use rustc::lint::*;
use rustc_front::hir::*;
use reexport::*;
use rustc_front::util::{is_comparison_binop, binop_to_string};
use syntax::codemap::Span;
use rustc_front::intravisit::{FnKind, Visitor, walk_ty};
use rustc::middle::ty;
use rustc::middle::const_eval;
use syntax::ast::{IntTy, UintTy, FloatTy};
use utils::*;
#[allow(missing_copy_implementations)]
pub struct TypePass;
declare_lint! {
pub BOX_VEC, Warn,
"usage of `Box<Vec<T>>`, vector elements are already on the heap"
}
declare_lint! {
pub LINKEDLIST, Warn,
"usage of LinkedList, usually a vector is faster, or a more specialized data \
structure like a VecDeque"
}
impl LintPass for TypePass {
fn get_lints(&self) -> LintArray {
lint_array!(BOX_VEC, LINKEDLIST)
}
}
impl LateLintPass for TypePass {
fn check_ty(&mut self, cx: &LateContext, ast_ty: &Ty) {
if in_macro(cx, ast_ty.span) {
return;
}
if let Some(ty) = cx.tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) {
if let ty::TyBox(ref inner) = ty.sty {
if match_type(cx, inner, &VEC_PATH) {
span_help_and_lint(cx,
BOX_VEC,
ast_ty.span,
"you seem to be trying to use `Box<Vec<T>>`. Consider using just `Vec<T>`",
"`Vec<T>` is already on the heap, `Box<Vec<T>>` makes an extra allocation.");
}
} else if match_type(cx, ty, &LL_PATH) {
span_help_and_lint(cx,
LINKEDLIST,
ast_ty.span,
"I see you're using a LinkedList! Perhaps you meant some other data structure?",
"a VecDeque might work");
}
}
}
}
#[allow(missing_copy_implementations)]
pub struct LetPass;
declare_lint! {
pub LET_UNIT_VALUE, Warn,
"creating a let binding to a value of unit type, which usually can't be used afterwards"
}
fn check_let_unit(cx: &LateContext, decl: &Decl) {
if let DeclLocal(ref local) = decl.node {
let bindtype = &cx.tcx.pat_ty(&local.pat).sty;
if *bindtype == ty::TyTuple(vec![]) {
if in_external_macro(cx, decl.span) || in_macro(cx, local.pat.span) {
return;
}
if is_from_for_desugar(decl) {
return;
}
span_lint(cx,
LET_UNIT_VALUE,
decl.span,
&format!("this let-binding has unit value. Consider omitting `let {} =`",
snippet(cx, local.pat.span, "..")));
}
}
}
impl LintPass for LetPass {
fn get_lints(&self) -> LintArray {
lint_array!(LET_UNIT_VALUE)
}
}
impl LateLintPass for LetPass {
fn check_decl(&mut self, cx: &LateContext, decl: &Decl) {
check_let_unit(cx, decl)
}
}
declare_lint! {
pub UNIT_CMP, Warn,
"comparing unit values (which is always `true` or `false`, respectively)"
}
#[allow(missing_copy_implementations)]
pub struct UnitCmp;
impl LintPass for UnitCmp {
fn get_lints(&self) -> LintArray {
lint_array!(UNIT_CMP)
}
}
impl LateLintPass for UnitCmp {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if in_macro(cx, expr.span) {
return;
}
if let ExprBinary(ref cmp, ref left, _) = expr.node {
let op = cmp.node;
let sty = &cx.tcx.expr_ty(left).sty;
if *sty == ty::TyTuple(vec![]) && is_comparison_binop(op) {
let result = match op {
BiEq | BiLe | BiGe => "true",
_ => "false",
};
span_lint(cx,
UNIT_CMP,
expr.span,
&format!("{}-comparison of unit values detected. This will always be {}",
binop_to_string(op),
result));
}
}
}
}
pub struct CastPass;
declare_lint! {
pub CAST_PRECISION_LOSS, Allow,
