use reexport::*;
use rustc::front::map::Node::NodeBlock;
use rustc::lint::*;
use rustc::middle::const_eval::EvalHint::ExprTypeChecked;
use rustc::middle::const_eval::{ConstVal, eval_const_expr_partial};
use rustc::middle::def::Def;
use rustc::middle::ty;
use rustc_front::hir::*;
use rustc_front::intravisit::{Visitor, walk_expr, walk_block, walk_decl};
use std::borrow::Cow;
use std::collections::{HashSet, HashMap};
use utils::{snippet, span_lint, get_parent_expr, match_trait_method, match_type, in_external_macro, expr_block,
span_help_and_lint, is_integer_literal, get_enclosing_block, span_lint_and_then, walk_ptrs_ty};
use utils::{BTREEMAP_PATH, HASHMAP_PATH, LL_PATH, OPTION_PATH, RESULT_PATH, VEC_PATH};
declare_lint! {
pub NEEDLESS_RANGE_LOOP,
Warn,
"for-looping over a range of indices where an iterator over items would do"
}
declare_lint! {
pub EXPLICIT_ITER_LOOP,
Warn,
"for-looping over `_.iter()` or `_.iter_mut()` when `&_` or `&mut _` would do"
}
declare_lint! {
pub ITER_NEXT_LOOP,
Warn,
"for-looping over `_.next()` which is probably not intended"
}
declare_lint! {
pub FOR_LOOP_OVER_OPTION,
Warn,
"for-looping over an `Option`, which is more clearly expressed as an `if let`"
}
declare_lint! {
pub FOR_LOOP_OVER_RESULT,
Warn,
"for-looping over a `Result`, which is more clearly expressed as an `if let`"
}
declare_lint! {
pub WHILE_LET_LOOP,
Warn,
"`loop { if let { ... } else break }` can be written as a `while let` loop"
}
declare_lint! {
pub UNUSED_COLLECT,
Warn,
"`collect()`ing an iterator without using the result; this is usually better \
written as a for loop"
}
declare_lint! {
pub REVERSE_RANGE_LOOP,
Warn,
"Iterating over an empty range, such as `10..0` or `5..5`"
}
declare_lint! {
pub EXPLICIT_COUNTER_LOOP,
Warn,
"for-looping with an explicit counter when `_.enumerate()` would do"
}
declare_lint! {
pub EMPTY_LOOP,
Warn,
"empty `loop {}` detected"
}
declare_lint! {
pub WHILE_LET_ON_ITERATOR,
Warn,
"using a while-let loop instead of a for loop on an iterator"
}
declare_lint! {
pub FOR_KV_MAP,
Warn,
"looping on a map using `iter` when `keys` or `values` would do"
}
#[derive(Copy, Clone)]
pub struct LoopsPass;
impl LintPass for LoopsPass {
fn get_lints(&self) -> LintArray {
lint_array!(NEEDLESS_RANGE_LOOP,
EXPLICIT_ITER_LOOP,
ITER_NEXT_LOOP,
WHILE_LET_LOOP,
UNUSED_COLLECT,
REVERSE_RANGE_LOOP,
EXPLICIT_COUNTER_LOOP,
EMPTY_LOOP,
WHILE_LET_ON_ITERATOR,
FOR_KV_MAP)
}
}
impl LateLintPass for LoopsPass {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let Some((pat, arg, body)) = recover_for_loop(expr) {
check_for_loop(cx, pat, arg, body, expr);
}
if let ExprLoop(ref block, _) = expr.node {
if block.stmts.is_empty() && block.expr.is_none() {
span_lint(cx,
EMPTY_LOOP,
expr.span,
"empty `loop {}` detected. You may want to either use `panic!()` or add \
`std::thread::sleep(..);` to the loop body.");
}
let inner_stmt_expr = extract_expr_from_first_stmt(block);
if let Some(inner) = inner_stmt_expr.or_else(|| extract_first_expr(block)) {
if let ExprMatch(ref matchexpr, ref arms, ref source) = inner.node {
let mut other_stuff = block.stmts
.iter()
.skip(1)
.map(|stmt| format!("{}", snippet(cx, stmt.span, "..")))
