cryptoauthlib-sys 0.2.2

Automatically generated Rust bindings for CryptoAuthentication Library calls.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/**
 * \file
 * \brief Unity tests for the cryptoauthlib Basic API
 *
 * \copyright (c) 2015-2020 Microchip Technology Inc. and its subsidiaries.
 *
 * \page License
 *
 * Subject to your compliance with these terms, you may use Microchip software
 * and any derivatives exclusively with Microchip products. It is your
 * responsibility to comply with third party license terms applicable to your
 * use of third party software (including open source software) that may
 * accompany Microchip software.
 *
 * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
 * EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
 * WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
 * PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT,
 * SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE
 * OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF
 * MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE
 * FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL
 * LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED
 * THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
 * THIS SOFTWARE.
 */
#include <stdlib.h>
#include "atca_test.h"
#include "basic/atca_basic.h"
#include "host/atca_host.h"
#include "test/atca_tests.h"
#include "atca_execution.h"

static const uint8_t nist_hash_msg1[] = "abc";
static const uint8_t nist_hash_msg2[] = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq";

TEST(atca_cmd_unit_test, sha)
{
    ATCA_STATUS status;
    ATCAPacket packet;
    uint8_t sha_success = 0x00;
    uint8_t sha_digest_out[ATCA_SHA_DIGEST_SIZE];
    ATCACommand ca_cmd = _gDevice->mCommands;

    // initialize SHA calculation engine, initializes TempKey
    packet.param1 = SHA_MODE_SHA256_START;
    packet.param2 = 0x0000;

    status = atSHA(ca_cmd, &packet, 0);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    status = atca_execute_command(&packet, _gDevice);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL(SHA_RSP_SIZE_SHORT, packet.data[ATCA_COUNT_IDX]);

    // check the response, if error then TempKey not initialized
    TEST_ASSERT_EQUAL_INT8(sha_success, packet.data[ATCA_RSP_DATA_IDX]);

    // Compute the SHA 256 digest if TempKey is loaded correctly
    packet.param1 = SHA_MODE_SHA256_END;
    packet.param2 = 0x0000;

    status = atSHA(ca_cmd, &packet, 0);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    status = atca_execute_command(&packet, _gDevice);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL(SHA_RSP_SIZE_LONG, packet.data[ATCA_COUNT_IDX]);

    // Copy the response into digest_out
    memcpy(&sha_digest_out[0], &packet.data[ATCA_RSP_DATA_IDX], ATCA_SHA_DIGEST_SIZE);
}

TEST(atca_cmd_basic_test, sha)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t message[ATCA_SHA256_BLOCK_SIZE];
    uint8_t digest[ATCA_SHA_DIGEST_SIZE];
    uint8_t rightAnswer[] = { 0x1A, 0x3A, 0xA5, 0x45, 0x04, 0x94, 0x53, 0xAF,
                              0xDF, 0x17, 0xE9, 0x89, 0xA4, 0x1F, 0xA0, 0x97,
                              0x94, 0xA5, 0x1B, 0xD5, 0xDB, 0x91, 0x36, 0x37,
                              0x67, 0x55, 0x0C, 0x0F, 0x0A, 0xF3, 0x27, 0xD4 };

    memset(message, 0xBC, sizeof(message));


    status = atcab_sha(sizeof(message), message, digest);

    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL_MEMORY(rightAnswer, digest, ATCA_SHA_DIGEST_SIZE);

    memset(message, 0x5A, sizeof(message));
    status = atcab_sha_start();
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_update(message);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_update(message);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_update(message);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_end(digest, 0, NULL);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
}

/** \brief test HW SHA with a long message > SHA block size and not an exact SHA block-size increment
 *
 */
TEST(atca_cmd_basic_test, sha_long)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t message[ATCA_SHA256_BLOCK_SIZE + 63];  // just short of two blocks
    uint8_t digest[ATCA_SHA_DIGEST_SIZE];
    uint8_t rightAnswer[] = { 0xA9, 0x22, 0x18, 0x56, 0x43, 0x70, 0xA0, 0x57,
                              0x27, 0x3F, 0xF4, 0x85, 0xA8, 0x07, 0x3F, 0x32,
                              0xFC, 0x1F, 0x14, 0x12, 0xEC, 0xA2, 0xE3, 0x0B,
                              0x81, 0xA8, 0x87, 0x76, 0x0B, 0x61, 0x31, 0x72 };

    memset(message, 0xBC, sizeof(message));
    memset(digest, 0x00, ATCA_SHA_DIGEST_SIZE);

    status = atcab_sha(sizeof(message), message, digest);