"casts that cause loss of precision, e.g `x as f32` where `x: u64`"
}
declare_lint! {
pub CAST_SIGN_LOSS, Allow,
"casts from signed types to unsigned types, e.g `x as u32` where `x: i32`"
}
declare_lint! {
pub CAST_POSSIBLE_TRUNCATION, Allow,
"casts that may cause truncation of the value, e.g `x as u8` where `x: u32`, or `x as i32` where `x: f32`"
}
declare_lint! {
pub CAST_POSSIBLE_WRAP, Allow,
"casts that may cause wrapping around the value, e.g `x as i32` where `x: u32` and `x > i32::MAX`"
}
fn int_ty_to_nbits(typ: &ty::TyS) -> usize {
let n = match typ.sty {
ty::TyInt(i) => 4 << (i as usize),
ty::TyUint(u) => 4 << (u as usize),
_ => 0,
};
if n == 4 {
::std::mem::size_of::<usize>() * 8
} else {
n
}
}
fn is_isize_or_usize(typ: &ty::TyS) -> bool {
match typ.sty {
ty::TyInt(IntTy::Is) | ty::TyUint(UintTy::Us) => true,
_ => false,
}
}
fn span_precision_loss_lint(cx: &LateContext, expr: &Expr, cast_from: &ty::TyS, cast_to_f64: bool) {
let mantissa_nbits = if cast_to_f64 {
52
} else {
23
};
let arch_dependent = is_isize_or_usize(cast_from) && cast_to_f64;
let arch_dependent_str = "on targets with 64-bit wide pointers ";
let from_nbits_str = if arch_dependent {
"64".to_owned()
} else if is_isize_or_usize(cast_from) {
"32 or 64".to_owned()
} else {
int_ty_to_nbits(cast_from).to_string()
};
span_lint(cx,
CAST_PRECISION_LOSS,
expr.span,
&format!("casting {0} to {1} causes a loss of precision {2}({0} is {3} bits wide, but {1}'s mantissa \
is only {4} bits wide)",
cast_from,
if cast_to_f64 {
"f64"
} else {
"f32"
},
if arch_dependent {
arch_dependent_str
} else {
""
},
from_nbits_str,
mantissa_nbits));
}
enum ArchSuffix {
_32,
_64,
None,
}
fn check_truncation_and_wrapping(cx: &LateContext, expr: &Expr, cast_from: &ty::TyS, cast_to: &ty::TyS) {
let arch_64_suffix = " on targets with 64-bit wide pointers";
let arch_32_suffix = " on targets with 32-bit wide pointers";
let cast_unsigned_to_signed = !cast_from.is_signed() && cast_to.is_signed();
let (from_nbits, to_nbits) = (int_ty_to_nbits(cast_from), int_ty_to_nbits(cast_to));
let (span_truncation, suffix_truncation, span_wrap, suffix_wrap) = match (is_isize_or_usize(cast_from),
is_isize_or_usize(cast_to)) {
(true, true) | (false, false) => {
(to_nbits < from_nbits,
ArchSuffix::None,
to_nbits == from_nbits && cast_unsigned_to_signed,
ArchSuffix::None)
}
(true, false) => {
(to_nbits <= 32,
if to_nbits == 32 {
ArchSuffix::_64
} else {
ArchSuffix::None
},
to_nbits <= 32 && cast_unsigned_to_signed,
ArchSuffix::_32)
}
(false, true) => {
(from_nbits == 64,
ArchSuffix::_32,
cast_unsigned_to_signed,
if from_nbits == 64 {
ArchSuffix::_64
} else {
ArchSuffix::_32
})
}
};
if span_truncation {
span_lint(cx,
CAST_POSSIBLE_TRUNCATION,
expr.span,
&format!("casting {} to {} may truncate the value{}",
cast_from,
cast_to,
match suffix_truncation {
ArchSuffix::_32 => arch_32_suffix,
ArchSuffix::_64 => arch_64_suffix,
ArchSuffix::None => "",
}));
}
if span_wrap {
span_lint(cx,
CAST_POSSIBLE_WRAP,
expr.span,
&format!("casting {} to {} may wrap around the value{}",
cast_from,
cast_to,
match suffix_wrap {
ArchSuffix::_32 => arch_32_suffix,
ArchSuffix::_64 => arch_64_suffix,
ArchSuffix::None => "",
}));
}
}
