cryptoauthlib-sys 0.2.2

Automatically generated Rust bindings for CryptoAuthentication Library calls.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/**
 * \file
 * \brief Unity tests for the cryptoauthlib Verify Command
 *
 * \copyright (c) 2015-2020 Microchip Technology Inc. and its subsidiaries.
 *
 * \page License
 *
 * Subject to your compliance with these terms, you may use Microchip software
 * and any derivatives exclusively with Microchip products. It is your
 * responsibility to comply with third party license terms applicable to your
 * use of third party software (including open source software) that may
 * accompany Microchip software.
 *
 * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
 * EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
 * WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
 * PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT,
 * SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE
 * OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF
 * MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE
 * FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL
 * LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED
 * THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
 * THIS SOFTWARE.
 */
#include <stdlib.h>
#include "atca_test.h"
#include "basic/atca_basic.h"
#include "host/atca_host.h"
#include "test/atca_tests.h"
#include "atca_execution.h"

TEST(atca_cmd_basic_test, mac_key_challenge)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t sn[9];
    atca_temp_key_t temp_key;
    atca_mac_in_out_t mac_params;
    uint8_t challenge[ATCA_KEY_SIZE];
    uint8_t host_response[ATCA_KEY_SIZE];
    uint8_t client_response[ATCA_KEY_SIZE];

    test_assert_data_is_locked();

    // Read serial number for host-side MAC calculations
    status = atcab_read_serial_number(sn);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Use a random challenge
    status = atcab_random(challenge);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Setup MAC command
    memset(&temp_key, 0, sizeof(temp_key));
    mac_params.mode = MAC_MODE_CHALLENGE | MAC_MODE_INCLUDE_SN; // Block 1 is a key, block 2 is a challenge
    mac_params.key_id = 4;
    mac_params.challenge = challenge;
    mac_params.key = g_slot4_key;
    mac_params.otp = NULL;
    mac_params.sn = sn;
    mac_params.response = host_response;
    mac_params.temp_key = &temp_key;

    // Run MAC command
    status = atcab_mac(mac_params.mode, mac_params.key_id, mac_params.challenge, client_response);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Calculate expected MAC
    status = atcah_mac(&mac_params);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL_MEMORY(host_response, client_response, sizeof(host_response));
}

TEST(atca_cmd_basic_test, mac_key_tempkey)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t sn[9];
    atca_temp_key_t temp_key;
    uint8_t num_in[NONCE_NUMIN_SIZE];
    uint8_t rand_out[RANDOM_NUM_SIZE];
    atca_nonce_in_out_t nonce_params;
    atca_mac_in_out_t mac_params;
    uint8_t host_response[ATCA_KEY_SIZE];
    uint8_t client_response[ATCA_KEY_SIZE];

    test_assert_data_is_locked();

    // Read serial number for host-side MAC calculations
    status = atcab_read_serial_number(sn);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Setup nonce command
    memset(&temp_key, 0, sizeof(temp_key));
    memset(num_in, 0, sizeof(num_in));
    memset(&nonce_params, 0, sizeof(nonce_params));
    nonce_params.mode = NONCE_MODE_SEED_UPDATE;
    nonce_params.zero = 0;
    nonce_params.num_in = num_in;
    nonce_params.rand_out = rand_out;
    nonce_params.temp_key = &temp_key;

    // Create random nonce
    status = atcab_nonce_base(nonce_params.mode, nonce_params.zero, nonce_params.num_in, rand_out);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Calculate nonce
    status = atcah_nonce(&nonce_params);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Setup MAC command
    memset(&mac_params, 0, sizeof(mac_params));
    mac_params.mode = MAC_MODE_BLOCK2_TEMPKEY | MAC_MODE_INCLUDE_SN; // Block 1 is a key, block 2 is TempKey
    mac_params.key_id = 4;
    mac_params.challenge = NULL;
    mac_params.key = g_slot4_key;
    mac_params.otp = NULL;
    mac_params.sn = sn;
    mac_params.response = host_response;
    mac_params.temp_key = &temp_key;

    // Run MAC command
    status = atcab_mac(mac_params.mode, mac_params.key_id, mac_params.challenge, client_response);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Calculate expected MAC
    status = atcah_mac(&mac_params);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL_MEMORY(host_response, client_response, sizeof(host_response));
}

TEST(atca_cmd_basic_test, mac_tempkey_challenge)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t sn[9];
    atca_temp_key_t temp_key;
    uint8_t num_in[NONCE_NUMIN_SIZE];
    uint8_t rand_out[RANDOM_NUM_SIZE];
    atca_nonce_in_out_t nonce_params;
    atca_mac_in_out_t mac_params;
    uint8_t challenge[ATCA_KEY_SIZE];
    uint8_t host_response[ATCA_KEY_SIZE];
    uint8_t client_response[ATCA_KEY_SIZE];

    test_assert_data_is_locked();