    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL_MEMORY(rightAnswer, digest, ATCA_SHA_DIGEST_SIZE);
}


/** \brief test HW SHA with a short message < SHA block size and not an exact SHA block-size increment
 *
 */
TEST(atca_cmd_basic_test, sha_short)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t message[10];  // a short message to sha
    uint8_t digest[ATCA_SHA_DIGEST_SIZE];
    uint8_t rightAnswer[] = { 0x30, 0x3f, 0xf8, 0xba, 0x40, 0xa2, 0x06, 0xe7,
                              0xa9, 0x50, 0x02, 0x1e, 0xf5, 0x10, 0x66, 0xd4,
                              0xa0, 0x01, 0x54, 0x75, 0x32, 0x3e, 0xe9, 0xf2,
                              0x4a, 0xc8, 0xc9, 0x63, 0x29, 0x8f, 0x34, 0xce };

    memset(message, 0xBC, sizeof(message));
    memset(digest, 0x00, ATCA_SHA_DIGEST_SIZE);

    status = atcab_sha(sizeof(message), message, digest);

    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL_MEMORY(rightAnswer, digest, ATCA_SHA_DIGEST_SIZE);
}


TEST(atca_cmd_basic_test, sha2_256_nist1)
{
    const uint8_t digest_ref[] = {
        0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA, 0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23,
        0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C, 0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD
    };
    uint8_t digest[ATCA_SHA2_256_DIGEST_SIZE];
    ATCA_STATUS status;

    TEST_ASSERT_EQUAL(ATCA_SHA2_256_DIGEST_SIZE, sizeof(digest_ref));

    status = atcab_sha(sizeof(nist_hash_msg1) - 1, nist_hash_msg1, digest);

    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL_MEMORY(digest_ref, digest, sizeof(digest_ref));
}

TEST(atca_cmd_basic_test, sha2_256_nist2)
{
    const uint8_t digest_ref[] = {
        0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8, 0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39,
        0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67, 0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1
    };
    uint8_t digest[ATCA_SHA2_256_DIGEST_SIZE];
    ATCA_STATUS status;

    TEST_ASSERT_EQUAL(ATCA_SHA2_256_DIGEST_SIZE, sizeof(digest_ref));

    status = atcab_sha(sizeof(nist_hash_msg2) - 1, nist_hash_msg2, digest);

    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL_MEMORY(digest_ref, digest, sizeof(digest_ref));
}
#ifdef _WIN32
static void hex_to_uint8(const char hex_str[2], uint8_t* num)
{
    *num = 0;

    if (hex_str[0] >= '0' && hex_str[0] <= '9')
    {
        *num += (hex_str[0] - '0') << 4;
    }
    else if (hex_str[0] >= 'A' && hex_str[0] <= 'F')
    {
        *num += (hex_str[0] - 'A' + 10) << 4;
    }
    else if (hex_str[0] >= 'a' && hex_str[0] <= 'f')
    {
        *num += (hex_str[0] - 'a' + 10) << 4;
    }
    else
    {
        TEST_FAIL_MESSAGE("Not a hex digit.");
    }

    if (hex_str[1] >= '0' && hex_str[1] <= '9')
    {
        *num += (hex_str[1] - '0');
    }
    else if (hex_str[1] >= 'A' && hex_str[1] <= 'F')
    {
        *num += (hex_str[1] - 'A' + 10);
    }
    else if (hex_str[1] >= 'a' && hex_str[1] <= 'f')
    {
        *num += (hex_str[1] - 'a' + 10);
    }
    else
    {
        TEST_FAIL_MESSAGE("Not a hex digit.");
    }
}
void hex_to_data(const char* hex_str, uint8_t* data, size_t data_size)
{
    size_t i = 0;

    TEST_ASSERT_EQUAL_MESSAGE(data_size * 2, strlen(hex_str) - 1, "Hex string unexpected length.");

    for (i = 0; i < data_size; i++)
    {
        hex_to_uint8(&hex_str[i * 2], &data[i]);
    }
}
static int read_rsp_hex_value(FILE* file, const char* name, uint8_t* data, size_t data_size)
{
    char line[16384];
    char* str = NULL;
    size_t name_size = strlen(name);

    do
    {
        str = fgets(line, sizeof(line), file);
        if (str == NULL)
        {
            continue;
        }

        if (memcmp(line, name, name_size) == 0)
        {
            str = &line[name_size];
        }
        else
        {
            str = NULL;
        }
    }
    while (str == NULL && !feof(file));
    if (str == NULL)
    {
        return ATCA_GEN_FAIL;
    }
    hex_to_data(str, data, data_size);