.collect::<Vec<String>>();
if inner_stmt_expr.is_some() {
if let Some(ref expr) = block.expr {
other_stuff.push(format!("{}", snippet(cx, expr.span, "..")));
}
}
match *source {
MatchSource::Normal | MatchSource::IfLetDesugar{..} => {
if arms.len() == 2 && arms[0].pats.len() == 1 && arms[0].guard.is_none() &&
arms[1].pats.len() == 1 && arms[1].guard.is_none() &&
is_break_expr(&arms[1].body) {
if in_external_macro(cx, expr.span) {
return;
}
let loop_body = if inner_stmt_expr.is_some() {
Cow::Owned(format!("{{\n {}\n}}", other_stuff.join("\n ")))
} else {
expr_block(cx, &arms[0].body, Some(other_stuff.join("\n ")), "..")
};
span_help_and_lint(cx,
WHILE_LET_LOOP,
expr.span,
"this loop could be written as a `while let` loop",
&format!("try\nwhile let {} = {} {}",
snippet(cx, arms[0].pats[0].span, ".."),
snippet(cx, matchexpr.span, ".."),
loop_body));
}
}
_ => (),
}
}
}
}
if let ExprMatch(ref match_expr, ref arms, MatchSource::WhileLetDesugar) = expr.node {
let pat = &arms[0].pats[0].node;
if let (&PatEnum(ref path, Some(ref pat_args)),
&ExprMethodCall(method_name, _, ref method_args)) = (pat, &match_expr.node) {
let iter_expr = &method_args[0];
if let Some(lhs_constructor) = path.segments.last() {
if method_name.node.as_str() == "next" &&
match_trait_method(cx, match_expr, &["core", "iter", "Iterator"]) &&
lhs_constructor.identifier.name.as_str() == "Some" &&
!is_iterator_used_after_while_let(cx, iter_expr) {
let iterator = snippet(cx, method_args[0].span, "_");
let loop_var = snippet(cx, pat_args[0].span, "_");
span_help_and_lint(cx,
WHILE_LET_ON_ITERATOR,
expr.span,
"this loop could be written as a `for` loop",
&format!("try\nfor {} in {} {{...}}", loop_var, iterator));
}
}
}
}
}
fn check_stmt(&mut self, cx: &LateContext, stmt: &Stmt) {
if let StmtSemi(ref expr, _) = stmt.node {
if let ExprMethodCall(ref method, _, ref args) = expr.node {
if args.len() == 1 && method.node.as_str() == "collect" &&
match_trait_method(cx, expr, &["core", "iter", "Iterator"]) {
span_lint(cx,
UNUSED_COLLECT,
expr.span,
&format!("you are collect()ing an iterator and throwing away the result. Consider \
using an explicit for loop to exhaust the iterator"));
}
}
}
}
}
fn check_for_loop(cx: &LateContext, pat: &Pat, arg: &Expr, body: &Expr, expr: &Expr) {
check_for_loop_range(cx, pat, arg, body, expr);
check_for_loop_reverse_range(cx, arg, expr);
check_for_loop_arg(cx, pat, arg, expr);
check_for_loop_explicit_counter(cx, arg, body, expr);
check_for_loop_over_map_kv(cx, pat, arg, body, expr);
}
fn check_for_loop_range(cx: &LateContext, pat: &Pat, arg: &Expr, body: &Expr, expr: &Expr) {
if let ExprRange(Some(ref l), ref r) = arg.node {
if let PatIdent(_, ref ident, _) = pat.node {
let mut visitor = VarVisitor {
cx: cx,
var: ident.node.name,
indexed: HashSet::new(),
nonindex: false,
};
walk_expr(&mut visitor, body);
if visitor.indexed.len() == 1 {
let indexed = visitor.indexed
.into_iter()
.next()
.expect("Len was nonzero, but no contents found");
let starts_at_zero = is_integer_literal(l, 0);
let skip: Cow<_> = if starts_at_zero {
"".into()
} else {
format!(".skip({})", snippet(cx, l.span, "..")).into()
};
let take: Cow<_> = if let Some(ref r) = *r {
if !is_len_call(&r, &indexed) {
format!(".take({})", snippet(cx, r.span, "..")).into()
} else {
"".into()
}
} else {
"".into()
