1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/****************************************************************************
*
* Since this code originated from code which is public domain, I
* hereby declare this code to be public domain as well.
*
* Dave Hylands - dhylands@gmail.com
*
****************************************************************************/
/**
*
* @file CBUF.h
*
* @defgroup CBUF Circular Buffer
* @{
*
* @brief A simple and efficient set of circular buffer manipulations.
*
* These macros implement a circular buffer which employs get and put
* pointers, in such a way that mutual exclusion is not required
* (assumes one reader & one writer).
*
* It requires that the circular buffer size be a power of two, and the
* size of the buffer needs to smaller than the index. So an 8 bit index
* supports a circular buffer upto ( 1 << 7 ) = 128 entries, and a 16 bit index
* supports a circular buffer upto ( 1 << 15 ) = 32768 entries.
*
* The basis for these routines came from an article in Jack Ganssle's
* Embedded Muse: http://www.ganssle.com/tem/tem110.pdf
*
* In order to offer the most amount of flexibility for embedded environments
* you need to define a macro for the size.
*
* First, you need to name your circular buffer. For this example, we'll
* call it @c myQ.
*
* The size macro that needs to be defined will be the name of the
* circular buffer followed by @c _SIZE. The size must be a power of two
* and it needs to fit in the get/put indicies. i.e. if you use an
* 8 bit index, then the maximum supported size would be 128.
*
* The structure which defines the circular buffer needs to have 3 members
* <tt>m_getIdx, m_putIdx,</tt> and @c m_entry.
*
* @c m_getIdx and @c m_putIdx need to be unsigned integers of the same size.
*
* @c m_entry needs to be an array of @c xxx_SIZE entries, or a pointer to an
* array of @c xxx_SIZE entries. The type of each entry is entirely up to the
* caller.
*
* @code
* #define myQ_SIZE 64
*
* volatile struct
* {
* uint8_t m_getIdx;
* uint8_t m_putIdx;
* uint8_t m_entry[ myQ_SIZE ];
*
* } myQ;
* @endcode
*
* You could then use CBUF_Push to add a character to the circular buffer:
*
* @code
* CBUF_Push( myQ, 'x' );
* @endcode
*
* And CBUF_Pop to retrieve an element from the buffer:
*
* @code
* ch = CBUF_Pop( myQ );
* @endcode
*
* If you happen to prefer to use C++ instead, there is a templatized
* version which requires no macros. You just declare 3 template parameters:
*
* - The type that should be used for the index
* - The size of the circular buffer
* - The type that should be used for the entry
*
* For example:
* @code
* volatile CBUF< uint8_t, 64, char > myQ;
* @endcode
*
****************************************************************************/
/* ---- Include Files ---------------------------------------------------- */
/* ---- Constants and Types ---------------------------------------------- */
/**
* Initializes the circular buffer for use.
*/
/**
* Returns the number of elements which are currently
* contained in the circular buffer.
*/
/**
* Appends an element to the end of the circular buffer. The
* element is expected to be of the same type as the @c m_entry
* member.
*/
/**
* Retrieves an element from the beginning of the circular buffer
*/
/**
* Returns a pointer to the last spot that was pushed.
*/
/**
* Returns a pointer to the next spot to push. This can be used
* in conjunction with CBUF_AdvancePushIdx to fill out an entry
* before indicating that it's available. It is the caller's
* responsibility to enure that space is available, and that no
* other items are pushed to overwrite the entry returned.
*/
/**
* Advances the put index. This is useful if you need to
* reserve space for an item but can't fill in the contents
* yet. CBUG_GetLastEntryPtr can be used to get a pointer to
* the item. It is the caller's responsibility to ensure that
* the item isn't popped before the contents are filled in.
*/
/**
* Advances the get index. This is slightly more efficient than
* popping and tossing the result.
*/
/**
* Retrieves the <tt>idx</tt>'th element from the beginning of
* the circular buffer
*/
/**
* Retrieves the <tt>idx</tt>'th element from the end of the
* circular buffer.
*/
/**
* Returns a pointer to the next spot to push.
*/
/**
* Determines if the circular buffer is empty.
*/
/**
* Determines if the circular buffer is full.
*/
/**
* Determines if the circular buffer is currenly overflowed or underflowed.
*/
template < class IndexType, unsigned Size, class EntryType >
class CBUF
;
// __cplusplus
/* ---- Variable Externs ------------------------------------------------- */
/* ---- Function Prototypes ---------------------------------------------- */
/** @} */
// CBUF_H