    return ATCA_SUCCESS;
}
static int read_rsp_int_value(FILE* file, const char* name, int* value)
{
    char line[2048];
    char* str = NULL;
    size_t name_size = strlen(name);

    do
    {
        str = fgets(line, sizeof(line), file);
        if (str == NULL)
        {
            continue;
        }

        if (memcmp(line, name, name_size) == 0)
        {
            str = &line[name_size];
        }
        else
        {
            str = NULL;
        }
    }
    while (str == NULL && !feof(file));
    if (str == NULL)
    {
        return ATCA_GEN_FAIL;
    }
    *value = atoi(str);

    return ATCA_SUCCESS;
}
#endif
static void test_basic_hw_sha2_256_nist_simple(const char* filename)
{
    #ifndef _WIN32
    TEST_IGNORE_MESSAGE("Test only available under windows.");
    #else
    FILE* rsp_file = NULL;
    uint8_t md_ref[ATCA_SHA2_256_DIGEST_SIZE];
    uint8_t md[sizeof(md_ref)];
    int len_bits = 0;
    uint8_t* msg = NULL;
    size_t count = 0;
    ATCA_STATUS status;

    rsp_file = fopen(filename, "r");
    TEST_ASSERT_NOT_NULL_MESSAGE(rsp_file, "Failed to  open file");

    do
    {
        status = read_rsp_int_value(rsp_file, "Len = ", &len_bits);
        if (status != ATCA_SUCCESS)
        {
            continue;
        }

        msg = unity_malloc(len_bits == 0 ? 1 : len_bits / 8);
        TEST_ASSERT_NOT_NULL_MESSAGE(msg, "malloc failed");

        status = read_rsp_hex_value(rsp_file, "Msg = ", msg, len_bits == 0 ? 1 : len_bits / 8);
        TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

        status = read_rsp_hex_value(rsp_file, "MD = ", md_ref, sizeof(md_ref));
        TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

        status = atcab_sha(len_bits / 8, msg, md);
        TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
        TEST_ASSERT_EQUAL_MEMORY(md_ref, md, sizeof(md_ref));

        unity_free(msg);
        msg = NULL;
        count++;
    }
    while (status == ATCA_SUCCESS);
    TEST_ASSERT_MESSAGE(count > 0, "No long tests found in file.");
    #endif
}

TEST(atca_cmd_basic_test, sha2_256_nist_short)
{
    test_basic_hw_sha2_256_nist_simple("cryptoauthlib/test/sha-byte-test-vectors/SHA256ShortMsg.rsp");
}

TEST(atca_cmd_basic_test, sha2_256_nist_long)
{
    test_basic_hw_sha2_256_nist_simple("cryptoauthlib/test/sha-byte-test-vectors/SHA256LongMsg.rsp");
}

TEST(atca_cmd_basic_test, sha2_256_nist_monte)
{
    #ifndef _WIN32
    TEST_IGNORE_MESSAGE("Test only available under windows.");
    #else
    FILE* rsp_file = NULL;
    uint8_t seed[ATCA_SHA2_256_DIGEST_SIZE];
    uint8_t md[4][sizeof(seed)];
    int i, j;
    uint8_t m[sizeof(seed) * 3];
    uint8_t md_ref[sizeof(seed)];
    ATCA_STATUS status;

    rsp_file = fopen("cryptoauthlib/test/sha-byte-test-vectors/SHA256Monte.rsp", "r");
    TEST_ASSERT_NOT_EQUAL_MESSAGE(NULL, rsp_file, "Failed to  open sha-byte-test-vectors/SHA256Monte.rsp");

    // Find the seed value
    status = read_rsp_hex_value(rsp_file, "Seed = ", seed, sizeof(seed));
    TEST_ASSERT_EQUAL_MESSAGE(ATCA_SUCCESS, status, "Failed to find Seed value in file.");

    for (j = 0; j < 100; j++)
    {
        memcpy(&md[0], seed, sizeof(seed));
        memcpy(&md[1], seed, sizeof(seed));
        memcpy(&md[2], seed, sizeof(seed));
        for (i = 0; i < 1000; i++)
        {
            memcpy(m, md, sizeof(m));
            status = atcab_sha(sizeof(m), m, &md[3][0]);
            TEST_ASSERT_EQUAL_MESSAGE(ATCA_SUCCESS, status, "atcac_sw_sha1 failed");
            memmove(&md[0], &md[1], sizeof(seed) * 3);
        }
        status = read_rsp_hex_value(rsp_file, "MD = ", md_ref, sizeof(md_ref));
        TEST_ASSERT_EQUAL_MESSAGE(ATCA_SUCCESS, status, "Failed to find MD value in file.");
        TEST_ASSERT_EQUAL_MEMORY(md_ref, &md[2], sizeof(md_ref));
        memcpy(seed, &md[2], sizeof(seed));
    }
    #endif
}