};
if visitor.nonindex {
span_lint(cx,
NEEDLESS_RANGE_LOOP,
expr.span,
&format!("the loop variable `{}` is used to index `{}`. \
Consider using `for ({}, item) in {}.iter().enumerate(){}{}` or similar iterators",
ident.node.name,
indexed,
ident.node.name,
indexed,
take,
skip));
} else {
let repl = if starts_at_zero && take.is_empty() {
format!("&{}", indexed)
} else {
format!("{}.iter(){}{}", indexed, take, skip)
};
span_lint(cx,
NEEDLESS_RANGE_LOOP,
expr.span,
&format!("the loop variable `{}` is only used to index `{}`. \
Consider using `for item in {}` or similar iterators",
ident.node.name,
indexed,
repl));
}
}
}
}
}
fn is_len_call(expr: &Expr, var: &Name) -> bool {
if_let_chain! {[
let ExprMethodCall(method, _, ref len_args) = expr.node,
len_args.len() == 1,
method.node.as_str() == "len",
let ExprPath(_, ref path) = len_args[0].node,
path.segments.len() == 1,
&path.segments[0].identifier.name == var
], {
return true;
}}
false
}
fn check_for_loop_reverse_range(cx: &LateContext, arg: &Expr, expr: &Expr) {
if let ExprRange(Some(ref start_expr), Some(ref stop_expr)) = arg.node {
if let Ok(start_idx) = eval_const_expr_partial(&cx.tcx, start_expr, ExprTypeChecked, None) {
if let Ok(stop_idx) = eval_const_expr_partial(&cx.tcx, stop_expr, ExprTypeChecked, None) {
let (sup, eq) = match (start_idx, stop_idx) {
(ConstVal::Int(start_idx), ConstVal::Int(stop_idx)) => (start_idx > stop_idx, start_idx == stop_idx),
(ConstVal::Uint(start_idx), ConstVal::Uint(stop_idx)) => (start_idx > stop_idx, start_idx == stop_idx),
_ => (false, false),
};
if sup {
let start_snippet = snippet(cx, start_expr.span, "_");
let stop_snippet = snippet(cx, stop_expr.span, "_");
span_lint_and_then(cx,
REVERSE_RANGE_LOOP,
expr.span,
"this range is empty so this for loop will never run",
|db| {
db.span_suggestion(expr.span,
"consider using the following if \
you are attempting to iterate \
over this range in reverse",
format!("({}..{}).rev()` ",
stop_snippet,
start_snippet));
});
} else if eq {
span_lint(cx,
REVERSE_RANGE_LOOP,
expr.span,
"this range is empty so this for loop will never run");
}
}
}
}
}
fn check_for_loop_arg(cx: &LateContext, pat: &Pat, arg: &Expr, expr: &Expr) {
let mut next_loop_linted = false; if let ExprMethodCall(ref method, _, ref args) = arg.node {
if args.len() == 1 {
let method_name = method.node;
if method_name.as_str() == "iter" || method_name.as_str() == "iter_mut" {
if is_ref_iterable_type(cx, &args[0]) {
let object = snippet(cx, args[0].span, "_");
span_lint(cx,
EXPLICIT_ITER_LOOP,
expr.span,
&format!("it is more idiomatic to loop over `&{}{}` instead of `{}.{}()`",
if method_name.as_str() == "iter_mut" {
"mut "
} else {
""
},
object,
object,
method_name));
}
} else if method_name.as_str() == "next" && match_trait_method(cx, arg, &["core", "iter", "Iterator"]) {
span_lint(cx,
ITER_NEXT_LOOP,
expr.span,
"you are iterating over `Iterator::next()` which is an Option; this will compile but is \
probably not what you want");
next_loop_linted = true;
}
}
}
if !next_loop_linted {
check_arg_type(cx, pat, arg);
}
}
fn check_arg_type(cx: &LateContext, pat: &Pat, arg: &Expr) {
let ty = cx.tcx.expr_ty(arg);
if match_type(cx, ty, &OPTION_PATH) {
span_help_and_lint(
cx,
FOR_LOOP_OVER_OPTION,
arg.span,
&format!("for loop over `{0}`, which is an `Option`. This is more readably written as \