impl LintPass for CastPass {
fn get_lints(&self) -> LintArray {
lint_array!(CAST_PRECISION_LOSS,
CAST_SIGN_LOSS,
CAST_POSSIBLE_TRUNCATION,
CAST_POSSIBLE_WRAP)
}
}
impl LateLintPass for CastPass {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprCast(ref ex, _) = expr.node {
let (cast_from, cast_to) = (cx.tcx.expr_ty(ex), cx.tcx.expr_ty(expr));
if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx, expr.span) {
match (cast_from.is_integral(), cast_to.is_integral()) {
(true, false) => {
let from_nbits = int_ty_to_nbits(cast_from);
let to_nbits = if let ty::TyFloat(FloatTy::F32) = cast_to.sty {
32
} else {
64
};
if is_isize_or_usize(cast_from) || from_nbits >= to_nbits {
span_precision_loss_lint(cx, expr, cast_from, to_nbits == 64);
}
}
(false, true) => {
span_lint(cx,
CAST_POSSIBLE_TRUNCATION,
expr.span,
&format!("casting {} to {} may truncate the value", cast_from, cast_to));
if !cast_to.is_signed() {
span_lint(cx,
CAST_SIGN_LOSS,
expr.span,
&format!("casting {} to {} may lose the sign of the value", cast_from, cast_to));
}
}
(true, true) => {
if cast_from.is_signed() && !cast_to.is_signed() {
span_lint(cx,
CAST_SIGN_LOSS,
expr.span,
&format!("casting {} to {} may lose the sign of the value", cast_from, cast_to));
}
check_truncation_and_wrapping(cx, expr, cast_from, cast_to);
}
(false, false) => {
if let (&ty::TyFloat(FloatTy::F64), &ty::TyFloat(FloatTy::F32)) = (&cast_from.sty, &cast_to.sty) {
span_lint(cx,
CAST_POSSIBLE_TRUNCATION,
expr.span,
"casting f64 to f32 may truncate the value");
}
}
}
}
}
}
}
declare_lint! {
pub TYPE_COMPLEXITY, Warn,
"usage of very complex types; recommends factoring out parts into `type` definitions"
}
#[allow(missing_copy_implementations)]
pub struct TypeComplexityPass;
impl LintPass for TypeComplexityPass {
fn get_lints(&self) -> LintArray {
lint_array!(TYPE_COMPLEXITY)
}
}
impl LateLintPass for TypeComplexityPass {
fn check_fn(&mut self, cx: &LateContext, _: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) {
check_fndecl(cx, decl);
}
fn check_struct_field(&mut self, cx: &LateContext, field: &StructField) {
check_type(cx, &field.node.ty);
}
fn check_item(&mut self, cx: &LateContext, item: &Item) {
match item.node {
ItemStatic(ref ty, _, _) |
ItemConst(ref ty, _) => check_type(cx, ty),
_ => (),
}
}
fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) {
match item.node {
ConstTraitItem(ref ty, _) |
TypeTraitItem(_, Some(ref ty)) => check_type(cx, ty),
MethodTraitItem(MethodSig { ref decl, .. }, None) => check_fndecl(cx, decl),
_ => (),
}
}
fn check_impl_item(&mut self, cx: &LateContext, item: &ImplItem) {
match item.node {
ImplItemKind::Const(ref ty, _) |
ImplItemKind::Type(ref ty) => check_type(cx, ty),
_ => (),
}
}
fn check_local(&mut self, cx: &LateContext, local: &Local) {
if let Some(ref ty) = local.ty {
check_type(cx, ty);
}
}
}
fn check_fndecl(cx: &LateContext, decl: &FnDecl) {
for arg in &decl.inputs {
check_type(cx, &arg.ty);
}
if let Return(ref ty) = decl.output {
check_type(cx, ty);
}
}
fn check_type(cx: &LateContext, ty: &Ty) {
if in_macro(cx, ty.span) {
return;
}
let score = {
let mut visitor = TypeComplexityVisitor {
score: 0,
nest: 1,
};
visitor.visit_ty(ty);