TEST(atca_cmd_basic_test, sha_context)
{
    ATCA_STATUS status;
    uint16_t data_out_size = 0;
    uint16_t context_size;
    uint8_t context[SHA_CONTEXT_MAX_SIZE];
    uint8_t digest[ATCA_SHA_DIGEST_SIZE];
    uint8_t digest1[ATCA_SHA_DIGEST_SIZE];
    uint8_t digest2[ATCA_SHA_DIGEST_SIZE];
    uint8_t message[ATCA_SHA256_BLOCK_SIZE];

    uint8_t data_input[] = {
        0x01, 0x02, 0x03, 0x04, 0x05
    };

    /*	uint8_t expected_read_context_Data[] = {
       0x05, 0x00, 0x00, 0x00, 0x67, 0xE6, 0x09, 0x6A, 0X85, 0xAE, 0x67, 0xBB, 0x72, 0xF3, 0x6E, 0x3C,
       0x3A, 0xF5, 0x4F, 0xA5, 0x7F, 0x52, 0x0E, 0x51, 0X8C, 0x68, 0x05, 0x9B, 0xAB, 0xD9, 0x83, 0x1F,
       0x19, 0xCD, 0xE0, 0x5B, 0x01, 0x02, 0x03, 0x04, 0X05

       };

       uint8_t expected_digest[] = {
       0xE6, 0xD3, 0x21, 0x95, 0x02, 0x33, 0x65, 0xAD, 0X50, 0x3A, 0xB7, 0xE6, 0x70, 0xBE, 0x31, 0x4B,
       0x87, 0x22, 0xF6, 0x72, 0xA2, 0x61, 0x30, 0x03, 0X06, 0x8C, 0x28, 0xBA, 0x86, 0x47, 0x1E, 0x04
       };
     */
    //Calculating the digest for message data_input and reading the context
    status = atcab_sha_base(SHA_MODE_SHA256_START, 0, NULL, NULL, NULL);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, sizeof(data_input), data_input, NULL, NULL);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    context_size = sizeof(context);
    status = atcab_sha_read_context(context, &context_size); //Reading the context to use it later
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, sizeof(data_input), data_input, NULL, NULL);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    data_out_size = sizeof(digest1);
    status = atcab_sha_base(SHA_MODE_SHA256_END | SHA_MODE_TARGET_OUT_ONLY, 0, NULL, digest1, &data_out_size);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);



    //Calculating the digest for another message
    memset(message, 0x5A, sizeof(message));
    status = atcab_sha_base(SHA_MODE_SHA256_START, 0, NULL, NULL, NULL);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, 64, message, NULL, NULL);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, 64, message, NULL, NULL);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, 64, message, NULL, NULL);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    data_out_size = sizeof(digest);
    status = atcab_sha_base(SHA_MODE_SHA256_END | SHA_MODE_TARGET_OUT_ONLY, 0, NULL, digest, &data_out_size);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);


    //Calculating the digest using the write context

    status = atcab_sha_write_context(context, context_size); //Write context the data, read from read context and comparing both the digest.
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, sizeof(data_input), data_input, NULL, NULL);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    data_out_size = sizeof(digest2);
    status = atcab_sha_base(SHA_MODE_SHA256_END | SHA_MODE_TARGET_OUT_ONLY, 0, NULL, digest2, &data_out_size);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    TEST_ASSERT_EQUAL_MEMORY(digest1, digest2, ATCA_SHA_DIGEST_SIZE);