an `if let` statement.", snippet(cx, arg.span, "_")),
&format!("consider replacing `for {0} in {1}` with `if let Some({0}) = {1}`",
snippet(cx, pat.span, "_"), snippet(cx, arg.span, "_"))
);
}
else if match_type(cx, ty, &RESULT_PATH) {
span_help_and_lint(
cx,
FOR_LOOP_OVER_RESULT,
arg.span,
&format!("for loop over `{0}`, which is a `Result`. This is more readably written as \
an `if let` statement.", snippet(cx, arg.span, "_")),
&format!("consider replacing `for {0} in {1}` with `if let Ok({0}) = {1}`",
snippet(cx, pat.span, "_"), snippet(cx, arg.span, "_"))
);
}
}
fn check_for_loop_explicit_counter(cx: &LateContext, arg: &Expr, body: &Expr, expr: &Expr) {
let mut visitor = IncrementVisitor {
cx: cx,
states: HashMap::new(),
depth: 0,
done: false,
};
walk_expr(&mut visitor, body);
let map = &cx.tcx.map;
let parent_scope = map.get_enclosing_scope(expr.id).and_then(|id| map.get_enclosing_scope(id));
if let Some(parent_id) = parent_scope {
if let NodeBlock(block) = map.get(parent_id) {
for (id, _) in visitor.states.iter().filter(|&(_, v)| *v == VarState::IncrOnce) {
let mut visitor2 = InitializeVisitor {
cx: cx,
end_expr: expr,
var_id: *id,
state: VarState::IncrOnce,
name: None,
depth: 0,
past_loop: false,
};
walk_block(&mut visitor2, block);
if visitor2.state == VarState::Warn {
if let Some(name) = visitor2.name {
span_lint(cx,
EXPLICIT_COUNTER_LOOP,
expr.span,
&format!("the variable `{0}` is used as a loop counter. Consider using `for ({0}, \
item) in {1}.enumerate()` or similar iterators",
name,
snippet(cx, arg.span, "_")));
}
}
}
}
}
}
fn check_for_loop_over_map_kv(cx: &LateContext, pat: &Pat, arg: &Expr, body: &Expr, expr: &Expr) {
if let PatTup(ref pat) = pat.node {
if pat.len() == 2 {
let (pat_span, kind) = match (&pat[0].node, &pat[1].node) {
(key, _) if pat_is_wild(key, body) => (&pat[1].span, "values"),
(_, value) if pat_is_wild(value, body) => (&pat[0].span, "keys"),
_ => return
};
let ty = walk_ptrs_ty(cx.tcx.expr_ty(arg));
let arg_span = if let ExprAddrOf(_, ref expr) = arg.node {
expr.span
}
else {
arg.span
};
if match_type(cx, ty, &HASHMAP_PATH) ||
match_type(cx, ty, &BTREEMAP_PATH) {
span_lint_and_then(cx,
FOR_KV_MAP,
expr.span,
&format!("you seem to want to iterate on a map's {}", kind),
|db| {
db.span_suggestion(expr.span,
"use the corresponding method",
format!("for {} in {}.{}() {{...}}",
snippet(cx, *pat_span, ".."),
snippet(cx, arg_span, ".."),
kind));
});
}
}
}
}
fn pat_is_wild(pat: &Pat_, body: &Expr) -> bool {
match *pat {
PatWild => true,
PatIdent(_, ident, None) if ident.node.name.as_str().starts_with('_') => {
let mut visitor = UsedVisitor {
var: ident.node,
used: false,
};
walk_expr(&mut visitor, body);
!visitor.used
},
_ => false,
}
}
struct UsedVisitor {
var: Ident, used: bool, }
impl<'a> Visitor<'a> for UsedVisitor {
fn visit_expr(&mut self, expr: &Expr) {
if let ExprPath(None, ref path) = expr.node {
if path.segments.len() == 1 && path.segments[0].identifier == self.var {
self.used = true;
return
}
}
walk_expr(self, expr);
}
}
fn recover_for_loop(expr: &Expr) -> Option<(&Pat, &Expr, &Expr)> {
if_let_chain! {
[
let ExprMatch(ref iterexpr, ref arms, _) = expr.node,
let ExprCall(_, ref iterargs) = iterexpr.node,
iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(),
