;
}

#[doc = "UART Status register."]
pub type Uart2UsrReg = crate::RegValueT<Uart2UsrReg_SPEC>;

impl Uart2UsrReg {
    #[doc = "Receive FIFO Full.\nThis is used to indicate that the receive FIFO is completely full.\n0 = Receive FIFO not full\n1 = Receive FIFO Full\nThis bit is cleared when the RX FIFO is no longer full."]
    #[inline(always)]
    pub fn uart_rff(
        self,
    ) -> crate::common::RegisterFieldBool<4, 1, 0, Uart2UsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<4,1,0,Uart2UsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Receive FIFO Not Empty.\nThis is used to indicate that the receive FIFO contains one or more entries.\n0 = Receive FIFO is empty\n1 = Receive FIFO is not empty\nThis bit is cleared when the RX FIFO is empty."]
    #[inline(always)]
    pub fn uart_rfne(
        self,
    ) -> crate::common::RegisterFieldBool<3, 1, 0, Uart2UsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<3,1,0,Uart2UsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Transmit FIFO Empty.\nThis is used to indicate that the transmit FIFO is completely empty.\n0 = Transmit FIFO is not empty\n1 = Transmit FIFO is empty\nThis bit is cleared when the TX FIFO is no longer empty."]
    #[inline(always)]
    pub fn uart_tfe(
        self,
    ) -> crate::common::RegisterFieldBool<2, 1, 0, Uart2UsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<2,1,0,Uart2UsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "Transmit FIFO Not Full.\nThis is used to indicate that the transmit FIFO in not full.\n0 = Transmit FIFO is full\n1 = Transmit FIFO is not full\nThis bit is cleared when the TX FIFO is full."]
    #[inline(always)]
    pub fn uart_tfnf(
        self,
    ) -> crate::common::RegisterFieldBool<1, 1, 0, Uart2UsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<1,1,0,Uart2UsrReg_SPEC,crate::common::R>::from_register(self,0)
    }

    #[doc = "UART Busy. This indicates that a serial transfer is in progress, when cleared indicates that the DW_apb_uart is idle or inactive. 0 - DW_apb_uart is idle or inactive 1 - DW_apb_uart is busy (actively transferring data) Note that it is possible for the UART Busy bit to be cleared even though a new character may have been sent from another device. That is, if the DW_apb_uart has no data in the THR and RBR and there is no transmission in progress and a start bit of a new character has just reached the DW_apb_uart. This is due to the fact that a valid start is not seen until the middle of the bit period and this duration is dependent on the baud divisor that has been programmed. If a second system clock has been implemented (CLOCK_MODE == Enabled) the assertion of this bit will also be delayed by several cycles of the slower clock."]
    #[inline(always)]
    pub fn uart_busy(
        self,
    ) -> crate::common::RegisterFieldBool<0, 1, 0, Uart2UsrReg_SPEC, crate::common::R> {
        crate::common::RegisterFieldBool::<0,1,0,Uart2UsrReg_SPEC,crate::common::R>::from_register(self,0)
    }
}
impl ::core::default::Default for Uart2UsrReg {
    #[inline(always)]
    fn default() -> Uart2UsrReg {
        <crate::RegValueT<Uart2UsrReg_SPEC> as RegisterValue<_>>::new(6)
    }
}