    // Read serial number for host-side MAC calculations
    status = atcab_read_serial_number(sn);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Use a random challenge
    status = atcab_random(challenge);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Setup nonce command
    memset(&temp_key, 0, sizeof(temp_key));
    memset(num_in, 0, sizeof(num_in));
    memset(&nonce_params, 0, sizeof(nonce_params));
    nonce_params.mode = NONCE_MODE_SEED_UPDATE;
    nonce_params.zero = 0;
    nonce_params.num_in = num_in;
    nonce_params.rand_out = rand_out;
    nonce_params.temp_key = &temp_key;

    // Create random nonce
    status = atcab_nonce_base(nonce_params.mode, nonce_params.zero, nonce_params.num_in, rand_out);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Calculate nonce
    status = atcah_nonce(&nonce_params);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Setup MAC command
    memset(&mac_params, 0, sizeof(mac_params));
    mac_params.mode = MAC_MODE_BLOCK1_TEMPKEY | MAC_MODE_INCLUDE_SN; // Block 1 is a TempKey, block 2 is a Challenge
    mac_params.key_id = 0;
    mac_params.challenge = challenge;
    mac_params.key = NULL;
    mac_params.otp = NULL;
    mac_params.sn = sn;
    mac_params.response = host_response;
    mac_params.temp_key = &temp_key;

    // Run MAC command
    status = atcab_mac(mac_params.mode, mac_params.key_id, mac_params.challenge, client_response);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Calculate expected MAC
    status = atcah_mac(&mac_params);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL_MEMORY(host_response, client_response, sizeof(host_response));
}

TEST(atca_cmd_basic_test, mac_tempkey_tempkey)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t sn[9];
    atca_temp_key_t temp_key;
    uint8_t num_in[NONCE_NUMIN_SIZE];
    uint8_t rand_out[RANDOM_NUM_SIZE];
    atca_nonce_in_out_t nonce_params;
    atca_mac_in_out_t mac_params;
    uint8_t host_response[ATCA_KEY_SIZE];
    uint8_t client_response[ATCA_KEY_SIZE];

    test_assert_data_is_locked();

    // Read serial number for host-side MAC calculations
    status = atcab_read_serial_number(sn);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Setup nonce command
    memset(&temp_key, 0, sizeof(temp_key));
    memset(num_in, 0, sizeof(num_in));
    memset(&nonce_params, 0, sizeof(nonce_params));
    nonce_params.mode = NONCE_MODE_SEED_UPDATE;
    nonce_params.zero = 0;
    nonce_params.num_in = num_in;
    nonce_params.rand_out = rand_out;
    nonce_params.temp_key = &temp_key;

    // Create random nonce
    status = atcab_nonce_base(nonce_params.mode, nonce_params.zero, nonce_params.num_in, rand_out);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Calculate nonce
    status = atcah_nonce(&nonce_params);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Setup MAC command
    memset(&mac_params, 0, sizeof(mac_params));
    mac_params.mode = MAC_MODE_BLOCK1_TEMPKEY | MAC_MODE_BLOCK2_TEMPKEY | MAC_MODE_INCLUDE_SN; // Block 1 is TempKey, block 2 is TempKey
    mac_params.key_id = 0;
    mac_params.challenge = NULL;
    mac_params.key = NULL;
    mac_params.otp = NULL;
    mac_params.sn = sn;
    mac_params.response = host_response;
    mac_params.temp_key = &temp_key;

    // Run MAC command
    status = atcab_mac(mac_params.mode, mac_params.key_id, mac_params.challenge, client_response);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Calculate expected MAC
    status = atcah_mac(&mac_params);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL_MEMORY(host_response, client_response, sizeof(host_response));
}

TEST(atca_cmd_basic_test, checkmac)
{
    ATCA_STATUS status = ATCA_GEN_FAIL;
    uint8_t mode = MAC_MODE_CHALLENGE;
    uint16_t key_id = 0x0004;
    uint8_t challenge[RANDOM_NUM_SIZE];
    uint8_t response[MAC_SIZE];
    uint8_t other_data[CHECKMAC_OTHER_DATA_SIZE];
    atca_temp_key_t temp_key;
    uint8_t num_in[NONCE_NUMIN_SIZE];
    uint8_t rand_out[RANDOM_NUM_SIZE];
    atca_nonce_in_out_t nonce_params;
    uint8_t sn[ATCA_SERIAL_NUM_SIZE];
    atca_check_mac_in_out_t checkmac_params;
    size_t i;

    test_assert_data_is_locked();


    memset(challenge, 0x55, 32);    // a 32-byte challenge

    status = atcab_mac(mode, key_id, challenge, response);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    memset(other_data, 0, sizeof(other_data));
    other_data[0] = ATCA_MAC;
    other_data[2] = (uint8_t)key_id;

    status = atcab_checkmac(mode, key_id, challenge, response, other_data);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // This next part tests the atcah_check_mac() function