let ExprLoop(ref block, _) = arms[0].body.node,
block.stmts.is_empty(),
let Some(ref loopexpr) = block.expr,
let ExprMatch(_, ref innerarms, MatchSource::ForLoopDesugar) = loopexpr.node,
innerarms.len() == 2 && innerarms[0].pats.len() == 1,
let PatEnum(_, Some(ref somepats)) = innerarms[0].pats[0].node,
somepats.len() == 1
], {
return Some((&somepats[0],
&iterargs[0],
&innerarms[0].body));
}
}
None
}
struct VarVisitor<'v, 't: 'v> {
cx: &'v LateContext<'v, 't>, var: Name, indexed: HashSet<Name>, nonindex: bool, }
impl<'v, 't> Visitor<'v> for VarVisitor<'v, 't> {
fn visit_expr(&mut self, expr: &'v Expr) {
if let ExprPath(None, ref path) = expr.node {
if path.segments.len() == 1 && path.segments[0].identifier.name == self.var {
if_let_chain! {
[
let Some(parexpr) = get_parent_expr(self.cx, expr),
let ExprIndex(ref seqexpr, _) = parexpr.node,
let ExprPath(None, ref seqvar) = seqexpr.node,
seqvar.segments.len() == 1
], {
self.indexed.insert(seqvar.segments[0].identifier.name);
return; }
}
self.nonindex = true;
return;
}
}
walk_expr(self, expr);
}
}
fn is_iterator_used_after_while_let(cx: &LateContext, iter_expr: &Expr) -> bool {
let def_id = match var_def_id(cx, iter_expr) {
Some(id) => id,
None => return false,
};
let mut visitor = VarUsedAfterLoopVisitor {
cx: cx,
def_id: def_id,
iter_expr_id: iter_expr.id,
past_while_let: false,
var_used_after_while_let: false,
};
if let Some(enclosing_block) = get_enclosing_block(cx, def_id) {
walk_block(&mut visitor, enclosing_block);
}
visitor.var_used_after_while_let
}
struct VarUsedAfterLoopVisitor<'v, 't: 'v> {
cx: &'v LateContext<'v, 't>,
def_id: NodeId,
iter_expr_id: NodeId,
past_while_let: bool,
var_used_after_while_let: bool,
}
impl<'v, 't> Visitor<'v> for VarUsedAfterLoopVisitor<'v, 't> {
fn visit_expr(&mut self, expr: &'v Expr) {
if self.past_while_let {
if Some(self.def_id) == var_def_id(self.cx, expr) {
self.var_used_after_while_let = true;
}
} else if self.iter_expr_id == expr.id {
self.past_while_let = true;
}
walk_expr(self, expr);
}
}
fn is_ref_iterable_type(cx: &LateContext, e: &Expr) -> bool {
let ty = cx.tcx.expr_ty(e);
is_iterable_array(ty) ||
match_type(cx, ty, &VEC_PATH) ||
match_type(cx, ty, &LL_PATH) ||
match_type(cx, ty, &HASHMAP_PATH) ||
match_type(cx, ty, &["std", "collections", "hash", "set", "HashSet"]) ||
match_type(cx, ty, &["collections", "vec_deque", "VecDeque"]) ||
match_type(cx, ty, &["collections", "binary_heap", "BinaryHeap"]) ||
match_type(cx, ty, &BTREEMAP_PATH) ||
match_type(cx, ty, &["collections", "btree", "set", "BTreeSet"])
}
fn is_iterable_array(ty: ty::Ty) -> bool {
match ty.sty {
ty::TyArray(_, 0...32) => true,
_ => false,
}
}
fn extract_expr_from_first_stmt(block: &Block) -> Option<&Expr> {
if block.stmts.is_empty() {
return None;
}
if let StmtDecl(ref decl, _) = block.stmts[0].node {
if let DeclLocal(ref local) = decl.node {
if let Some(ref expr) = local.init {
Some(expr)
} else {
None
}
} else {
None
}
} else {
None
}
}
fn extract_first_expr(block: &Block) -> Option<&Expr> {
match block.expr {
Some(ref expr) => Some(expr),
None if !block.stmts.is_empty() => {
match block.stmts[0].node {
StmtExpr(ref expr, _) | StmtSemi(ref expr, _) => Some(expr),
_ => None,
}
}
_ => None,
}
}
fn is_break_expr(expr: &Expr) -> bool {
match expr.node {
ExprBreak(None) => true,
ExprBlock(ref b) => {