visitor.score
};
if score > 250 {
span_lint(cx,
TYPE_COMPLEXITY,
ty.span,
&format!("very complex type used. Consider factoring parts into `type` definitions"));
}
}
struct TypeComplexityVisitor {
score: u32,
nest: u32,
}
impl<'v> Visitor<'v> for TypeComplexityVisitor {
fn visit_ty(&mut self, ty: &'v Ty) {
let (add_score, sub_nest) = match ty.node {
TyInfer |
TyPtr(..) |
TyRptr(..) => (1, 0),
TyPath(..) |
TyVec(..) |
TyTup(..) |
TyFixedLengthVec(..) => (10 * self.nest, 1),
TyObjectSum(..) => (20 * self.nest, 0),
TyBareFn(..) |
TyPolyTraitRef(..) => (50 * self.nest, 1),
_ => (0, 0),
};
self.score += add_score;
self.nest += sub_nest;
walk_ty(self, ty);
self.nest -= sub_nest;
}
}
declare_lint! {
pub CHAR_LIT_AS_U8, Warn,
"Casting a character literal to u8"
}
pub struct CharLitAsU8;
impl LintPass for CharLitAsU8 {
fn get_lints(&self) -> LintArray {
lint_array!(CHAR_LIT_AS_U8)
}
}
impl LateLintPass for CharLitAsU8 {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
use syntax::ast::{LitKind, UintTy};
if let ExprCast(ref e, _) = expr.node {
if let ExprLit(ref l) = e.node {
if let LitKind::Char(_) = l.node {
if ty::TyUint(UintTy::U8) == cx.tcx.expr_ty(expr).sty && !in_macro(cx, expr.span) {
let msg = "casting character literal to u8. `char`s \
are 4 bytes wide in rust, so casting to u8 \
truncates them";
let help = format!("Consider using a byte literal \
instead:\nb{}",
snippet(cx, e.span, "'x'"));
span_help_and_lint(cx, CHAR_LIT_AS_U8, expr.span, msg, &help);
}
}
}
}
}
}
declare_lint! {
pub ABSURD_EXTREME_COMPARISONS, Warn,
"a comparison involving a maximum or minimum value involves a case that is always \
true or always false"
}
pub struct AbsurdExtremeComparisons;
impl LintPass for AbsurdExtremeComparisons {
fn get_lints(&self) -> LintArray {
lint_array!(ABSURD_EXTREME_COMPARISONS)
}
}
enum ExtremeType {
Minimum,
Maximum,
}
struct ExtremeExpr<'a> {
which: ExtremeType,
expr: &'a Expr,
}
enum AbsurdComparisonResult {
AlwaysFalse,
AlwaysTrue,
InequalityImpossible,
}
fn detect_absurd_comparison<'a>(cx: &LateContext, op: BinOp_, lhs: &'a Expr, rhs: &'a Expr)
-> Option<(ExtremeExpr<'a>, AbsurdComparisonResult)> {
use types::ExtremeType::*;
use types::AbsurdComparisonResult::*;
type Extr<'a> = ExtremeExpr<'a>;
enum Rel { Lt, Le };
let (rel, lhs2, rhs2) = match op {
BiLt => (Rel::Lt, lhs, rhs),
BiLe => (Rel::Le, lhs, rhs),
BiGt => (Rel::Lt, rhs, lhs),
BiGe => (Rel::Le, rhs, lhs),
_ => return None,
};
let lx = detect_extreme_expr(cx, lhs2);
let rx = detect_extreme_expr(cx, rhs2);
Some(match rel {
Rel::Lt => {
match (lx, rx) {
(Some(l @ Extr { which: Maximum, ..}), _) => (l, AlwaysFalse), (_, Some(r @ Extr { which: Minimum, ..})) => (r, AlwaysFalse), _ => return None,
}
}
Rel::Le => {
match (lx, rx) {
(Some(l @ Extr { which: Minimum, ..}), _) => (l, AlwaysTrue), (Some(l @ Extr { which: Maximum, ..}), _) => (l, InequalityImpossible), (_, Some(r @ Extr { which: Minimum, ..})) => (r, InequalityImpossible), (_, Some(r @ Extr { which: Maximum, ..})) => (r, AlwaysTrue), _ => return None,
}
}
})
}
fn detect_extreme_expr<'a>(cx: &LateContext, expr: &'a Expr) -> Option<ExtremeExpr<'a>> {
use rustc::middle::const_eval::EvalHint::ExprTypeChecked;