}


TEST(atca_cmd_basic_test, sha_hmac)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t hmac[ATCA_SHA_DIGEST_SIZE];
    uint8_t data_input[] = {
        0x6f, 0xb3, 0xec, 0x66, 0xf9, 0xeb, 0x07, 0x0a,
        0x71, 0x9b, 0xeb, 0xbe, 0x70, 0x8b, 0x93, 0xa6,
        0x5b, 0x20, 0x1b, 0x78, 0xe2, 0xd2, 0x6d, 0x8c,
        0xcc, 0xdf, 0x1c, 0x33, 0xf7, 0x41, 0x90, 0x4a,
        0x9a, 0xde, 0x64, 0x0f, 0xce, 0x00, 0x0c, 0x33,
        0x4d, 0x04, 0xbb, 0x30, 0x79, 0x56, 0x83, 0xdc,
        0xa0, 0x9d, 0xbf, 0x3e, 0x7e, 0x32, 0xae, 0xa1,
        0x03, 0xd7, 0x60, 0xe8, 0x57, 0xa6, 0xd6, 0x21,
        0x1c
    };
    const uint8_t hmac_ref[ATCA_SHA_DIGEST_SIZE] = {
        0x29, 0x7f, 0x22, 0xb8, 0xd2, 0x51, 0xb0, 0x63,
        0xa7, 0xc0, 0x8d, 0xcf, 0x4d, 0xba, 0x0d, 0x1f,
        0xb3, 0x5d, 0x32, 0xa3, 0xba, 0xab, 0x15, 0xac,
        0xea, 0xf4, 0x39, 0x1c, 0x4a, 0xdb, 0x32, 0x77
    };

    uint16_t key_id = 4;

    test_assert_data_is_locked();

    //Calculating HMAC using the key in slot4
    status = atcab_sha_hmac(data_input, sizeof(data_input), key_id, hmac, SHA_MODE_TARGET_TEMPKEY);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    TEST_ASSERT_EQUAL_MEMORY(hmac_ref, hmac, ATCA_SHA_DIGEST_SIZE);
}

TEST(atca_cmd_basic_test, sha_hmac_tempkey)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t hmac[ATCA_SHA_DIGEST_SIZE];
    uint8_t data_input[] = {
        0x6f, 0xb3, 0xec, 0x66, 0xf9, 0xeb, 0x07, 0x0a,
        0x71, 0x9b, 0xeb, 0xbe, 0x70, 0x8b, 0x93, 0xa6,
        0x5b, 0x20, 0x1b, 0x78, 0xe2, 0xd2, 0x6d, 0x8c,
        0xcc, 0xdf, 0x1c, 0x33, 0xf7, 0x41, 0x90, 0x4a,
        0x9a, 0xde, 0x64, 0x0f, 0xce, 0x00, 0x0c, 0x33,
        0x4d, 0x04, 0xbb, 0x30, 0x79, 0x56, 0x83, 0xdc,
        0xa0, 0x9d, 0xbf, 0x3e, 0x7e, 0x32, 0xae, 0xa1,
        0x03, 0xd7, 0x60, 0xe8, 0x57, 0xa6, 0xd6, 0x21,
        0x1c
    };
    const uint8_t hmac_ref[ATCA_SHA_DIGEST_SIZE] = {
        0x29, 0x7f, 0x22, 0xb8, 0xd2, 0x51, 0xb0, 0x63,
        0xa7, 0xc0, 0x8d, 0xcf, 0x4d, 0xba, 0x0d, 0x1f,
        0xb3, 0x5d, 0x32, 0xa3, 0xba, 0xab, 0x15, 0xac,
        0xea, 0xf4, 0x39, 0x1c, 0x4a, 0xdb, 0x32, 0x77
    };

    uint16_t key_id = ATCA_TEMPKEY_KEYID;

    test_assert_data_is_locked();

    // Load key into TempKey
    status = atcab_nonce_load(NONCE_MODE_TARGET_TEMPKEY, g_slot4_key, 32);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    //Calculating HMAC using the key in TempKey
    status = atcab_sha_hmac(data_input, sizeof(data_input), key_id, hmac, NONCE_MODE_TARGET_TEMPKEY);

    TEST_ASSERT_EQUAL_MEMORY(hmac_ref, hmac, ATCA_SHA_DIGEST_SIZE);
}

// *INDENT-OFF* - Preserve formatting
t_test_case_info sha_basic_test_info[] =
{
    { REGISTER_TEST_CASE(atca_cmd_basic_test, sha),                 DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_long),            DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_short),           DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist1),      DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist2),      DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist_short), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    //{ REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist_long),  DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    //{ REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist_monte), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_context),                                                                                    DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_hmac),                                                              DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_hmac_tempkey),                                                                               DEVICE_MASK(ATECC608A) },
    { (fp_test_case)NULL,                     (uint8_t)0 },         /* Array Termination element*/
};

t_test_case_info sha_unit_test_info[] =
{
    { REGISTER_TEST_CASE(atca_cmd_unit_test, sha), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { (fp_test_case)NULL,                    (uint8_t)0 },/* Array Termination element*/
};
// *INDENT-ON*