    // Read SN
    status = atcab_read_serial_number(sn);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Perform random nonce
    memset(&temp_key, 0, sizeof(temp_key));
    memset(num_in, 0, sizeof(num_in));
    memset(&nonce_params, 0, sizeof(nonce_params));
    nonce_params.mode = NONCE_MODE_SEED_UPDATE;
    nonce_params.zero = 0;
    nonce_params.num_in = num_in;
    nonce_params.rand_out = rand_out;
    nonce_params.temp_key = &temp_key;
    status = atcab_nonce_rand(nonce_params.num_in, rand_out);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Calculate nonce value
    status = atcah_nonce(&nonce_params);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Calculate response
    for (i = 0; i < sizeof(other_data); i++)
    {
        other_data[i] = (uint8_t)(i + 0xF0);
    }
    checkmac_params.mode = CHECKMAC_MODE_BLOCK2_TEMPKEY;
    checkmac_params.key_id = key_id;
    checkmac_params.client_chal = NULL;
    checkmac_params.client_resp = response;
    checkmac_params.other_data = other_data;
    checkmac_params.sn = sn;
    checkmac_params.otp = NULL;
    checkmac_params.slot_key = g_slot4_key;
    checkmac_params.target_key = NULL;
    checkmac_params.temp_key = &temp_key;
    status = atcah_check_mac(&checkmac_params);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    // Perform CheckMac
    status = atcab_checkmac(
        checkmac_params.mode,
        checkmac_params.key_id,
        checkmac_params.client_chal,
        checkmac_params.client_resp,
        checkmac_params.other_data);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
}

TEST(atca_cmd_unit_test, mac)
{
    ATCA_STATUS status;
    ATCAPacket packet;
    uint16_t keyID = 0x01;
    ATCACommand ca_cmd = _gDevice->mCommands;

    unit_test_assert_config_is_locked();

    // build a mac command
    packet.param1 = MAC_MODE_CHALLENGE;
    packet.param2 = keyID;
    memset(packet.data, 0x55, 32);    // a 32-byte challenge

    //memcpy(packet.data, challenge, sizeof(challenge));
    status = atMAC(ca_cmd, &packet);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    status = atca_execute_command(&packet, _gDevice);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);

    atca_delay_ms(1);
}
TEST(atca_cmd_unit_test, checkmac)
{
    ATCA_STATUS status;
    ATCAPacket packet;
    uint16_t keyID = 0x0004;
    static uint8_t response_mac[MAC_RSP_SIZE];              // Make the response buffer the size of a MAC response.
    static uint8_t other_data[CHECKMAC_OTHER_DATA_SIZE];    // First four bytes of Mac command are needed for CheckMac command.
    ATCACommand ca_cmd = _gDevice->mCommands;

    unit_test_assert_config_is_locked();
    unit_test_assert_data_is_locked();

    if (_gDevice->mIface->mIfaceCFG->devtype == ATSHA204A)
    {
        keyID = 0x0001;
    }
    else
    {
        keyID = 0x0004;
    }

    // build a mac command
    packet.param1 = MAC_MODE_CHALLENGE;
    packet.param2 = keyID;
    memset(packet.data, 0x55, 32);    // a 32-byte challenge

    status = atMAC(ca_cmd, &packet);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    status = atca_execute_command(&packet, _gDevice);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL(ATCA_RSP_SIZE_32, packet.data[ATCA_COUNT_IDX]);
    memcpy(response_mac, packet.data, sizeof(response_mac));

    // build a checkmac command
    packet.param1 = MAC_MODE_CHALLENGE;
    packet.param2 = keyID;
    memset(packet.data, 0x55, 32);    // a 32-byte challenge
    memcpy(&packet.data[32], &response_mac[1], 32);
    memset(other_data, 0, sizeof(other_data));
    other_data[0] = ATCA_MAC;
    other_data[2] = (uint8_t)keyID;
    memcpy(&packet.data[64], other_data, sizeof(other_data));

    status = atCheckMAC(ca_cmd, &packet);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    status = atca_execute_command(&packet, _gDevice);
    TEST_ASSERT_EQUAL(ATCA_SUCCESS, status);
    TEST_ASSERT_EQUAL(CHECKMAC_RSP_SIZE, packet.data[ATCA_COUNT_IDX]);
    TEST_ASSERT_EQUAL(0x00, packet.data[ATCA_RSP_DATA_IDX]);
}

// *INDENT-OFF* - Preserve formatting
t_test_case_info mac_basic_test_info[] =
{
    { REGISTER_TEST_CASE(atca_cmd_basic_test, mac_key_challenge),     DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, mac_key_tempkey),       DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, mac_tempkey_challenge), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, mac_tempkey_tempkey),   DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_basic_test, checkmac),              DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { (fp_test_case)NULL,                     (uint8_t)0 },           /* Array Termination element*/
};

t_test_case_info mac_unit_test_info[] =
{
    { REGISTER_TEST_CASE(atca_cmd_unit_test, mac),      DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { REGISTER_TEST_CASE(atca_cmd_unit_test, checkmac), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) },
    { (fp_test_case)NULL,                    (uint8_t)0 },/* Array Termination element*/
};
// *INDENT-ON*