use types::ExtremeType::*;
use rustc::middle::const_eval::ConstVal::*;
let ty = &cx.tcx.expr_ty(expr).sty;
match *ty {
ty::TyBool | ty::TyInt(_) | ty::TyUint(_) => (),
_ => return None,
};
let cv = match const_eval::eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None) {
Ok(val) => val,
Err(_) => return None,
};
let which = match (ty, cv) {
(&ty::TyBool, Bool(false)) => Minimum,
(&ty::TyInt(IntTy::Is), Int(x)) if x == ::std::isize::MIN as i64 => Minimum,
(&ty::TyInt(IntTy::I8), Int(x)) if x == ::std::i8::MIN as i64 => Minimum,
(&ty::TyInt(IntTy::I16), Int(x)) if x == ::std::i16::MIN as i64 => Minimum,
(&ty::TyInt(IntTy::I32), Int(x)) if x == ::std::i32::MIN as i64 => Minimum,
(&ty::TyInt(IntTy::I64), Int(x)) if x == ::std::i64::MIN as i64 => Minimum,
(&ty::TyUint(UintTy::Us), Uint(x)) if x == ::std::usize::MIN as u64 => Minimum,
(&ty::TyUint(UintTy::U8), Uint(x)) if x == ::std::u8::MIN as u64 => Minimum,
(&ty::TyUint(UintTy::U16), Uint(x)) if x == ::std::u16::MIN as u64 => Minimum,
(&ty::TyUint(UintTy::U32), Uint(x)) if x == ::std::u32::MIN as u64 => Minimum,
(&ty::TyUint(UintTy::U64), Uint(x)) if x == ::std::u64::MIN as u64 => Minimum,
(&ty::TyBool, Bool(true)) => Maximum,
(&ty::TyInt(IntTy::Is), Int(x)) if x == ::std::isize::MAX as i64 => Maximum,
(&ty::TyInt(IntTy::I8), Int(x)) if x == ::std::i8::MAX as i64 => Maximum,
(&ty::TyInt(IntTy::I16), Int(x)) if x == ::std::i16::MAX as i64 => Maximum,
(&ty::TyInt(IntTy::I32), Int(x)) if x == ::std::i32::MAX as i64 => Maximum,
(&ty::TyInt(IntTy::I64), Int(x)) if x == ::std::i64::MAX as i64 => Maximum,
(&ty::TyUint(UintTy::Us), Uint(x)) if x == ::std::usize::MAX as u64 => Maximum,
(&ty::TyUint(UintTy::U8), Uint(x)) if x == ::std::u8::MAX as u64 => Maximum,
(&ty::TyUint(UintTy::U16), Uint(x)) if x == ::std::u16::MAX as u64 => Maximum,
(&ty::TyUint(UintTy::U32), Uint(x)) if x == ::std::u32::MAX as u64 => Maximum,
(&ty::TyUint(UintTy::U64), Uint(x)) if x == ::std::u64::MAX as u64 => Maximum,
_ => return None,
};
Some(ExtremeExpr { which: which, expr: expr })
}
impl LateLintPass for AbsurdExtremeComparisons {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
use types::ExtremeType::*;
use types::AbsurdComparisonResult::*;
if let ExprBinary(ref cmp, ref lhs, ref rhs) = expr.node {
if let Some((culprit, result)) = detect_absurd_comparison(cx, cmp.node, lhs, rhs) {
if !in_macro(cx, expr.span) {
let msg = "this comparison involving the minimum or maximum element for this \
type contains a case that is always true or always false";
let conclusion = match result {
AlwaysFalse => "this comparison is always false".to_owned(),
AlwaysTrue => "this comparison is always true".to_owned(),
InequalityImpossible =>
format!("the case where the two sides are not equal never occurs, \
consider using {} == {} instead",
snippet(cx, lhs.span, "lhs"),
snippet(cx, rhs.span, "rhs")),
};
let help = format!("because {} is the {} value for this type, {}",
snippet(cx, culprit.expr.span, "x"),
match culprit.which { Minimum => "minimum", Maximum => "maximum" },
conclusion);
span_help_and_lint(cx, ABSURD_EXTREME_COMPARISONS, expr.span, msg, &help);
}
}
}
}
}