match extract_first_expr(b) {
Some(ref subexpr) => is_break_expr(subexpr),
None => false,
}
}
_ => false,
}
}
#[derive(PartialEq)]
enum VarState {
Initial, IncrOnce, Declared, Warn,
DontWarn,
}
struct IncrementVisitor<'v, 't: 'v> {
cx: &'v LateContext<'v, 't>, states: HashMap<NodeId, VarState>, depth: u32, done: bool,
}
impl<'v, 't> Visitor<'v> for IncrementVisitor<'v, 't> {
fn visit_expr(&mut self, expr: &'v Expr) {
if self.done {
return;
}
if let Some(def_id) = var_def_id(self.cx, expr) {
if let Some(parent) = get_parent_expr(self.cx, expr) {
let state = self.states.entry(def_id).or_insert(VarState::Initial);
match parent.node {
ExprAssignOp(op, ref lhs, ref rhs) => {
if lhs.id == expr.id {
if op.node == BiAdd && is_integer_literal(rhs, 1) {
*state = match *state {
VarState::Initial if self.depth == 0 => VarState::IncrOnce,
_ => VarState::DontWarn,
};
} else {
*state = VarState::DontWarn;
}
}
}
ExprAssign(ref lhs, _) if lhs.id == expr.id => *state = VarState::DontWarn,
ExprAddrOf(mutability, _) if mutability == MutMutable => *state = VarState::DontWarn,
_ => (),
}
}
} else if is_loop(expr) {
self.states.clear();
self.done = true;
return;
} else if is_conditional(expr) {
self.depth += 1;
walk_expr(self, expr);
self.depth -= 1;
return;
}
walk_expr(self, expr);
}
}
struct InitializeVisitor<'v, 't: 'v> {
cx: &'v LateContext<'v, 't>, end_expr: &'v Expr, var_id: NodeId,
state: VarState,
name: Option<Name>,
depth: u32, past_loop: bool,
}
impl<'v, 't> Visitor<'v> for InitializeVisitor<'v, 't> {
fn visit_decl(&mut self, decl: &'v Decl) {
if let DeclLocal(ref local) = decl.node {
if local.pat.id == self.var_id {
if let PatIdent(_, ref ident, _) = local.pat.node {
self.name = Some(ident.node.name);
self.state = if let Some(ref init) = local.init {
if is_integer_literal(init, 0) {
VarState::Warn
} else {
VarState::Declared
}
} else {
VarState::Declared
}
}
}
}
walk_decl(self, decl);
}
fn visit_expr(&mut self, expr: &'v Expr) {
if self.state == VarState::DontWarn {
return;
}
if expr == self.end_expr {
self.past_loop = true;
return;
}
if self.state == VarState::IncrOnce {
return;
}
if var_def_id(self.cx, expr) == Some(self.var_id) {
if let Some(parent) = get_parent_expr(self.cx, expr) {
match parent.node {
ExprAssignOp(_, ref lhs, _) if lhs.id == expr.id => {
self.state = VarState::DontWarn;
}
ExprAssign(ref lhs, ref rhs) if lhs.id == expr.id => {
self.state = if is_integer_literal(rhs, 0) && self.depth == 0 {
VarState::Warn
} else {
VarState::DontWarn
}
}
ExprAddrOf(mutability, _) if mutability == MutMutable => self.state = VarState::DontWarn,
_ => (),
}
}
if self.past_loop {
self.state = VarState::DontWarn;
return;
}
} else if !self.past_loop && is_loop(expr) {
self.state = VarState::DontWarn;
return;
} else if is_conditional(expr) {
self.depth += 1;
walk_expr(self, expr);
self.depth -= 1;
return;
}
walk_expr(self, expr);
}
}
fn var_def_id(cx: &LateContext, expr: &Expr) -> Option<NodeId> {
if let Some(path_res) = cx.tcx.def_map.borrow().get(&expr.id) {
if let Def::Local(_, node_id) = path_res.base_def {
return Some(node_id);
}
}
None
}
fn is_loop(expr: &Expr) -> bool {
match expr.node {
ExprLoop(..) | ExprWhile(..) => true,
_ => false,
}
}
fn is_conditional(expr: &Expr) -> bool {
match expr.node {
ExprIf(..) | ExprMatch(..) => true,
_ => false,
}
}